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Applications as VMs

‣ Applications deployed in virtual machines

• Carve up big hosts

• Makes application capacity granular

‣ Increase capacity by creating more VMs

• Create more VMs as load approaches capacity

• When should you create more?
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When to Create More

‣ As late as possible

• Avoid over provisioning

‣ As soon as necessary

• Anticipate when load will surpass capacity

• Factor in time it takes for new VM start serving

• How can we optimize this (i.e., make it low)?
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Time to Start Serving

4

Guest preparation time

• Time for OS to boot and 
app to start serving

• Lean OS & stateless app can 
serve in < 10s

• Fat OS & big app ready 
instantly with live images

VM Creation Time

• Time from nova boot 
to ACTIVE

• Can take a long time

• Let’s do an experiment ...
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Experimental Setup
‣ Create VMs in parallel

• Make N creation requests in parallel

• Measure time from API request to ACTIVE

‣ OpenStack Grizzly

• Compute: Libvirt + KVM

• Networking: Quantum + Open vSwitch

• Storage: qcow2

‣ 96 GB RAM, 12 cores x 2 HT/core, SSD
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VM Creation Time
‣ Single VM is fast ~10s

‣ Many VMs can be slow

• Creation time increases 
linearly with N

• Must be some 
bottlenecks
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VM Creation Time
‣ Single VM is fast ~10s

‣ Many VMs can be slow

• Creation time increases 
linearly with N

• Must be some 
bottlenecks

‣ Looks worse without 
quantum

• 10s longer when N=20
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Possible Bottlenecks

‣ Hardware

• CPUs pegged? RAM all used?  Disk busy?

‣ Software

• Locks held for a long time?

‣ Hardware easy to check with atop

• Let’s look at atop first
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Resource Metric Median Max

RAM % Used 9 11

CPU % Time Busy 14 55

Disk % Time Busy 9 80

Hardware Contention?
‣ Sample every 2s using atop -w log 2

‣ HW utilization for N=20:

‣ Lots of capacity for parallelism

• Time to look at SW
9
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Software Bottlenecks

‣ Anything that inhibits parallelism

• Some kind of lock contention

‣ Hopefully easy to fix :-)

• Many locking strategies exist

‣ Identified using tracing

• Let’s take a look
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‣ Record events during application execution

• e.g., Function entry & exit, lock acquisition
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Tracing

‣ Record events during application execution

• e.g., Function entry & exit, lock acquisition

‣ Visualized as stacked extents:

‣ Traces are usually pretty busy ...

11

strdup

strlen malloc memcpy
Thread 

ID

1us         2us         3us        4us       5us
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Tracing OpenStack
‣ Added @traced to nova and quantum

• Events on function call and return

• Events before and after lock()

• Outputs to trace-viewer format

• Using Google Chrome? See about:tracing
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Tracing OpenStack
‣ Added @traced to nova and quantum

• Events on function call and return

• Events before and after lock()

• Outputs to trace-viewer format

• Using Google Chrome? See about:tracing

‣ Repeat experiments with tracing on and 
hunt for bottlenecks

• Look for stretched extents
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Hunting:
Resource Accounting

‣ Resource Accounting

• Enforces max RAM,  VCPUs, etc. allocated

• Global lock per compute node
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Bottleneck:
Resource Lock

‣ Can add 15s of serialization to VM creation

‣ Slow because of RPC to conductor

‣ Solution Part 1: Remove NOP updates

• Reduces median creation time 10% when N=20

‣ Solution Part 2: Coalesce RPCs

• Future work
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Hunting:
Libvirt

‣ libvirt starts qemu process, apparmor, etc.

‣ Global lock... can’t fix this in OpenStack

‣ Can we mitigate the problem?
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‣ Many short calls (e.g., get hostname)

• Become long calls due to global lock
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Bottleneck:
Libvirt

‣ Many short calls (e.g., get hostname)

• Become long calls due to global lock

‣ Solution: avoid unnecessary calls

• Down from 248 to 7

• Reduces max creation time 20% when N=20
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‣ eventlet’s “green” threads are coroutines 
multiplexed on single native thread

• You can’t block in a green thread

• Python’s stdlib patched to yield instead of block

• C libraries aren’t patched
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Hunting:
Eventlet

‣ eventlet’s “green” threads are coroutines 
multiplexed on single native thread

• You can’t block in a green thread

• Python’s stdlib patched to yield instead of block

• C libraries aren’t patched

‣ Pool of native threads to use blocking libs

‣ Maybe there’s more room for improvement
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Bottleneck:
Eventlet Work Queues
‣ One work queue per worker thread

‣ Green-thread to work-queue map is fixed:

‣ Solution: use a global work queue

• Get to wait on libvirt lock sooner :’-(

18

     worker_idx = hash(gettid()) % \
                  worker_count
     work_queues[worker_idx].append(work)
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Results

‣ VM creation time:

• Max 20% lower

• Median 10% lower
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Results

‣ VM creation time:

• Max 20% lower

• Median 10% lower

‣Wait for libvirt sooner

• On the bright side, once 
libvirt fixed, OpenStack 
has fewer bottlenecks 0 5 10 15 20
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Conclusion

‣ Low VM creation time is good

• Necessary for scaling

‣ VM Creation time scales poorly due to 
software contention

• Bottlenecks in OpenStack code easily fixed

• libvirt still a big bottleneck

‣ Tracing helps identify contention
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Future Work

‣ Coalesce RPC updates to conductor

‣ Eliminate big qemu lock in libvirt

‣ Instrument other OpenStack services 
(glance, swift, cinder, etc.)

‣ Perform more experiments
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Questions?
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Peter Feiner

peter@gridcentric.com

github.com/peterfeiner/{nova,quantum}/tree/tracing
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