
Learning in Logic with RichProlog ?

Eric Martin1, Phuong Nguyen1, Arun Sharma1, and Frank Stephan2

1 School of Computer Science and Engineering, The University of New South Wales,
Sydney, NSW 2052, Australia,

{emartin, ntp, arun}@cse.unsw.edu.au
2 Universität Heidelberg, 69121 Heidelberg, Germany,

fstephan@math.uni-heidelberg.de

Abstract. Deduction and induction are unified on the basis of a gener-
alized notion of logical consequence, having classical first-order logic as
a particular case. RichProlog is a natural extension of Prolog rooted in
this generalized logic, in the same way as Prolog is rooted in classical
logic. Prolog can answer Σ1 queries as a side effect of a deductive infer-
ence. RichProlog can answer Σ1 queries, Π1 queries (as a side effect of
an inductive inference), and Σ2 queries (as a side effect of an inductive
inference followed by a deductive inference). RichProlog can be used to
learn: a learning problem is expressed as a usual logic program, sup-
plemented with data, and solved by asking a Σ2 query. The output is
correct in the limit, i.e., when sufficient data have been provided.

1 Introduction

Enriching the expressive power of the logical language that subsumes the theory
of Logic Programming has long been an active area of research. Examples of
such approaches include consideration of negative literals in the body of clauses,
interpreted either as negation as failure or as ‘true’ negation (for surveys see [3,
12]), and answering queries more complex than existentially quantified conjunc-
tions of atoms [7]. All these investigations, however, have been in the realm of
classical deductive logic. Since the class of Prolog programs determines an ac-
ceptable indexing of the class of all partial recursive functions, it might be argued
that the fragment of classical logic that deals with rules (definite Horn clauses)
and queries is expressive enough for all purposes. This is certainly true for the
task of computing; but not for the task of computing by writing programs in a
declarative manner — the raison d’être of Prolog.

To illustrate the above point, let us consider the task of implementing a learn-
ing strategy. Learning is not deducing. Indeed, deductive inferences are compact
i.e., can always be made on the basis of a finite set of formulas, whereas learning
would be too restrictive if it always meant arriving at a definite conclusion on
the basis of a finite set of data and background knowledge. So implementing a

? Eric Martin is supported by the Australian Research Council Grant A49803051.
Frank Stephan is supported by the Deutsche Forschungsgemeinschaft (DFG) Heisen-
berg Grant Ste 967/1-1.

learning strategy in Prolog requires the use of heuristics that cannot be viewed
as a description of the learning problem, since the latter is in essence nondeduc-
tive. Unless, if learning can legitimately be viewed as a particular kind of logical,
nondeductive inference.

Indeed, a generalized notion of logical consequence can be defined that, given
a theory T , yields a hierarchy of generalized logical consequences of T by alter-
nating deductive (or compact) inferences and inductive (or ‘weakly compact’)
inferences. This notion of generalized logical consequence is actually a function
of a number of parameters, one of them being a class W of possible worlds,
or intended interpretations. In most applications, a natural choice for W is the
class of Henkin (if equality is allowed) or Herbrand (if equality is not allowed)
structures.3 In classical logic, where W is the class of all structures, each level of
the hierarchy of (generalized) logical consequences collapses to the first level i.e.,
the level of deductive inferences. But when W is equal to the class of Henkin or
Herbrand structures, a true hierarchy of generalized logical consequences results.
It turns out that under natural assumptions, identification in the limit can be
characterized as the inference (in the limit) of a generalized logical consequence
that belongs to the third level of the hierarchy, i.e., the level of inductive infer-
ences followed by deductive inferences. So a learning problem can be expressed
in purely logical terms, and the ideal of programming in logic can be extended
to applications such as learning that are beyond the scope of classical logic.

We proceed as follows. We briefly sketch some fundamental concepts of the
generalized logic. We describe RichProlog, which is a natural enrichment of Pro-
log based on a very particular instance of the generalized logic that is capable
of answering Σ2 and Π1 queries in addition to the usual Σ1 queries that can
answered by Prolog. Finally, we show how RichProlog can be used to learn non-
erasing pattern languages from positive data.

The motivation for development of systems capable of answering Σ2 queries
is obvious from the perspective of discovering more sophisticated knowledge.
Consider the hypothetical scenario of finding a vaccine for a virus. Let variable
y range over different instantiations of a virus. Let P (x, y) describe the property
that x “disables” y. P may be a complex relation based on certain geometric
and chemical properties between x and y. Then, the search for a vaccine is an
answer to the Σ2 query: ∃x∀yP (x, y). While this is a hypothetical scenario, a
number of problems in drug design, e.g., pharmacophore identification, can be
expressed as Σ2 queries.

2 Logical foundation

2.1 Generalized logical consequence

Denote by S a vocabulary without equality and by L the set of first-order S-
formulas, referred to more simply as formulas. Closed formulas will be called

3 A Henkin structure consists of individuals each of which interprets a closed term.
A Herbrand structure is a Henkin structure such that distinct closed terms are
interpreted by distinct individuals.

sentences ; atomic formulas or their negations will be called basic formulas. We
refer to sets of formulas as theories. Denote by E a set of formulas, called set of
possible evidence. Denote by W a class of S-structures, called class of possible
worlds. For all M ∈ W, the E-diagram of M, denoted DE(M), is the set of all
members of E true in M. Here is a typical scenario that could be described
as a paradigm of Formal Learning Theory. (See [5, 9, 6] for descriptions and
investigations of such paradigms.) A member of W, say M, is chosen. A learner f
is presented with every initial segment of an infinite enumeration of the diagram
of M and reacts by outputting members of L.4 More formally:

Definition 1. A learner is a mapping5 from E
? into 2L.

