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Abstract

We study the problem of proving in weak theories of Bounded Arith-
metic the theorem that there are arbitrarily large prime numbers. We
show that the theorem can be proved by some “minimal” reasoning (i.e.,
in the theory I∆0) using concepts such as (the logarithm) of a binomial
coefficient. In fact we prove Bertrand’s Postulate (that there is at least
a prime number between n and 2n, for all n > 1) and the fact that the
number of prime numbers between n and 2n is of order Θ(n/ ln(n)). The
proofs that we formalize are much simpler than several existing formal-
izations, and our theory turns out to be a sub-theory of a recent theory
proposed by Woods and Cornaros that extends I∆0 by a special counting
function.

1 Introduction

A long standing problem in proof complexity theory is whether the fact that
there are infinitely many prime numbers is provable in the theory I∆0, the
theory over the vocabulary 0, 1,+, ·, < that is axiomatized by basic properties
of this vocabulary and induction axioms for all bounded formulas. The problem
remains open even when we replace I∆0 by I∆0(π), a theory that extends
I∆0 by adding the function π(n) which is the number of prime numbers less
than or equal to n [Woo81]. (I∆0(π) is also called I∆0(π) + def (π) in the
literature.) The motivation for the latter is: suppose that we are able to count
the number of primes, then is it possible to prove the infinitude of primes using
some “minimal” reasoning?

These problems belong to the area recently named Bounded Reverse Math-
ematics [Coo07] whose purpose is to formalize and prove (the discrete versions
of) mathematical theorems in weak theories of Bounded Arithmetic. A re-
lated problem [PWW88] is whether a weak form of the Pigeonhole Principle is
provable in I∆0, or equivalently, whether it has polynomial-size constant-depth
Frege proofs.



Recently some progress has been made in [WC07] where it is shown that
I∆0(ξ) (called I∆0(ξ)+def (ξ) in [WC07]) proves the infinitude of primes. Here
I∆0(ξ) extends I∆0 by the function ξ that counts some definable sets of prime
numbers. The function π can be defined using ξ, so I∆0(ξ) is an extension of
I∆0(π). It is unlikely that ξ can be defined in I∆0(π).

In an earlier paper [Cor95] it is shown that the infinitude of primes is also
provable in I∆0(π,K), the theory that extends I∆0(π) by a defining axiom for
the function

K(n) =

n
∑

i=1

ln(i)

It is not clear whether I∆0(ξ) extends I∆0(π,K), or vice versa.
In this paper we show that the infinitude of prime numbers is provable in

I∆0(π, lbc), the theory obtained from I∆0(π) by adding a defining axiom for
the function

lbc(n) = ln(
(2n)!

n!n!
)

(lbc stands for logarithm of binomial coefficient). We also show that the function
lbc is definable in I∆0(ξ). Together with the fact proved in [WC07] that π is
definable in I∆0(ξ), this implies that I∆0(π, lbc) is a sub-theory of I∆0(ξ). So
our results strengthen the results from [WC07]. On the other hand, we do not
know whether our theory extends that of [Cor95], or vice versa.

Note that the function ξ [WC07] is a counting function that is more gen-
eral than π, while both K [Cor95] and our function lbc are not. Also, if we
add to I∆0 a counting function and its defining axiom for every ∆0-definable
set, then the resulting theory, here we called I∆0(count), extends all I∆0(ξ),
I∆0(π,K) and I∆0(π, lbc). It has been shown [CD94] that I∆0(count) proves
the Prime Number Theorem (that there are Θ(n/ ln(n)) primes less than n). It
is easy to see that I∆0(count) is equivalent to the number part of the theory
VTC0 [NC05, CN06], a two-sorted theory that is associated with the two-sorted
complexity class TC0.

1.1 Existing Formalizations

Our formalization is based on [Ngu08, Chapter 8]. At high level, the proof that
we choose to formalize is essentially the same as that of [WC07]. However, we
explicitly use the binomial coefficients mentioned above, so our formalization
is simpler. In fact, the axiom that we need to define lbc is provable (in I∆0)
from the defining axiom for the function ξ introduced in [WC07]. Moreover, the
function ξ seems to be indispensable for the formalization in [WC07], because
it is needed in proving (the approximate version of) the asymptotic identity

(ψ(x) − ψ(
x

2
) + ψ(

x

3
) − ψ(

x

4
) + . . .) = x ln(2)

where
ψ(x) =

∑

i≤x

Λ(i)
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and Λ(x) is the von Mangoldt function,

Λ(x) =

{

ln(p) if x = pj for some prime p and some j ≥ 1

0 otherwise

1.2 Our Formalizations

The proofs that we formalized are simple proofs which rely on different (approx-
imate) representations of

ln(
(2n)!

n!n!
) (1)

One way of computing (1) is to use the fact that

n
∑

i=1

ln(i) = n ln(n) − n+ O(ln(n)) (2)

This produces

ln(
(2n)!

n!n!
) =

2n
∑

i=1

ln(i) − 2

n
∑

i=1

ln(i) = 2n ln(2) + O(ln(n)) (3)

Another expression for (1) is

∑

p≤2n



ln(p)
∑

1≤j∧pj≤2n

(⌊2n/pj⌋ − 2⌊n/pj⌋)



 (4)

This expression reveals useful information about the prime numbers that are
≤ 2n. For example, it gives us

ln(
(2n)!

n!n!
) ≤ π(2n) ln(2n)

and so a lower bound for π(2n) follows using (3). Moser’s simple proof of
Bertrand’s Postulate that we formalize also stems from (4) (see Lemma 4.2).

