5.2 Greedy Algorithms for the Minimum Spanning Tree Problem [4.5, 4.6]

Given a connected graph G where each edge e has a weight $w(e)$. The Minimum Spanning Tree (MST) problem is to find a spanning tree of G that has minimum total weight.

The idea of Kruskal algorithm is to keep adding minimal-weight edges as long as they do not form a cycle. In other words, viewing the set of vertices as a collection of n connected components (where each component consists of only one vertex). Then in each step reduce the number of connected components by 1 by joining two components by an edge that has smallest weight.

- Sort the edges in increasing order of weight:

 $$w(e_1) \leq w(e_2) \leq \ldots \leq w(e_m)$$

- $E' \leftarrow \emptyset$
- For $i = 1$ to m do
 - If $E' \cup \{e_i\}$ does not contain a cycle then $E' \leftarrow E' \cup \{e_i\}$

The sorting (line 1) takes time $\Theta(m \log m)$. The main loop leaves room for different implementations. With careful chosen data structures, it can be done in time $\Theta(m \log n)$. (Note that since $m = O(n^2)$, $\log m = O(\log n)$. Section 4.6 in the text has a detailed discussion of implementations of this algorithm.

Correctness of the Kruskal’s algorithm

Let S_i be the the set of edges in E' after the i-th iteration. In particular, $S_0 = \emptyset$ and S_m is the output, where m is the number of edges in G.

The notion of “promising” partial solution is defined below:

Definition: S_i is said to be “promising” if it can be extended to an optimal solution using only edges from $\{e_{i+1}, e_{i+2}, \ldots, e_m\}$. In other words, S_i is promising if there is a minimum spanning tree OPT_i of G so that

$$S_i \subseteq OPT_i \subseteq S_i \cup \{e_{i+1}, e_{i+2}, \ldots, e_m\}$$

Note that by this definition, the optimal solution OPT_i may be distinct.

We will prove the following claim by induction on i:

Claim: For $0 \leq i \leq n$, S_i is promising.

Base case: $i = 0$: $S_0 = \emptyset$, and any minimum spanning tree extends \emptyset by the set of all edges $\{e_1, e_2, \ldots, e_m\}$. Thus the base case is trivially true.

Induction step: Assume that the Claim is true for some $i < n$. We prove it for $i + 1$. Note that either $S_{i+1} = S_i$ or $S_{i+1} = S_i \cup \{e_{i+1}\}$. We consider these two cases.
Case I: $S_{i+1} = S_i$. This means that the edge e_{i+1} is not selected by our algorithm, i.e., adding e_{i+1} to S_i creates a cycle. Let OPT be the minimum spanning tree that extends S_i by the edges from $\{e_{i+1}, e_{i+2}, \ldots, e_m\}$. Then OPT cannot contain e_{i+1}. So OPT extends S_{i+1} using only edges from $\{e_{i+2}, \ldots, e_m\}$. Hence S_{i+1} is promising.

Case II: $S_{i+1} = S_i \cup \{e_{i+1}\}$. This means that the edge e_{i+1} is selected by our algorithm, i.e., adding e_{i+1} to S_i does not create a cycle.

Let OPT be the minimum spanning tree that extends S_i by the edges from $\{e_{i+1}, e_{i+2}, \ldots, e_m\}$. Then OPT cannot contain e_{i+1}. So OPT extends S_{i+1} using only edges from $\{e_{i+2}, \ldots, e_m\}$. Hence S_{i+1} is promising.

Subcase IIA: OPT contains e_{i+1}. Then OPT also extends S_{i+1}, and it extends S_{i+1} by edges only from $\{e_{i+2}, \ldots, e_m\}$. So we are done.

Subcase IIB: OPT does not contain e_{i+1}. Then OPT does not extend S_{i+1}. This is the most interesting case. We will show that OPT can be modified to give another minimum spanning tree OPT' that extends S_{i+1} using only edges from $\{e_{i+2}, \ldots, e_m\}$.

Since OPT does not contain e_{i+1}, adding e_{i+1} to OPT creates exactly one cycle C that contains e_{i+1}. Since S_{i+1} is a tree, the cycle C must contain some edges e_j not from S_{i+1}. Since OPT agrees with S_i on all edges e_1, e_2, \ldots, e_i the edge e_j must be from $\{e_{i+2}, \ldots, e_m\}$. So $w(e_j) \geq w(e_{i+1})$.

Now modify OPT by exchange e_j and e_{i+1}. The result is still a spanning tree OPT' of G, and it has total weight less than or equal the total weight of OPT. Since OPT is already a minimum spanning tree, it follows that OPT' has the same total weight as OPT. Therefore OPT' is also a minimum spanning tree of G. Clearly OPT' extends S_{i+1} by edges only from $\{e_{i+2}, \ldots, e_m\}$. □

Other algorithms for the MST problem:

Prim’s algorithm starts with a set X that consists of a single vertex v_1. At each step it extends X by one vertex which is connected to some vertex in X by an edge of smallest weight:

1. $X \leftarrow \{v_1\}$, $E' \leftarrow \emptyset$
2. While $X \neq V$ do
3. Let (u, v) be the edge of smallest weight so that $u \in X$ and $v \in V - X$.
4. $E' \leftarrow E' \cup \{(u, v)\}$
5. $X \leftarrow X \cup \{v\}$
6. End While
7. Output E'

Exercise: Prove that Prim’s algorithm returns a minimum spanning tree by defining an appropriate notion of promising partial solution.

Another algorithm (called Reverse-Delete in the text) differs from Kruskal’s and Prim’s algorithms in that it starts with the full graph G and then keep deleting maximum-weight edges as long as connectivity is maintained. All three algorithms discussed here can be seen as special instance of a more generic algorithm for the MST problem which we do not present here. The correctness of this generic algorithm can also be proved using some appropriate notion of “promising” partial solution.