Suppose for instance that S consists of a constant 0, a unary function symbol s,
a unary predicate P , and a binary predicate R. Given n ∈ N, denote by n the
term obtained from 0 by n applications of s. Set E = {P (n) |n ∈ N}. Assume
that W is the class of Herbrand S-structures M such that:

– for all m,n ∈ N, M |= R(m,n) iff m ≤ n;
– M |= P (n) for finitely many n ∈ N.

Choose for M the (unique) member of W such that for all n ∈ N, M |= P (n)
iff n ≤ 10. The learner f could be presented with every initial segment of the
initial sequence e = (P (0), P (1), . . . P (10), P (0), P (1), . . . P (10), . . .). We might
expect f to be able to discover in the limit that the formula ψ = P (10) ∧
∀y(R(s(10), y) → ¬P (y)) is true in M. That is, faced with longer and longer
initial segments of e, the learner f should be able to stabilize its outputs to ψ.
More formally:

Definition 2. A learner f identifies a formula ϕ in the limit in W just in case for
all M ∈W and infinite enumerations (e0, e1, e2 . . .) of members of DE(M) where
every member of DE(M) occurs at least once, M |= ϕ iff ϕ ∈ f((e0, . . . , ek)) for
all but finitely many k ∈ N.

Let theory X = {R(m,n) |m ≤ n} ∪ {P (n) |n ≤ 10}. Now note that ψ is not
a logical consequence of X . Indeed, the requirement—every possible evidence
true in the underlying world will eventually appear in the enumeration—cannot
be expressed in first-order logic. Moreover, ψ is not even a logical consequence
of theory Y = X ∪ {¬P (n) |n > 10} because of the nonstandard models of
Y , models of Y some of whose individuals are not interpreted by a closed term.
Still, ψ can be viewed as a ‘generalized logical consequence’ of X in a ‘generalized
logic’ that is not as rigid as classical first-order logic, because:

– it does not force us to accept structures we do not want to or have good
reasons not to consider as possible interpretations;

4 To be extremely precise, an extra symbol] can also appear in such enumerations,
meaning ‘no datum now.’ This becomes necessary if no member of E is true in M.

5 For the purpose of introducing the basic concepts of learning theory, whether this
mapping should necessarily be computable is inessential. Given a set X, X? denotes
the set of finite sequences of members of X, and 2X the set of all subsets of X.

– it has a minimality principle that captures the requirement that if some pos-
sible evidence χ does not belong to a theory T , then ¬χ should be considered
to be true in every intended interpretation of T .

The second condition is obviously closely related to circumscription and the
closed world assumption [11, 8]. The notion of generalized logical consequence
that satisfies both conditions above is then formally defined via the following
two definitions, where ⊂ denotes strict inclusion.

Definition 3. Let T ⊆ L and a structure M be given. We say that M is an
E-minimal model of T in W iff M is a model of T in W and for all models N of
T in W, DE(N) 6⊂ DE(M).

Definition 4. Given T ⊆ L and ϕ ∈ L, we say that ϕ is an E-minimal logical
consequence of T in W, and we write T |=E

W
ϕ, iff every E-minimal model of T

in W is a model of ϕ.

Definition 4 is a particular case of the notion of preferential satisfaction intro-
duced in [13]. Getting back to the example above (where the values of W, E, X
and ψ have been fixed), it is clear that ψ is an E-minimal logical consequence
of X in W. More informally, we say that ψ is a generalized logical consequence
of X . We refer the reader to [10] for a detailed development of the notion of
generalized logical consequence.

2.2 From generalized logic to generalized logic programming

Definitions 3 and 4 generalize basic concepts of the theory of Logic Program-
ming. Indeed, assume that W and E are defined as above. If T is a set of rules
that contains {R(m,n) |m ≤ n} and if ϕ is an existential query, then ‘ϕ is a
generalized logical consequence of T ’ can be paraphrased as ‘the (unique) mini-
mal Herbrand model of T is a model of ϕ,’ which we all know is equivalent to:
ϕ is a logical consequence of T [4]. When the theory of Logic Programming is
concerned with more general kinds of logic programs or more general kinds of
queries, the equivalence fails. Since the focus is still on the classical notion of
logical consequence, the intended interpretations can no longer be limited to the
class of Herbrand structures. Our framework is the exact dual of this approach.
We are concerned with more general kinds of logic programs and more general
kinds of queries. Since Herbrand models are intended interpretations, the clas-
sical notion of logical consequence is inadequate. Consider the same example
again. Representing the task of the learner f as a generalized logic program and
a generalized query cannot be done directly in the realm of classical logic, be-
cause the task of f is not to discover that some formula is a logical consequence
of some theory, but is to discover that some formula is a generalized logical
consequence of some theory. Hence, it should be possible to represent the task
of f directly, naturally and declaratively as a generalized logic program and a
generalized query in the realm of the generalized logic we have introduced. More
precisely, no generalized query would represent the task of f better than:

ϕ = ∃x∀y(P (x) ∧ (R(s(x), y)→ ¬P (y)).