In our formalizations, the function lbc is defined based on the expression (4).
The obstacle that prevents us from resolving Woods’ conjecture is the inability
to compute in I∆0(π) this summation.

Of course we cannot compute the function ln(x) precisely, so as in [Woo81] we
use an approximation to it. Our approximation and much of the formalizations
are from [Ngu08, Chapter 8]. The approximation to ln(x), denoted by ln(x,m)
for a parameterm, is essentially the same as the approximation given in [Woo81].
Here we give a more detailed and direct proof of our version of (2).
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1.3 Organization

The paper is organized as follows. In Section 2 we recall I∆0 and some im-
portant properties. In Section 2.2 we define in I∆0 an approximation to ln(x).
The function lbc is defined in Section 2.7, and in Section 2.8 we show that it is
definable in I∆0(ξ). The I∆0(π, lbc)-proof of a lower bound for π(n) is given
in Section 3. The lower bound for π(2n) − π(n) and Bertrand’s Postulate are
proved in Section 4.

2 The Theories I∆0, I∆0(π), and I∆0(π, lbc)

The language of I∆0 is
{0, 1,+, ·, <,=}

The theory I∆0 is axiomatized by some basic defining axioms for the symbols
in the language (see [HP93, Kra95, CN06]) and induction axiom scheme for
bounded formulas. I∆0 denotes the universal conservative extension of I∆0

obtained by adding Skolem functions that eliminate quantifiers in the axioms of
I∆0. (We do not need the fact that I∆0 is a universal theory here.)

(Instead of I∆0 and its extensions, we can use the two-sorted theory V0

[CN06] and its corresponding extensions, because V0 is conservative over I∆0

and the same can be shown for their respective extensions. Care should be taken,
however, when we look at the associated complexity classes: V0 is associated
with the two-sorted class AC0 where sets are presented by binary strings and
numbers by unary strings; on the other hand, I∆0 is associated with the Linear
Time Hierarchy, because here numbers are written in binary.)

The following theorem is from [Ben62, HP93, Bus98, CN06]:

Theorem 2.1. The relation (on numbers) y = zx can be represented by a ∆0

formula.

Corollary 2.2. The function |x| (or also log(x)), where |0| = 0 and |x| =
⌊log2(x)⌋ if x ≥ 1, is definable in I∆0.

The following theorem is from [Woo81]:

Theorem 2.3. For a bounded ∆0-sequence x1, x2, . . . , xℓ where ℓ ≤ (log(a))d

for some a and some constant d ∈ N, the function

∑

1≤i≤ℓ

xi

is definable in I∆0 and it is provable in I∆0 that

∑

1≤i≤ℓ+1

xi =
∑

1≤i≤ℓ

xi + xℓ+1
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2.1 Rational Numbers in I∆0

We will approximate the natural logarithm function by rational numbers. Here
we only need nonnegative numbers which can be defined in I∆0 by pairs 〈x, y〉,
where

〈x, y〉 =def (x+ y)(x+ y + 1) + 2y

For readability we will write x
y for 〈x, y〉. Equality, inequality, addition and

multiplication for rational numbers are defined in the standard way, and these
are preserved under the embedding x 7→ x

1 . For example, =Q and ≤Q are defined
as:

x

y
=Q

x′

y′
≡ xy′ = x′y, and

x

y
≤Q

x′

y′
≡ xy′ ≤ x′y

Then it can be shown that

I∆0 ⊢ ⌊x/y⌋ ≤Q

x

y
<Q ⌊x/y⌋ + 1

(here ⌊x/y⌋ = max{z : zy ≤ x}, and r <Q s ≡ (r ≤Q s ∧ r 6=Q s)). In the
following discussion, we will simply omit the subscript Q from =Q, ≤Q, etc.; the
exact meaning will be clear from the context.

For a rational number r
s ≥ 1, define

|r
s
| = max{i : s2i ≤ r}

2.2 Approximating ln(x) in I∆0

1
m+1

m
m+2

m
. . . x

1

1/m

y = 1/x

Figure 1: Defining ln(x,m) for 1 ≤ x ≤ 2: the shaded area is (6).

