Question 1 [Greedy Algorithm]

Given a nonempty set S of n elements. A nonempty family L of subsets of S is called nice if it satisfies the following conditions:

1. **Inclusion property**: For every subsets $A, B \in S$, if $A \subseteq B$ and $B \in L$ then $A \in L$. (In other words, if B is a member of L then all subsets of B are also members of L. Note that the empty set \emptyset is necessarily a member of L.)

2. **Exchange condition**: If $A \in L$ and $B \in L$ and $|A| < |B|$ (here $|A|$, $|B|$ denotes the number of elements in A and B respectively), then there is some element $x \in B - A$ such that $A \cup \{x\} \in L$.

A subset A in L is called a top set if there is no other set B in L such that $A \subset B$.

Given a set $S = \{1, 2, \ldots, n\}$ where each element i has a weight $w(i)$, and a nice family L of subsets of S. The weight of a set A in L is the total weight of the elements in A:

$$w(A) = \sum_{i \in A} w(i)$$

The problem is to find a set A in L with maximum weight. Notice that any set A in L of maximum weight must be a top set. Also, L might have as many as 2^n members. Therefore going through every member of L is not an option here, because the problem can be solved in polynomial time using the greedy approach.

(a) Give a Greedy algorithm that finds a maximum weight subset in L. Prove that your algorithm is correct.

(b) To analyze the running time of your algorithm, we assume that checking whether a subset $A \subset S$ is a member of L takes time $t(n)$. (This checking time only depends on n—the number of elements in S—and not on the set A.) What is the running time of your algorithm in terms of n and $t(n)$ (state your answer using O notation)?

Question 2 [Greedy Algorithm]

Consider the problem that, given a set $\{x_1, \ldots, x_n\}$ of points on the real line, determines the smallest set of unit-length closed intervals that contains all of the given points.

For example, on input $\{-2.7, 1.5, 2.5\}$, the following set of two unit intervals is an optimal solution:

$$\{[-3, -2], [1.5, 2.5]\}$$

(a) Give the pseudo-code for a greedy algorithm that solves the above problem and prove that your algorithm is correct.
b) What is the running time of your algorithm?

Question 3 [Approximation Algorithm]