Given the right generalized logic program T , we expect an interpreter to be able
to prove that T |=E

W
ϕ, and as a side effect, that the formula obtained from

ϕ by removing the existential quantifier and instantiating x with 10, is also a
generalized logical consequence of T . In other words, we expect that it is possible
to compute the least natural number m such that for all n ∈ N, ¬P (n) is true
in the underlying world if and only if n is greater than m.

We will not formalize here how we define hierarchies of generalized logical
consequences, but we explain their fundamental features. (See [10] for a formal
treatment.) Denote by A a set of formulas that contains E, called set of possible
axioms (for instance, A can be defined as the set of rules). Call possible theory
any set of the form DE(M)∪X , where M is a possible world and X ⊂ A is a set
of possible axioms that are true in M. A hierarchy of generalized logical conse-
quences of T can be defined for every possible theory T . Such a hierarchy reflects
the complexity of generalized logical consequence. Basically, the higher a formula
ϕ occurs in the hierarchy built over a possible theory T , the more difficult is the
task of discovering that T |=E

W
ϕ. The first level of the hierarchy, called the Σ1

level, corresponds to deductive inference: from a finite subset of T , it is possible
to conclude with certainty that ϕ is a generalized logical consequence of T . The
next level, called the Π1 level, corresponds to inductive inference: from a finite
subset of T , it is possible to believe that ϕ is a generalized logical consequence
of T , since some finite subset of T can refute this belief with certainty in case
T 6|=E

W
ϕ. The very principles that define the Σ1 and Π1 levels of the hierarchies

can be iterated to define higher levels, starting with the Σ2 level, followed by
the Π2 level, then the Σ3 level, then the Π3 level, etc. Under some assumptions,
it is possible to relate the syntactic complexity of a formula with its location
in the hierarchy of generalized logical consequences, as shown by the following
proposition.

Proposition 1. Suppose that W is a set of Henkin structures, E contains all
basic sentences, and A = E. Let n > 0 be given. For every Σn (respect. Πn)
formula ϕ and possible theory T , if T |=E

W
ϕ then ϕ belongs to the Σn (respect.

Πn) level of the hierarchy of generalized logical consequences of T .

Proposition 1 is just one of many propositions that describe the structure of the
hierarchies of generalized logical consequences built over possible theories, under
various assumptions. It can be shown that there exists a learner that identifies in
the limit a formula ϕ (in the sense of Definition 2) iff ϕ belongs to the Σ2 level of
the hierarchy of generalized logical consequences of T , for every possible theory
T such that T |=E

W
ϕ—see [10]. So by Proposition 1, under some assumptions on

W, E and A, the class of formulas that can be identified in the limit is precisely
the class of Σ2 formulas. But Σ2 formulas can represent learning problems. For
instance, the problem of learning a law from observed data can be expressed
by the Σ2 statement: ‘there exists a law ` such that for all possible data d, `
predicts d iff d is among the data that are eventually observed.’ Solving the
learning problem is then reduced to computing a witness for ` that represents
the law to be learned. When the set E of possible observations is not closed under
negation, just a subclass of the class of all Σ2 formulas can be identified in the

limit. But rather than developing the logical framework and the connections with
learning theory, we will devote the remaining part of this paper to a description
of RichProlog. RichProlog is a natural extension of Prolog that can be used to
infer that a sentence of the form ∃x∀yϕ, where ϕ is quantifier free, is a generalized
logical consequence of a possible theory T encompassing background knowledge
and observations. The result of the computation is a sequence of terms t such
that T |=E

W
∀yϕ[t/x].6 Solving a learning problem amounts to computing t.

3 RichProlog

3.1 The basic strategy

From now on we assume that W is a set of Herbrand structures, while E is a
set of atomic sentences. This is the natural choice when RichProlog is used to
learn from positive data only. We denote by Ê the set of members of E and their
negations. We assume that the set A of possible axioms is built from some set
A of atomic formulas, none of which has a member of E as an instance, with the
following property:

(∗) every member of A \ E is of the form α1 ∧ . . . ∧ αp → α0 (also
represented as α0 ← α1 ∧ . . . ∧ αp, or as α0 :- α1, . . . , αp) where p ∈ N,

α0 is a member of A, and α1, . . . , αp are members of A ∪ Ê.

We call members of A generalized clauses. Remember that a possible theory
is a set of the form DE(M) ∪ X , where X is a subset of the set of possible
axioms A all of whose members are true in M. We call generalized logic program
a possible theory of the form DE(M) ∪ X where X is a finite set of possible
axioms (i.e., generalized clauses)—but DE(M) can obviously be infinite. The
aim is to make RichProlog show that a Σ2 formula ϕ is a generalized logical
consequence of a generalized logic program DE(M) ∪X , on the basis of sets of
the form D ∪X where D is a finite subset of DE(M). Larger and larger subsets
D of DE(M) will be provided to the system (which corresponds to making more
and more observations). RichProlog has to infer correctly that ϕ is a generalized
logical consequence of X∪DE(M) when D is large enough and produce the right
witnesses for the existentially quantified variables in ϕ. Note that for all possible
theories T and for any possible evidence χ ∈ E, either T |=E