We will now define in I∆0 a function ln(x,m) which approximates ln(x) up
to O(|x|/m), for x ∈ N, where m is a polynomial in |a|. Following [Woo81] we
will first define ln(x,m) that approximates ln(x) upto 1/m for 1 ≤ x ≤ 2. Then
for x > 2 define

ln(x,m) = |x| ln(2,m) + ln(
x

2|x|
) (5)
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It is easy to see that for any x > 1, ln(x,m) approximates ln(x) upto O(|x|/m).
Our definition of ln(x,m) for 1 ≤ x ≤ 2 is essentially the same as the

definition of log+ of [Woo81]. Note that

ln(x) =

∫ x

1

1

y
dy

Our approximation will be roughly (the shaded area in Figure 1):

∑

m≤k<⌈mx⌉

1

m

1

k/m
=

∑

m≤k<⌈mx⌉

1

k
(6)

We will not compute this summation precisely (since we want to avoid comput-

ing the common denominator). Instead we approximate 1
k by ⌊b/k⌋

b for some b
determined below. Thus

ln(x,m) =

∑

m≤k<⌈mx⌉⌊b/k⌋
b

(7)

The summation in (7) can be carried out in I∆0 by Theorem 2.3.
Notice that (6) is an upper bound for ln(x) with an error (the total area of

the shaded region above the line xy = 1) at most 1/m, and (7) is a lower bound
for (6) with an error at most ⌈mx⌉/b. So to get an 1/m-approximation to ln(x)
it suffices to take b = m3.

Notation Throughout this paper, fix some a sufficiently large and m a power
of 2, m = polylog(a) = 2h. (In particular, m > |a|2.) We use ‖·‖ for absolute
value, e.g., ‖t1 − t2‖ ≤ s is an abbreviation for t1 ≤ t2 + s ∧ t2 ≤ t1 + s.

Definition 2.4 (ln(x,m) or just ln(x)). For 1 ≤ x ≤ 2, ln(x,m) is defined as
in (7) with b = m3. For x > 2, ln(x,m) is defined as in (5).

Lemma 2.5 (Provable in I∆0). a) x ≤ y ⊃ ln(x,m) ≤ ln(y,m).

b) ‖ln(xy,m) − (ln(x,m) + ln(y,m))‖ = O( |x|+|y|
m )

Proof. Part a) is straightforward from definition. For part b) we consider the
following cases.

(i) 1 ≤ x, y ≤ 2 and xy ≤ 2. By definition we have

ln(xy,m) =
1

b

∑

m≤k<⌈mxy⌉
⌊b/k⌋ = ln(x,m) +

1

b

∑

⌈mx⌉≤k<⌈mxy⌉
⌊b/k⌋

Hence

ln(xy,m) − ln(x,m) − ln(y,m) =
1

b





∑

⌈mx⌉≤k<⌈mxy⌉
⌊b/k⌋ −

∑

m≤k<⌈my⌉
⌊b/k⌋




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Let r, t be such that

r − 1

m
< x ≤ r

m
,

t− 1

m
< y ≤ t

m

Then m < r, t ≤ 2m, and

(r − 1)(t− 1)

m
< ⌈mxy⌉ ≤ rt

m

Now
∑

⌈mx⌉≤k<⌈mxy⌉
⌊b/k⌋ ≤

∑

r≤k<⌈rt/m⌉
⌊b/k⌋

<
∑

r≤k<⌈rt/m⌉
(m⌊b/km⌋ +m)

≤
∑

r≤k<⌈rt/m⌉



m+
∑

(k−1)m≤i<km

⌊b/i⌋





< rt+
∑

(r−1)m≤i<rt

⌊b/i⌋

Also,

∑

⌈mx⌉≤k<⌈mxy⌉
⌊b/k⌋ ≥

∑

r≤k<⌈(r−1)(t−1)/m⌉
⌊b/k⌋

≥
∑

r≤k<⌈(r−1)(t−1)/m⌉
m⌊b/km⌋

≥
∑

r≤k<⌈(r−1)(t−1)/m⌉





∑

km≤i<(k+1)m

⌊b/i⌋





=
∑

rm≤i<(r−1)(t−1)

⌊b/i⌋

Similarly,

∑

m≤k<my

⌊b/k⌋ =
∑

m≤k<t

⌊b/k⌋

<
∑

m≤k<t

(r⌊b/kr⌋ + r)

≤
∑

m≤k<t



r +
∑

(k−1)r≤i<kr

⌊b/i⌋





< rt+
∑

(m−1)r≤i<rt

⌊b/i⌋
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And,

∑

m≤k<my

⌊b/k⌋ =
∑

m≤k<t

⌊b/k⌋

≥
∑

m≤k<t

r⌊b/kr⌋

≥
∑

m≤k<t





∑

kr≤i<(k+1)r

⌊b/i⌋





=
∑

rm≤i<rt

⌊b/i⌋

As a result, we can derive an upper bound for

‖ln(xy,m) − (ln(x,m) + ln(y,m))‖

by noting that m < r, t ≤ 2m and m = polylog(a) for some a sufficiently large.

(ii) 1 ≤ x, y ≤ 2 and 2 < xy ≤ 4. First, by the same argument we can show
that

ln(z,m) =
∑

m≤k<mz

⌊b/k⌋ + O(
1

m
)

for 2 < z ≤ 4. The current case is handled using this and the same arguments
as in the previous case.

(iii) Finally, the case where x, y > 2 is reduced to the previous cases using (5).
�

2.3 Defining
∑

ln(i) in I∆0

The fact that
∑

1≤i≤n ln(i) is definable in I∆0 is from [Woo81]. We reprove it
here (for our definition of ln(x)) in order to roughly estimate the sum.

