CSC 373H (2007): Assignment 1
Worth 5%. Due June 7 at 6pm in lecture.

The work you submit must be your own. You may discuss problems with each others; however, you should prepare written solutions alone. Copying assignments is a serious academic offence, and will be dealt with accordingly.

Question 1 [Divide-and-Conquer]
A group of \(n\) students \(S_1, \ldots, S_n\) work on a common report that consists of \(n\) parts \(P_1, \ldots, P_n\). They have divided the task so that \(S_i\) writes part \(P_i\) (for \(1 \leq i \leq n\)). Now is \((n-1)\) days before the deadline, and they want to cross examine each other’s part. Each student \(S_i\) will have to review all \((n-1)\) parts \(P_j\) for \(j \neq i\), and can review only one part a day. The students also want all parts are reviewed every day. ALSO ON EACH DAY, IF A STUDENT \(S_i\) REVIEWS PART \(P_j\) THEN STUDENT \(S_j\) REVIEWS PART \(P_i\). Before start reviewing, their main challenge is to assign themselves each a part to review, for each of the remaining \((n-1)\) days.

Below are examples of possible assignments for the case \(n = 2\) and \(n = 4\) (day \((n-1)\) is the day before the deadline):

\[
\begin{array}{c|ccc}
\text{day 1} & \text{day 2} & \text{day 3} \\
\hline
S_1 & P_2 & & P_3 \\
S_2 & & P_1 & P_3 \\
S_3 & P_4 & & P_1 \\
S_4 & P_3 & P_2 & P_1 \\
\end{array}
\]

Help the students to assign the part to be reviewed by each of them. Use divide-and-conquer technique, you can assume that \(n\) is a power of 2. Your output should be in the form of an \(n \times (n-1)\) array, where \(A[i, j]\) is the part to be reviewed by \(S_i\) on day \(j\), for \(1 \leq i \leq n, 1 \leq j \leq n - 1\). THE RUNNING TIME OF YOUR ALGORITHM SHOULD BE \(O(n^2)\).

Question 2 [Divide-and-Conquer]
An \(n \times n\) grid graph \(G\) is the graph whose nodes are order pairs of natural numbers \((i, j)\) where \(1 \leq i \leq n\) and \(1 \leq j \leq n\); two nodes \((i_1, j_1)\) and \((i_2, j_2)\) are neighbors if and only if \(|i_1 - i_2| + |j_1 - j_2| = 1\).

Suppose that each node \(v\) of \(G\) is labeled by a distinct natural number \(x_v\). We say that \(v\) is a local minimum if \(x_v < x_u\) for all neighbors \(u\) of \(v\). In Example given in Figure 1, there are FOUR local minima: \((2, 6), (3, 2), (5, 1)\) and \((6, 6)\).

Given \(G\) and its labeling, the problem is to find a local minimum of \(G\).

a) Consider the following algorithm that starts from \((1, 1)\) and keeps looking for the smallest neighbor until a local minimum is found:

1. \(v \leftarrow (1, 1)\)
2. While there is a neighbor \(u\) of \(v\) such that \(x_u < x_v\)
3. \hspace{1cm} Let \(u\) be the neighbor of \(v\) with smallest \(x_u\)
4. \hspace{1cm} \(v \leftarrow u\)
5. End While
6. Return \(v\)
Figure 1: A 6×6 grid graph. The local minima are $(2,6), (3,2), (5,1), (6,6)$.

Argue that the above algorithm always returns a local minimum of G. What is the running time of this algorithm in the worst case? (State your answer using Θ notation.)

b) Give a divide-and-conquer algorithm that solve this problem in time $O(n)$. Argue that your algorithm always returns a local minimum. Here you may assume that n is a power of 2.

Question 3 [Dynamic Programming]

Suppose that it’s nearing the end of the semester and you’re taking n courses, each with a final project that still has to be done. Each project will be graded on the following scale: It will be assigned an integer number on a scale of 1 to $g > 1$, higher numbers being better grades. Your goal, of course, is to maximize your average grade on the n projects.

You have a total of $H > n$ hours in which to work on the n projects cumulatively, and you want to decide how to divide up this time. For simplicity, assume H is a positive integer, and you’ll spend an integer number of hours on each project. To figure out how best to divide up your time, you’ve come up with a set of functions $\{f_i : i = 1, 2, \ldots, n\}$ (rough estimates, of course) for each of your n courses; if you spend $h \leq H$ hours on the project for course i, you’ll get a grade of $f_i(h)$. (You may assume that the functions f_i are nondecreasing; if $h < h'$, then $f_i(h) \leq f_i(h')$.)

So the problem is: Given these functions, decide how many hours to spend on each project (in integer values only) so that your average grade, as computed according to the f_i, is as large as possible. In order to be efficient, the running time of your algorithm should be polynomial in n, g and H; none of these quantities should appear as an exponent in your running time.