W
χ or T |=E

W
¬χ. In

the first case, χ belongs to T and will eventually be provided to the system. In
the second case, negation as failure correctly infers ¬χ from any finite subset of
X∪DE(M). Hence negation as failure represents ‘true negation’ w.r.t. the notion
of generalized logical consequence. Weaker assumptions on E and A are possible
and currently under investigation but in this paper, we limit the discussion to
generalized clauses as defined above. Given a generalized logic program T and
an atomic formula ψ all of whose free variables occur in the disjoint sequences of

6 Given a formula ψ, n ∈ N, a sequence x = (x0, . . . , xn) of distinct variables, and
a sequence t = (t0, . . . , tn) of terms, ψ[t/x] denotes the result of simultaneously
substituting in ψ every occurrence of xi by ti, for all i ≤ n.

variables x and y, RichProlog will determine that ∃x∀yψ is a generalized logical
consequence of T whenever this is indeed the case. Moreover, when ∃x∀yψ is
a generalized logical consequence of T , RichProlog will output a sequence of
terms t of the same length as x, a witness for ∃x∀yψ, such that T |=E

W
∀yψ[t/x].

More complex Σ2 queries can also be tackled, as will be seen in the Section 3.3.
Usually T is infinite (because the E-diagram of a possible world is infinite), and
RichProlog’s outputs are correct in the limit that is, from the time when a large
enough finite subset of T is available. For the kind of application that will be
discussed in this paper, RichProlog’s search strategy proceeds in the following
two stages.

Stage 1: Choose n ∈ N and sequences of terms t1, . . . , tn of the same length as
y, and find a witness t for the query ∃x(ψ(x, t1) ∧ . . . ∧ ψ(x, tn))?

Stage 2: Try to refute ∀yψ(t, y) i.e., try to find a witness for ∃y¬ψ(t, y). If
no witness is found, i.e., if ∀yψ(t, y) is validated then output t; otherwise
backtrack to Stage 1 and find another witness for ∃x(ψ(x, t1)∧. . .∧ψ(x, tn))?

A completeness result would show that RichProlog’s outputs stabilize to a correct
witness t as soon as the finite fragment of T being dealt with is large enough,
and as soon as enough sequences of terms t1, . . . , tn have been chosen during
Stage 1. We think that the completeness results we have obtained so far can
be extended to larger classes of generalized logic programs and Σ2 queries, so
we do not address the issue in this paper. Note that backtracking takes place
withing Stage 1, within Stage 2, and from Stage 2 to Stage 1. RichProlog needs
to validate the witness output every time Stage 1 is exited. It involves trying to
refute a Π1 sentence, hence trying to prove a Σ1 sentence ξ. Note that negation
has to occur either in the matrix of ξ or in the matrix of the initial Σ2 query.
A solution that works in many cases is to consider only Σ2 queries in which the
negated atoms are members of E only, and to use in Stage 2 a Σ1 query ξ′ that
is logically equivalent to ξ modulo the background knowledge, but such that the
negated atoms in ξ′ are also members of E only. (As noticed above, the definition
of a generalized clause and the notion of generalized logical consequence are such
that negation applied to members of E can be trivially handled by negation as
failure.) We will briefly return to the issue of negation in Section 3.4.

The search performed during Stage 1 is not very efficient. Indeed, instead
of instantiating the universally quantified variables of the initial query by ti,
1 ≤ i ≤ n, we could target ti, solving the query ∃x∃yψ(x, y)? and making sure
that the witness (t, t′) for this query is such that ψ(t, t′) is an instance of ψ(t, ti)
(equivalently, such that t′ is an instance of ti). If t′ contains variables, then some
of the sequences of terms ti+1, . . . , tn could be instances of t′ and ‘skipped.’ On
the other hand, when it is known that Stage 1 is always exited with a witness
(t, t′) for the query ∃x∃yψ(x, y)? such that t′ does not contain variables, the
previous search strategy amounts to the one described above. The application
to be presented in Section 4 has this property, hence we have sacrificed generality
for simplicity and coherence. The reader interested in the more complex search
strategy implemented by RichProlog during Stage 1 will find it described by the
algorithm given in Section 3.4.

3.2 An illustration

As described in the previous section, RichProlog proposes witnesses using a
strategy that consists of two stages, where each stage is a search for solu-
tion to some Σ1 query. The following illustration is presented with the pur-
pose of exemplifying how a search tree for RichProlog is structured. It differs
from the structure of a search tree for Prolog due to the confirmation pro-
cess of Stage 2. The reader should note that the following illustration is not a
search tree associated with an actual program execution; hence the assignments
to variables are coherent and plausible, but arbitrary. Space constraints pre-
vent us from presenting an actual example. We consider the example where the

X=X1, Y=Y1

1. p(X1,Y1,a,a)?

X1=f(X2), Y1=g(Y2)

2. p(f(X2),g(Y2),a,b)?

X2=g(X3), Y2=b X2=b, Y2=a

3a. p(f(g(X3)),g(b),b,a)? 3b. p(f(b),g(a),b,a)?

X3=a

4a. p(f(g(a)),g(b),a,f(b))? 4b. p(f(b),g(a),a,f(b))?

Hypothesis: X=f(g(a)), Y=g(b) Hypothesis: X=f(b), Y=g(a)

VALIDATION VALIDATION

¬ p(f(g(a)),g(b),Z,W)? ¬ p(f(b),g(a),Z,W)?