Theorem 2.6. a) The following function is definable in I∆0:

n
∑

i=1

ln(i) (8)

b) Let

S =
m
∑

i=1

ln(i), T =
m
∑

t=1

ln(
m+ t

m
), Tn =

n
∑

i=2|n−1|+1

ln(
i

2|n−1| ) (9)

Then S, T, Tn are definable in I∆0, and it is provable in I∆0 that (let ℓ = |n−1|)
n
∑

i=1

ln(i) = S + (nℓ− 2ℓ+1 − (h− 2)2h) ln(2) + (2ℓ−h − 1)T + Tn (10)
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c) It is provable in I∆0 that

n+1
∑

i=1

ln(i) =

n
∑

i=1

ln(i) + ln(n+ 1) (11)

Proof. a) and b) First, S and T are definable in I∆0 by Theorem 2.3 because
the summations have length m = polylog (a). The fact that Tn is also definable
in I∆0 will be shown in the following discussion.

Suppose that n > m. Recall that ℓ = |n− 1|, i.e.,

2ℓ < n ≤ 2ℓ+1

To compute (8), we first compute the following sums (recall m = 2h):

Sj =

2j+1

∑

i=2j+1

ln(i) for h ≤ j < ℓ, Sℓ =

n
∑

i=2ℓ+1

ln(i) (12)

Then (8) is S +
∑ℓ

j=h Sj , and therefore can be computed in I∆0 by Theorem
2.3.

To compute Sj , note that for 2j < i ≤ 2j+1, by definition we have

ln(i) = j ln(2) + ln(
i

2j
)

Hence

Sj =

2j+1

∑

i=2j+1

ln(i) = j2j ln(2) +

2j+1

∑

i=2j+1

ln(
i

2j
)

To compute
2j+1

∑

i=2j+1

ln(
i

2j
)

notice that

ln(
i

2j
) =

m+t−1
∑

s=m

⌊b/s⌋ = ln(
m+ t

m
) for 2j + (t− 1)2j−h + 1 ≤ i ≤ 2j + t2j−h

(13)
So

2j+1

∑

i=2j+1

ln(
i

2j
) = 2j−h

m
∑

t=1

ln(
m+ t

m
) = 2j−hT

Therefore
Sj = j2j ln(2) + 2j−hT

Similarly,

Sℓ = (n− 2ℓ)ℓ ln(2) +

n
∑

i=2ℓ+1

ln(
i

2ℓ
) = (n− 2ℓ)ℓ ln(2) + Tn
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Note that by (13),

Tn = 2ℓ−h
tn
∑

t=1

ln(
m+ t

m
) + (n− 2ℓ − tn2ℓ−h) ln(

m+ tn + 1

m
)

where tn = ⌊(n− 1 − 2ℓ)/2ℓ−h⌋, i.e.,

2ℓ + tn2ℓ−h + 1 ≤ n ≤ 2ℓ + (tn + 1)2ℓ−h

This shows that Tn is definable in I∆0, because tn ≤ m. It follows, in addition,
that

0 < Tn ≤ 2ℓ−hT

Also, it is easy to see that for n > m:

T2n = 2Tn

As a result, (8) is

S +

ℓ
∑

j=h

Sj = S +





ℓ−1
∑

j=h

j2j ln(2) + 2j−hT



+ (n− 2ℓ)ℓ ln(2) + Tn

= S + (

ℓ−1
∑

j=h

j2j) ln(2) + (n− 2ℓ)ℓ ln(2) + (2ℓ−h − 1)T + Tn

= S + ((ℓ− 2)2ℓ − (h− 2)2h) ln(2) + (n− 2ℓ)ℓ ln(2) + (2ℓ−h − 1)T + Tn

The last equality follows from the fact (provable in I∆0 by induction on i) that

i
∑

j=1

j2j = (i− 1)2i+1 + 2

From the last equation we can derive (10).
c) The fact that (11) are provable in I∆0 is straightforward from the above

definition. �

2.4 I∆0(π) and Defining
∑

ln(p) in I∆0(π)

Notation Throughout this paper, the index p is used for prime numbers. P
denotes the set of prime numbers. Note that the relation x ∈ P is represented
by a ∆0 formula.

Let
π(n) = #{p ≤ n : p ∈ P}

I∆0(π) extends I∆0 by π and the following defining axioms for it:

π(0) = 0

π(n+ 1) =

{

π(n) if n+ 1 6∈ P
π(n) + 1 otherwise
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Chebyshev’s function

ϑ(x) =
∑

p≤x

ln(p) (14)

plays an important role. Here we use

ϑ(x,m) =
∑

p≤x

ln(p,m) (15)

and will simply write ϑ(x) for ϑ(x,m). We use the following defining axioms
for ϑ:

ϑ(1) = 0, ϑ(n+ 1) =

{

ϑ(n) + ln(n+ 1) if n+ 1 ∈ P
ϑ(n) otherwise

(16)

Theorem 2.7. The function ϑ(x) with defining axioms (16) is definable in
I∆0(π).