Validation fails

Fig. 1. An example of search tree for the query ∃X Y∀Z W p(X, Y, Z, W)?

query is ∃X∃Y∀Z∀W p(X, Y, Z, W)?. Assume that we decide exiting Stage 1 when
a common witness for ∃X∃Y p(X, Y, a, a)?, ∃X∃Y p(X, Y, a, b)?, ∃X∃Y p(X, Y, b, a)?,
∃X∃Y p(X, Y, a, f(b))? is found. A possible search tree for this query is depicted in
Figure 1. At the beginning of the search, the pair of variables (Z,W) is assigned
the first pair of closed terms (a,a) (step 1.). The variables Z and W are subse-
quently assigned the values of the other pairs of closed terms in the following
iterations: (a,b) at step 2., (b,a) at step 3., (a,f(b)) at step 4. The instances
of the existentially quantified variables become more and more specific since they
have to cover more and more instances of the universally quantified variables:
they become (X1,Y1) at step 1., (f(X2),g(Y2)) at step 2., (f(g(X3)),g(b)) at
step 3a., and (f(g(a)),g(b)) at step 4a. Following step 4a., enough instances
of the universally quantified variables have been covered, and Stage 1 of the
search strategy is exited with a witness equal to (f(g(a)),g(b)). The execu-

tion now begins to validate ∀Z, W p(f(g(a)), g(b), Z, W). This is done by trying to
find a counterexample, i.e., carrying out the search for a possible solution to the
query ∃Z, W¬p(f(g(a)), g(b), Z, W)?. Suppose that this search actually succeeds,
i.e.: some witness for ∃Z, W¬p(f(g(a)), g(b), Z, W)? is found. Then (f(g(a)), g(b))
is discarded and the search backtracks to step 4. If the search for a new witness
for the query ∃X3p(f(g(X3)), g(b), a, b)? fails, then the whole search backtracks to
step 3. In Figure 2, it is assumed that a witness for ∃X2, Y2p(f(X2), g(Y2), b, a)?
is found (step 3b.) that is also a witness for the next query (step 4b.). Enough
instances of the universally quantified variables have been covered, and Stage
1 of the search strategy is exited with a witness equal to (f(b),g(a)). The
execution now begins to validate ∀Z, W p(f(b), g(a), Z, W). No counterexample is
found and (f(b), g(a)) is output (possibly by stopping the unsuccessful search
for a counterexample).

3.3 Complex queries

In Section 3.1, we have considered Σ2 queries whose matrix is an atomic formula.
We now examine how to deal with more complex queries, transforming them into
queries whose matrix is an atomic formula modulo an extension of T with a set of
generalized clauses. Remember from the previous section how generalized clauses
have been defined from the set denoted Ê and a set A of atomic formulas. Here
we consider generalized Σ2 queries defined as Σ2 sentences whose matrix is built
from A ∪ Ê using disjunction and conjunction only. Basically, a new predicate
symbol is introduced for each inner node in the parse tree of the matrix of the
query. These symbols are not part of the vocabulary S; they are new symbols
that only appear in a program derived from T—the initial generalized program—
together with a particular generalized Σ2 query. Each of these new predicate
symbols must be of arity equal to the total number of (both the existentially
quantified and the universally quantified) variables in the query. The query’s ma-
trix itself is replaced by the new predicate assigned to the root of the parse tree.
Figure 2 depicts the parse tree for the matrix of the query ϕ = ∃X∃Y∀Zψ where
ψ = p1(X, Y) ∧ [¬p2(Z) ∨ (p3(X, Y) ∧ p4(Y) ∧ (¬p2(Y) ∨ ¬p3(X, Z)))]. Note that it is
not necessary to introduce new predicate symbols for the leaves of the parse
tree, and that the leaves can be labelled with atomic as well as with negations of
atomic formulas which in the latter case, are necessarily negations of members
of E. In this example, four new predicates have been created. Correspondingly,
some generalized clauses will be created in the transformation of a particular
generalized Σ2 query, and will be used in the proof for that query only. In the
following, ‘the predicate symbol at node N ’ will denote the new predicate sym-
bol introduced at N if N is an inner node, and the predicate symbol (from S)
when N is a leaf. Basically, if an inner node is an and-node, then one generalized
clause is created whose head is the predicate symbol at that node, and whose
body is the conjunction of the predicate symbols at the children of the node. On
the other hand, if the inner node is an or-node, then for each child of the node,
one generalized clause is added to the program. The head of these generalized
clauses is the predicate symbol at the parent node, while their body is the pred-

�
�

�

�
�

�

�
�

�

�
�

�

!!!!
aaaa

!!!!!

H
H

HH

!!!!!!

aaaaaa

�
�

��

l
l

l

AND

OR

¬p2(Z)

p3(X, Y) p4(Y) OR

¬p2(Y) ¬p3(X, Z)

p1(X, Y)

AND

q1

q2

q3

q4

Fig. 2. Parse tree for p1(X, Y) ∧ [¬p2(Z) ∨ (p3(X, Y) ∧ p4(Y) ∧ (¬p2(Y) ∨ ¬p3(X, Z)))]

icate symbol at the child node. In case of the previous example, the generalized
clauses are given below and the query will be transformed into ∃X∃Y∀Z q1(X, Y, Z).

q1(X, Y, Z)← p1(X, Y), q2(X, Y, Z)

q2(X, Y, Z)← ¬p2(Z)

q2(X, Y, Z)← q3(X, Y, Z)

q3(X, Y, Z)← p3(X, Y), p4(Y), q4(X, Y, Z)

q4(X, Y, Z)← ¬p2(Y)

q4(X, Y, Z)← ¬p3(X, Z)

3.4 Further remarks

As has been explained at the end of Section 3.1, RichProlog’s search strategy for
Stage 1 is more complex than the simple approach that has been described above.
We now give, without comment for lack of space, the nondeterministic version of
the algorithm used by RichProlog for Stage 1. Let µ denote a measure over the
set of all closed terms, extended to a measure over the set of all terms by µ(t) =
µ({t′ | t′ is a closed instance of t}). The m-product of µ is also denoted µ. We
assume that some enumeration of all m-tuples of closed terms is given. Figure 3
describes the algorithm where δ represents a threshold that used together with µ,
plays the role of the number n of atoms in the query of Stage 1. Remember that
starting from a generalized Σ2 query, the validation process requires trying to
prove a Σ1 query ξ, where, apart from trivial cases, negations of atomic sentences
not in E occur. We have defined generalized logic programs and generalized
Σ2 queries so as to bypass the issue of true negation, but this issue seems to
pop up inevitably at Stage 2 of the basic strategy. Still, in this paper and in
most applications, we can avoid having to deal with true negation even for the
validation process: it suffices that the formula ∃y¬ψ(t, y) be logically equivalent
to a Σ1 query whose matrix is like the matrix of a generalizedΣ2 query: obtained

Input: A finite logic program T , a sentence of the form ∃x1 . . . ∃xn∀y1
. . . ∀ymψ where

ψ is atomic, and a rational number δ in (0, 1).
Output: A witness for ∃x1 . . . ∃xn∀y1

. . . ∀ymψ.

Initialize Y to ∅.
Initialize (t1, . . . , tn) to (x1, . . . , xn).
While µ(Y) < δ do

1. Res = {ψ}, k = 0.
2. (t′1, . . . , t

′

m) = the first member of the enumeration of m-tuples of closed terms
that is not an instance of a member of Y .

3. While Res 6= ∅ do

3.1. Choose ρ in Res and (renamed) clause α0 ← α1 . . . αp in T such that
- ρ and α0 unify with mgu θk;
- (t′1, . . . , t

′

m) is an instance of (y1, . . . , ym)θ0 . . . θk.
(If no such ρ and α0, . . . , αp exist, exit 3.)

3.2 Replace ρ by α1, . . . , αp in Res.
3.3 Apply θk to Res.
3.4 k = k + 1.

4. If Res 6= ∅ then output no.
5. Else let θ be a most general such that:

- no variable occurs both in (t1, . . . , tn)θ0 . . . θkθ and (y1, . . . , ym)θ0 . . . θkθ;
- (t′1, . . . , t

′

m) is an instance of (y1, . . . , ym)θ0 . . . θkθ.
6. (t1, . . . , tn) = (t1, . . . , tn)θ0 . . . θkθ.
7. Y = Y ∪ {(y1, . . . , ym)θ0 . . . θkθ}.

Output (t1, . . . , tn).

Fig. 3. A nondeterministic algorithm for a more efficient search during Stage 1

from A ∪ Ê using disjunction and conjunction only. This will be illustrated in
the application to be examined now.

4 An application

4.1 Description of the problem

In this section, we show how RichProlog can be used to solve the problem of
learning nonerasing pattern languages from positive data (see [1, 2]). Consider
the alphabet {a, b} and an infinite sequence of variables V1, V2, Define words
as nonempty finite sequences over {a, b}, and patterns as nonempty finite se-
quences over {a, b, V1, V2, . . .}. Hence words are particular kinds of patterns.
Given a pattern π, an instance of π is a word obtained from π by replacing all
variables in π by words, with the same replacement for occurrences of the same
variables. A word w and a pattern π are said to match iff w is an instance of
π. Consider a learner f which is presented with every finite initial segment of a
(clearly infinite) enumeration of all instances of π, for some arbitrary pattern π.
The task of f is to discover π in the limit. The problem can be naturally cast
in the logical framework as follows. Choose S such that constants and function

symbols in S enable to represent a pattern by a closed term. Also put a predicate
symbol P in S. A pattern π can then be represented by a Herbrand structure
M such that for all closed terms t, M |= P (t) iff t represents a word that is
an instance of π. Define the set E of possible evidence as {P (t) | closed term t}.
Remember that a possible theory T contains at least the E-diagram of a possible
world M. In this example, the E-diagram of M corresponds precisely to the set
of words that are instances of the pattern represented by M. But T also con-
tains a set X of possible axioms (which for RichProlog, must be a set of possible
clauses) that are true in M. For this application, X can be defined independently
of M, and will basically define the relationship between pattern and instances.
Then we just have to ask a Σ2 query whose intended meaning is: does there
exist a pattern π such that for all closed terms t that represent a word w, w is
an instance of π iff P (t) is observed? This sentence will be a generalized logical
consequence of X ∪ DE(M) where M is the structure that represents π. So in
the limit, that is provided with enough possible evidence true in M, RichProlog
outputs a witness t for the query such that t represents π.