Proof Sketch. The proof is similar to the proof of Theorem 2.6. For example,

∑

2j<p≤2j+1

ln(p) = j(π(2j+1) − π(2j)) ln(2) +
∑

2j<p≤2j+1

ln(
p

2j
)

Using (13) we have

∑

2j<p≤2j+1

ln(
p

2j
) =

m
∑

t=1

(π(2j + t2j−h) − π(2j + (t− 1)2j−h)) ln(
m+ t

m
)

Hence by Theorem 2.3 the sum

∑

2j<p≤2j+1

ln(p)

is definable in I∆0(π), for 0 ≤ j ≤ |n|.
Similarly, we can define

∑

2ℓ<p≤n

ln(p)

where ℓ = |n− 1|. Therefore we can define

∑

p≤n

ln(p) and hence
∑

n≤p≤k

ln(p)

in I∆0(π).
The fact that (16) is provable in I∆0(π) is clear from the above definition.

�
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2.5 Approximating ln(2)

Lemma 2.8 (Provable in I∆0).

‖ln(2,m) − ln(2, 2m)‖ < 1

2m

Proof. From definition we have

ln(2, 2m) − ln(2,m) =
1

8m3

4m−1
∑

k=2m

⌊8m3/k⌋ − 1

m3

2m−1
∑

k=m

⌊m3/k⌋

=
1

8m3

2m−1
∑

k=m

(⌊8m3/2k⌋ + ⌊8m3/(2k + 1)⌋ − 8⌊m3/k⌋)

For m ≤ k < 2m, let ⌊m3/k⌋ = q, then it can be shown that

4q ≤ ⌊8m3/2k⌋ ≤ 4q + 3

4q − 2m ≤ ⌊8m3/(2k + 1)⌋ ≤ 4q + 3

In other words, for m ≥ 3 we have

‖⌊8m3/2k⌋ + ⌊8m3/(2k + 1)⌋ − 8⌊m3/k⌋‖ ≤ 2m

Consequently,

‖ln(2, 2m) − ln(2,m)‖ ≤ 1

8m3
(2m−m)2m =

1

2m
�

The lemma can be used to show that for any (standard) error ǫ ∈ Q, there
is m0 ∈ N so that

‖ln(2,m) − ln(2)‖ < ǫ

for all m > m0, m is a power of 2. For example, from the lemma we have

‖ln(2, 2h) − ln(2, 2k+h)‖ < 1

2h

for all k ≥ 0. Since ln(2, 8) = 368
512 = 23

32 , it follows that

19

32
< ln(2, 2h) <

27

32

for h ≥ 3.

2.6 Unique Prime Factorization

The Fundamental Theorem of Arithmetic (or Unique Prime Factorization The-
orem) states that any natural number n > 1 can be written uniquely as

n = pe1

1 · pe2

2 · . . . · pek

k
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where p1 < p2 < . . . < pk are prime numbers, and ei ≥ 1.
In I∆0 we can prove the existence and uniqueness of the sequence

(p1, e1), (p2, e2), . . . , (pk, ek)

that contains all prime divisors of n, and ei ≥ 1, pei

i | n, pei+1
i ∤ n. Note that the

sequence can be encoded by a binary string of length O(|n|). Also, the product

k
∏

i=1

pei

i

for such sequence can be defined and proved to be n in I∆0.
Here we use the following function which is provably total in I∆0 (ex stands

for exponent):
ex(p, n) = max{j : pj |n} (17)

Our version of the Fundamental Theorem of Arithmetic is as follows:

Lemma 2.9. The sum
∑

p|n
ex(p, n) ln(p,m)

is definable in I∆0, and it is provable in I∆0 that

‖ln(n,m) −
∑

p|n
ex(p, n) ln(p,m)‖ = O(

|n|
m

)

Proof. First, note that the sum
∑

p|n ex(p, n) ln(p,m) has length ≤ |n|, and
therefore is definable in I∆0. Each inequalities can be proved by induction on
n using Lemma 2.5 b. �

2.7 The Function lbc

Note that
n! =

∏

p≤n

pep where ep =
∑

1≤j∧pj≤n

⌊n/pj⌋ (18)

We use the function exfac for ep above.

Corollary 2.10. The following function is provably total in I∆0:

exfac(p, n) =
∑

1≤j∧pj≤n

⌊n/pj⌋

Also, I∆0 proves that

exfac(p, 1) = 0, and exfac(p, n) = ex(p, n) + exfac(p, n− 1) (19)

13



Proof. The fact that exfac(p, n) is provably total in I∆0 follows from Theorem
2.3 and the fact that the sum in the definition of exfac(p, n) has length ≤ |n|.
The second property in (19) is proved by induction on n. �

Lemma 2.11 (Provable in I∆0).