4.2 Specifying the problem in RichProlog

A datum will refer to an arbitrary word, a positive datum to some instance of
the pattern to be learned, and a negative datum to other words.

The hypothesis space The learner will have access to the hypothesis space
(the set of patterns) by the ability to generate every pattern. Patterns of length
N will be generated before patterns of lenght N+1. The rules for this generation
are 1.,2.,6.–13. in Figure 4. Basically, the predicate pattern(Pi, N) is true iff Pi

is a pattern of length N. Starting from a general pattern (constant gen pattern)

of lenght N, equal to V1V2...VN up to a renaming of variables, a variable Vi,
1 ≤ i ≤ N, can be replaced by a (thanks to the binary function symbol subst a)
or by b (thanks to the binary function symbol subst b). Also given a variable
Vi, 1 ≤ i ≤ N, a variable Vj with 1 ≤ j < i can be picked up (using the binary
predicate symbol select), and Vi and Vj can be identified (thanks to the ternary
function symbol eq var).

The data The unary predicate symbol p is used to present positive data to the
learner. Before asking a query, users should insert a number of statements corre-
sponding to the data given to the learner. At any point, using negation as failure,
the learner will consider any word which has not yet been presented (and maybe
will never be) as not being an instance of the pattern to be learned. Obviously,
some of these words will be presented later in time. For this application, this
approach is not misleading, as will be explained below. For other applications
involving learning from positive data only, negation as failure is not the right
approach and true negation has to be dealt with in one way or another.

The learner The learner must be able to determine whether a pattern and a
word match or not. The binary predicate symbol match is to be interpreted as
a relation between a pattern and a word, true when both match. The learner’s

strategy is to examine the shortest pattern which matches every positive datum,
and does not match any other. It can be easily verified that a pattern of length
N will not match at least one of the negative data of length N, if there is any
such word. Due to the limiting nature of the problem, if a pattern Pi of length
N is to be learned, then eventually all positive data of length N will be given to
the learner. At that point, its assertion about the negative data of length N will
be correct. Considering some words greater than N as negative data might be
wrong, but it does not affect the learning strategy: the learner needs to validate
hypotheses using only words of length N. For the implementation of match we
refer to Figure 4. Essentially, match only succeeds when the pattern and the
words are of the same length and match.

The query We now consider the query that can be handled by RichProlog.
The learner needs to hypothesize a pattern which matches all positive data, and
does not match any word considered to be a negative datum. It does so by first
generating possible hypotheses, and then trying to validate them. Generating a
hypothesis can be done using the query:

∃Pi, N[pattern(Pi, N)∧ ∀W((length(W, N)∧ match(Pi, W)→ p(W))∧
(length(W, N)∧ mismatch(Pi, W)→ ¬p(W)))]

It is easy to express this formula as a Σ2 sentence whose matrix is built from
Ê and the predicates pattern, length, distinct, match and mismatch using
disjunction and conjunction only, hence to express this formula as a generalized
Σ2 query. Then we transform this generalized Σ2 query into a Σ2 sentence
whose matrix is an atomic formula, and we add to the program the following set
of generalized clauses, as explained in Section 3.3.

q(Pi, N, W) :- pattern(Pi, N), q1(Pi, N, W).

q1(Pi, N, W) :- p(W), q2(Pi, N, W).

q1(Pi, N, W) :- not p(W), q3(Pi, N, W).

q2(Pi, N, W) :- length(W, N1), distinct(N1, N).

q2(Pi, N, W) :- match(Pi, W).

q3(Pi, N, W) :- length(W, N1), distinct(N1, N).

q3(Pi, N, W) :- mismatch(Pi, W).

Validating the hypothesis involves the following refuting sentence, which aims
at finding counterexamples for the proposed witness:

∃W[¬pattern(Pi, N)∨ (length(W, N)∧ match(Pi, W)∧ ¬p(W))∨
(length(W, N)∧ ¬match(Pi, W)∧ p(W))]

Note that in the validation process, the pair (Pi,N) is assigned a pair of closed
terms, thus ¬pattern(Pi, N) will always be false. Hence it can be removed from
the validation query. It is then easy to express the refuting sentence as a Σ1

sentence whose matrix is built from Ê and the predicates length, match and

mismatch using disjunction and conjunction only. We transform again this Σ1

sentence into a Σ1 sentence whose matrix is an atomic formula, and we add to
the program the following set of generalized clauses, as explained in Section 3.3.

r(Pi, N, W) :- p(W), length(W, N), mismatch(Pi,W).

r(Pi, N, W) :- not p(W), length(W, N), match(Pi, W).

1. numb(z).
2. numb(s(N)) :- numb(N).
3. distinct(s(N),z).
4. distinct(z,s(N)).
5. distinct(s(N),s(M)) :- distinct(N,M).
6. select(N,s(N)).
7. select(N,s(N)) :- select(N,N).
8. pattern(Pi,s(N)) :-

numb(N), pattern(Pi,s(N)).
9. pattern(gen pattern,z).