0 ≤ exfac(p, 2n) − 2exfac(p, n) ≤ ln(2n)

ln(p)
+ O(

|n|
m

)

Proof. By definition,

exfac(p, 2n) − 2exfac(p, n) =
∑

1≤j∧pj≤2n

(⌊2n

pj
⌋ − 2⌊ n

pj
⌋)

It is provable in I∆0 that

0 ≤ ⌊2n

pj
⌋ − 2⌊ n

pj
⌋ ≤ 1

So we have exfac(p, 2n) − 2exfac(p, n) ≥ 0, and

exfac(p, 2n) − 2exfac(p, n) ≤
∑

1≤j∧pj≤2n

1 = max{j : pj ≤ 2n}

Using Lemma 2.5 we can prove by induction that

pj ≤ 2n ⊃ ‖ln(pj) − j ln(p)‖ = O(
j|p|
m

)

It follows that

max{j : pj ≤ 2n} ≤ ln(2n)

ln(p)
+ O(

|n|
m

)

This concludes the proof of the lemma. �

Note that from (18) we have

(2n)!

n!n!
=
∏

p≤2n

pe′
p where e′p =

∑

1≤j∧pj≤2n

(⌊2n/pj⌋ − 2⌊n/pj⌋) (20)

Now we introduce the following functions (lbc stands for logarithm of binomial
coefficient):

lbc(n) = ln(
(2n)!

n!n!
) =

∑

p≤2n

e′p ln(p) =
∑

p≤2n

(exfac(p, 2n) − 2exfac(p, n)) ln(p)

Recall that P denotes the set of prime numbers. The function lbc is formally
defined as follows.

14



Definition 2.12. Let lbc′ be the function with the following defining axioms

lbc′(n, 1) = 0

lbc′(n, k + 1) =

{

lbc′(n, k) if k + 1 6∈ P
lbc′(n, k) + (exfac(p, 2n) − 2exfac(p, n)) ln(p) if k + 1 = p ∈ P

Let lbc(n) = lbc′(n, 2n).

Theorem 2.13. It is provable in I∆0(lbc) that

lbc(n) =

2n
∑

i=1

ln(i) − 2

n
∑

i=1

ln(i) + O(
n|n|
m

)

Proof. We prove the theorem by induction on n. For the induction step, it
suffices to show that

lbc(n+ 1) − lbc(n) = ln(2n+ 1) + ln(2n+ 2) − 2 ln(n+ 1) + O(
|n|
m

)

Using Lemma 2.5 b) this amounts to

lbc(n+ 1) − lbc(n) = ln(2n+ 1) + ln(2) − ln(n+ 1) + O(
|n|
m

)

Thus, by Lemma 2.9 it suffices to show that

lbc(n+ 1) − lbc(n) =
∑

p|2n+1

ex(p, 2n+ 1) ln(p) + ln(2) −
∑

p|n+1

ex(p, n+ 1) ln(p)

(21)
By considering the cases: p = 2, p|n+ 1, p|2n+ 1 and p ∤ n+ 1 ∧ p ∤ 2n+ 1,

it can be proved in I∆0 that for all primes p,

exfac(p, 2(n+ 1)) − 2exfac(p, n+ 1) =

exfac(p, 2n) − 2exfac(p, n) + ex(p, 2n+ 1) + ex(p, 2) − ex(p, n+ 1)

Now (21) can be proved by proving by induction on k ≥ 2 that

lbc(n+ 1, k) = lbc(n, k)+
∑

p|2n+1,p≤k

ex(p, 2n+ 1) ln(p) + ln(2) −
∑

p|n+1,p≤k

ex(p, n+ 1) ln(p) �

2.8 Defining lbc in I∆0(ξ)

The theory I∆0(ξ) + def (ξ) [WC07] is obtained from I∆0 by augmenting the
function ξ and its defining axioms. The function ξ(x) = ξ(x, y, e) [WC07] is

ξ(x) = #{p : p ∈ P , p ≤ x, and ⌊y/pe⌋ is odd}
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and has defining axioms (suppressing y, e):

ξ(0) = 0

ξ(x+ 1) =

{

ξ(x) + 1 if x+ 1 ∈ P and ⌊y/(x+ 1)e⌋ is odd

ξ(x) otherwise

Here we show that our function lbc is definable in I∆0(ξ) + def (ξ). As a
result, the lower bounds for π(n) and π(2n)−π(n) that we prove in the following
sections are also theorems of I∆0(ξ)+def (ξ). Thus we obtain alternative proofs
for the results from [WC07].

Theorem 2.14. The function lbc with defining axioms given in Definition 2.12
is definable in I∆0(ξ) + def (ξ).