10. pattern(Pi,s(N)) :- pattern(Pi,N).
11. pattern(subst a(Pi,s(N)),s(N)) :-

pattern(Pi,N).
12. pattern(subst b(Pi,s(N)),s(N)) :-

pattern(Pi,N).
13. pattern(eq var(Pi,s(M),s(N)),s(N)) :-

select(M,N), pattern(Pi,N).
14. length(e,z).
15. length(a(W),s(N)) :- length(W,N).
16. length(b(W),s(N)) :- length(W,N).
17. symb a(a(W),s(N)) :- length(W,N).
18. symb a(a(W),N) :- symb a(W,N).
19. symb a(b(W),N) :- symb a(W,N).
20. symb b(b(W),s(N)) :- length(W,N).
21. symb b(a(W),N) :- symb b(W,N).
22. symb b(b(W),N) :- symb b(W,N).

23. match(gen pattern,W).

24. match(subst a(Pi,N),W) :-
symb a(W,N), match(Pi,W).

25. match(subst b(Pi,N),W) :-
symb b(W,N), match(Pi,W).

26. match(eq var(Pi,M,N),W) :-
symb a(W,N), symb a(W,M),

match(Pi,W).

27. match(eq var(Pi,M,N),W) :-
symb b(W,N), symb b(W,M),

match(Pi,W).

28. mismatch(subst a(Pi,N),W) :-
symb b(W,N).

29. mismatch(subst b(Pi,N),W) :-
symb a(W,N).

30. mismatch(eq var(Pi,M,N),W) :-
symb a(W,N), symb b(W,M).

31. mismatch(eq var(Pi,M,N),W) :-
symb b(W,N), symb a(W,M).

32. mismatch(subst a(Pi,N),W) :-
mismatch(Pi,W).

33. mismatch(subst b(Pi,N),W) :-
mismatch(Pi,W).

34. mismatch(eq var(Pi,N,M),W) :-
mismatch(Pi,W).

Fig. 4. Logic program for learning pattern languages in the limit

Remarks We illustrate the behavior in the limit of the learner who has to learn
the pattern V0V0V0. First aaa is presented. So a, b, aa, ab, ba, bb, bab,

bbb, aba are treated (by negation as failure) as negative data. On the basis
of aaa alone, the learner outputs the hypothesis V2aa. This hypothesis will be
refuted by the (supposedly) negative datum baa. So the search will backtrack to
Stage 1, and aaV0 will be the new witness. At some point, the learner is given
the datum bbb. It will then output the hypothesis V1V1V0. Since bba does not
belong to the list of positive data, it will be treated as a negative datum. The
learner will then output the correct hypothesis V0V0V0. As can be verified, as
soon as the correct hypothesis has been output, the learner will keep it in the

face of any new data. RichProlog has been run on this program, which did not
raise any efficiency issues. The purpose was just to demonstrate the feasibility
of the approach. We are working on larger applications in order to investigate
in depth how well RichPolog can compete against alternative approaches.

5 Conclusion

Generalized logic, generalized logic programming, and RichProlog can be seen as
instances of a natural generalization, or ‘lifting,’ of classical logic, logic program-
ming, and Prolog. This enrichment is based on a notion of generalized logical
consequences that are not necessarily compact, but account for deductive infer-
ences, inductive inferences, and inferences of higher complexity. In this paper,
we gave an overview of the main aspects of the three components of this work,
instead of a full account of some part of it. In particular, we have not touched
upon the issue of the class of generalized logic programs and queries for which
RichProlog provides a complete proof procedure. It should be noted that the no-
tion of completeness of classical logic is inappropriate here, since RichProlog is
designed to perform noncompact inferences: completeness has to be based on the
concept of convergence in the limit. Our main aim was to show that RichProlog
extends the ideal of declarative programming to applications such as learning.
We argued that learning problems can also share the benefit of declarative pro-
gramming, despite the fact that learning is by nature nondeductive.

References

1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences. 21 (1980) 46–62

2. Angluin, D.: Inductive Inference of Formal Languages from Positive Data. Infor-
mation and Control. 45 (1980) 117–135

3. Apt, K., Bol, R.: Logic Programming and Negation: A Survey. Journal of Logic
Programming. 19/20 (1994) 177–190

4. Doets, K.: From Logic to Logic Programming. The MIT Press. (1994)
5. Jain, S., Osherson, D., Royer, J., Sharma, A. Systems that learn: An Introduction

to Learning Theory, Second Edition. The MIT Press. (1999)
6. Kelly, K.: The Logic of Reliable Inquiry. Oxford University Press. (1996).
7. Le, T.: A general scheme for representing negative and quantified queries for de-

ductive databases. Proceedings of the First Internatinal Conference on Information
and Knowledge Management. Baltimore, Maryland. (1992)

8. Lifschitz, V.: Closed-World Databases and Circumscription. Artificial Intelligence.
27 (1985) 229–235

9. Martin, E., Osherson, D.: Elements of Scientific Inquiry. The MIT Press. (1998)
10. Martin, E., Sharma, A., Stephan, F.: A General Theory of Deduction, Induction,

and Learning. In Jantke, K., Shinohara, A.: Proceedings of the Fourth International
Conference on Discovery Science. Springer-Verlag. (2001) 228–242.

11. Reiter, R.: On Closed-World Data Bases. In Gallaire, J., Minker, J., ed., Logic and
Data Bases. Plenum Press. (1978) 55–76

12. Shepherdson, J.: Negation in Logic Programming. In Minker, J., ed., Foundations
of Deductive databases and Logic Programming. Morgan Kaufmann. (1988) 19–88

13. Shoham, Y.: Reasoning about change. The MIT Press. (1988)