Proof. We show how to compute lbc′(n, k) in I∆0(ξ). Note that

lbc′(n, k) =
∑

p≤k

(exfac(p, 2n) − 2exfac(p, n)) ln(p)

and by Lemma 2.11,

0 ≤ exfac(p, 2n) − 2exfac(p, n) ≤ ln(2n)

ln(p)
+ O(

|n|
m

)

By definition,

exfac(p, 2n) − 2exfac(p, n) =
∑

pj≤2n

⌊2n/pj⌋ − 2
∑

pj≤2n

⌊n/pj⌋

So, since the summations have length ≤ |n|, it is provable in I∆0 that

exfac(p, 2n) − 2exfac(p, n) =
∑

pj≤2n

(⌊2n/pj⌋ − 2⌊n/pj⌋)

In other words,

exfac(p, 2n) − 2exfac(p, n) = #{j ≤ ln(2n)

ln(p)
: ⌊2n/pj⌋ is odd}

As a result,

lbc′(n, k) =
∑

j≤ln(2n)





∑

p≤k∧⌊2n/pj⌋ is odd

ln(p)





The summation in brackets can be computed in I∆0(ξ) using the counting
function ξ just as described in Theorem 2.6 and Theorem 2.7. �
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3 A Lower Bound for π(n) in I∆0(π, lbc′)

Note that π(2n− 1) = π(2n) for n ≥ 2. So it suffices to give a lower bound for
π(2n). We choose a simple proof for the Ω(n/ ln(n)) lower bound for π(2n) and
point out that this proof can be formalized using the function lbc introduced
above. From this lower bound for π(n) we can derive in I∆0(π, lbc

′) the fact
that there are infinitely many prime numbers.

The idea is to compute an upper bound and a lower bound for (2n)!
n!n! ; by

comparing these bounds we can derive a lower bound for π(2n). In our formal-

ization, we will use lbc(n) instead of (2n)!
n!n! .

Lemma 3.1 (Provable in I∆0(π, lbc
′)).

lbc(n) ≤ π(2n)(ln(2n) + O(
|n|
m

))

Proof. We prove by induction on k ≤ 2n that lbc ′(n, k) ≤ π(k) ln(2n) using the
defining axioms for lbc′ (Definition 2.12) and Lemma 2.11. �

Lemma 3.2 (Provable in I∆0(π, lbc
′)). For n > m:

lbc(n) = 2n ln(2) + c(m) + O(
n|n|
m

) (22)

for some constant c(m) depends only on m.

Proof. By (10) in Theorem 2.6 we have

2n
∑

i=1

ln(i) −
n
∑

i=1

ln(i) = (2n+ (h− 2)2h+1) ln(2) + T − S

where T, S depend only on m (recall also that m = 2h). Now the lemma follows
from Theorem 2.13. �

Corollary 3.3 (Provable in I∆0(π, lbc
′)).

π(n) = Ω(n/ ln(n)) (23)

It follows that the existence of arbitrarily large prime numbers is provable
in I∆0(π, lbc

′).

4 Bertrand’s Postulate and a Lower Bound for

π(2n) − π(n)

We will prove Bertrand’s Postulate (that π(2n)−π(n) ≥ 1 for all n) and a lower
bound for the number of prime numbers between n and 2n: π(2n) − π(n) =
Ω(n/ ln(n)). For the latter, we follow the proof from [Mos49]. First we outline
the proof of the lower bound for π(2n) − π(n); the formalizations are given in
Section 4.1.

Recall Chebyshev’s function ϑ(x) from (14).
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Theorem 4.1. For n ≥ 1, ϑ(n) < 2n ln(2).

Proof. First, because
(2k + 1)!

k!(k + 1)!

appears twice in the binomial expansion of 22k+1, we have

(2k + 1)!

k!(k + 1)!
≤ 1

2
22k+1 = 22k (24)

Also, all primes p where k + 1 < p ≤ 2k + 1 divide (2k+1)!
k!(k+1)! . Hence

∏

k+1<p≤2k+1

p ≤ (2k + 1)!

k!(k + 1)!
(25)

Consequently,

ϑ(2k + 1) − ϑ(k + 1) =
∑

k+1<p≤2k+1

ln(p) ≤ ln
(2k + 1)!

k!(k + 1)!
≤ ln(22k) = 2k ln(2)

(26)
Now we prove the theorem by induction on n. The base cases (n = 1 and

n = 2) are trivial. For the induction step, the case where n is even is also obvious,
since then ϑ(n) = ϑ(n − 1). So suppose that n = 2k + 1. Using (26) and the
induction hypothesis (for n = k+1) we have ϑ(2k+1) < 2k ln(2)+2(k+1) ln(2) =
2(2k + 1) ln(2). �

Note that this theorem gives a O(n/ ln(n)) upper bound for π(n), but we do
not need this fact here.

Lemma 4.2.

(2n)!

n!n!
≤ (2n)

√
2n





∏

√
2n<p≤2n/3

p





(

∏

n<p<2n

p

)

(27)

Proof. From (20), by noting that

e′p



















= 1 if n < p < 2n

= 0 if 2n/3 < p ≤ n

≤ 1 if ⌈
√

2n⌉ ≤ p ≤ ⌊2n/3⌋
≤ ln(2n)

ln(p) if p <
√

2n �

Corollary 4.3. π(2n) − π(n) = Ω(n/ ln(n)).

Proof. Note that
(2n)!

n!n!
≥ 22n

2n+ 1
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(because (2n)!
n!n! is the largest coefficient in (1 + 1)2n). Therefore

ln(
(2n)!

n!n!
) ≥ 2n ln(2) − ln(2n+ 1)

Also,

ln





∏

√
2n<p≤2n/3

p



 ≤ ln





∏

p≤2n/3

p



 = ϑ(2n/3)

so by Theorem 4.1,

ln





∏

√
2n<p≤2n/3

p



 < 4n ln(2)/3

In addition,

ln

(

∏

n<p<2n

p

)

< (π(2n) − π(n)) ln(2n)

As a result, by taking logarithm of both sides of (27) we have

2n ln(2) − ln(2n+ 1) <
√

2n ln(2n) + 4n ln(2)/3 + (π(2n) − π(n)) ln(2n)

From this the conclusion follows easily. �

4.1 Formalization in I∆0(π, lbc′)

Recall (Section 2.4) that our version of Chebyshev’s function, ϑ(x,m), or simply
ϑ(x), is definable in I∆0(π). Following Theorem 4.1 we prove:

Theorem 4.4 (Provable in I∆0(π, lbc
′)). For some constant c′(m),

ϑ(n,m) ≤ 2n ln(2) + |n|c′(m) + O(
n|n|
m

)

Proof. Note that

ln(
(2k + 1)!

k!(k + 1)!
) = lbc(k + 1) − ln(2)

Using Lemma 2.9 and from the definition of lbc (Definition 2.12), we can prove
in I∆0(π, lbc

′) that

ln(2) +
∑

k+1<p≤2k+1

ln(p) ≤ lbc(k + 1)

(By proving by induction on j ≤ 2k that

ln(2) +
∑

k+1<p≤j

ln(p) ≤ lbc′(k + 1, j)
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We will have to consider two cases: either k + 1 is a power of 2, or not.)
As a result, by Lemma 3.2 we have

∑

k+1<p≤2k+1

ln(p) ≤ lbc(k + 1) − ln(2) = 2k ln(2) + (c(m) + ln(2)) + O(
k|k|
m

)

That is, for c′(m) = c(m) + ln(2),

ϑ(2k + 1) − ϑ(k + 1) ≤ 2k ln(2) + c′(m) + O(
k|k|
m

)

Now we can prove by strong induction on k that

ϑ(k) ≤ 2k ln(2) + |k|c′(m) + O(
k|k|
m

)

(using the fact that |2k + 1| = |k| + 1). �

Following Lemma 4.2 we have:

Lemma 4.5 (Provable in I∆0(π, lbc
′)).

lbc(n) ≤ ⌊
√

2n⌋ ln(2n) + ϑ(
2n

3
) +

∑

n<p<2n

ln(p)

Proof. The proof is similar to the proof of Lemma 3.1. First we prove by
induction on k that

lbc ′(n, k) ≤ π(k) ln(2n)

for k ≤ ⌊
√

2n⌋. Then we prove by induction on k, where ⌊
√

2n⌋ < k ≤ 2n
3 , that

lbc′(n, k) ≤ ⌊
√

2n⌋ ln(2n) + ϑ(k)

Finally, we prove by induction on k where n < k < 2n that

lbc′(n, k) ≤ ⌊
√

2n⌋ ln(2n) + ϑ(
2n

3
) +

∑

n<p≤k

ln(p) �

Corollary 4.6 (Provable in I∆0(π, lbc
′)).

π(2n) − π(n) = Ω(
n

ln(n)
)

Proof. By Lemma 3.2, Theorem 4.4 and the above lemma we have

2n ln(2) + c(m) + O(
n|n|
m

) ≤ ⌊
√

2n⌋ ln(2n)+
(

4n ln(2)

3
+ |2n

3
|c′(m) + O(

n|n|
m

)

)

+
∑

n<p<2n

ln(p)
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It follows that for n > m2,m > |n|2:
∑

n<p<2n

ln(p) ≥ 2 ln(2)

3
n−O(

n|n|
m

)

The conclusion follows from the fact provable in I∆0(π) that the LHS is at most
(π(2n) − π(n)) ln(2n). �

Corollary 4.7 (Provable in I∆0(π, lbc
′)). For all n, π(2n) − π(n) ≥ 1.

Proof. The previous corollary shows that for some standard threshold n0 ∈ N,
π(2n) − π(n) > 0 for all n ≥ n0. The fact that π(2n) − π(n) ≥ 1 for n < n0 is
true in N, and hence is provable in I∆0. �

5 Conclusion

Sylvester’s Theorem asserts that for 1 ≤ x ≤ y, some number among

y + 1, y + 2, . . . , y + x

has a prime divisor p > x. In [Woo81] it is shown that Sylvester’s Theorem can
be proved in I∆0 + PHP(∆0). Here, as well as in [Cor95, WC07], we have a
Ω(n/ ln(n)) lower bound for π(2n)−π(n), the number of prime numbers between
n and 2n. Such lower bound does not seem to follow from the proof in [Woo81].
However, it is not clear whether PHP(∆0) is provable in I∆0(π, lbc

′) or even
I∆0(ξ) + def (ξ).

Also, as far as we know, the axiom for lbc considered here (or even the axiom
for ξ considered in [WC07]) and the axiom for K [Cor95] are incomparable over
I∆0(π). It is an interesting problem to see whether one follows from the other
in I∆0.

Acknowledgments: I would like to thank Steve Cook and the referees for their
helpful comments.
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