Comprehensive Kernel
Instrumentation
via
Dynamic Binary Iranslation

Peter Feiner

Angela Demke Brown Ashvin Goel

University of Toronto

| /17

Complexity of Operating Systems

Million lines of code

{ — | Other
| Drivers/Staging
6 — | Arch

I File Systems (FS)
4 =1 Net
| Sound

1.0

2/ 17

| Driversw/o Staging

24.0 2628
241 2612
26.0

l]J|JLI_

Complexity of Operating Systems

. . 8 — | Other 24.0 2.628
Growth in code size | DriversStaging oy 2612 | I
6 — | Arch 2,60 |
| Drivers w/o Staging

) Palix, ASPLOS 201 |

p Many new drivers!

| File Systems (FS)

Net
| Sound 220
3

) ol 4II|H| |
1.2.0] 21.0
L S T B B —

|1
Z W .
G, 5, % G0, %, G0y W, g, o, 0,

Million lines of code
-
|

G

2/ 17

Complexity of Operating Systems

Growth in code size
) Palix, ASPLOS 201 |

p Many new drivers!

More swearing
p Vidar Holen, 2012

Q — | Other 24.0 2.628
| Drwers/Staging 241 2 6.12 I I
Arch |
6 —
| Drivers w/o Staging

||I
| File Systems (FS) L Ill”||II||
Net 1]
l Sound 220
7 —
l 120 7 1.0 -
0= 1 I

&]0@ & %)%f%’@j@,’ ERCRONNONONCN

Million lines of code
NN
|

— $A&@
o — 1%8&%!
C 2001 — >l<&#@
3 — $%IN%
QO 150 penguin
L
S 100
E
50 / -
1.0 2I2 2.3.36 2.6.12 2.6.24 2.6.36

2/ 17

Complexity of Operating Systems

@
. . Q —| | Other 24.0 2.6.28
GI”OWth IN COde SIZE g | Drwers/Staging 241 2612 I l
o] | Arch h
- o I Drivers w/o Stagi I
) Palix, ASPLOS 201 | & |} ore s it
S 41 et an {
I | | Sound
p Many new drivers! = ! u
= I 12
S | -r--—L-——-", - W

NN NN N

— $A&@

: — 1%6&%)!

More swearing 200| — g4
, — $%IN%*
p Vidar Holen, 2012 penguin

Swear Count
o wn
o o

Bugs are inevitable!

U1
O

|

1.0 2 .2 2336 26.12 2624 2.6.36

p Need coping strategies

2/ 17

Tools would be nice

Awesome tools for user code
p Memcheck

p Program Shepherding
Use Dynamic Binary Translation (DBT)

p Rewrite binaries as they execute

p No need for source

Frameworks make building DBT tools easy
p DynamoRIO,Valgrind, Pin

No framework for OS code

3/ 17

Our Framework

4/ 17

Our Framework

Ported DynamRIO to Linux kernel

p Runs on bare metal

4/ 17

Our Framework

Ported DynamRIO to Linux kernel

p Runs on bare metal

Port took 18 Months

4/ 17

Our Framework

Ported DynamRIO to Linux kernel

p Runs on bare metal

Port took 18 Months
Built OS debugging tools in 5 days
p Heap debugging
® Use after free
® Heap corruption

p Stack overflow monitor

4/ 17

Our Framework

Ported DynamRIO to Linux kernel

p Runs on bare metal

Port took 18 Months
Built OS debugging tools in 5 days
p Heap debugging
® Use after free
® Heap corruption

p Stack overflow monitor

Practical

p One author ran system on her desktop for | month

4/ 17

What About Hypervisors!

What About Hypervisors?

VMWare can use DBT on guests

p No instrumentation API

5/17

What About Hypervisors?

VMWare can use DBT on guests

p No instrumentation API

PinOS has instrumentation API
p PinOS = Pin + Xen
p Guest needs emulated devices

® Useless for most driver code

5/17

What About Hypervisors?

VMWare can use DBT on guests

p No instrumentation API :
Drivers

477

PinOS has instrumentation API
p PinOS = Pin + Xen
p Guest needs emulated devices

, Palix, ASPLOS 201 |
® Useless for most driver code

5/17

What About Hypervisors?

VMWare can use DBT on guests

p No instrumentation API :
Drivers

477

PinOS has instrumentation API
p PinOS = Pin + Xen
p Guest needs emulated devices

, Palix, ASPLOS 201 |
® Useless for most driver code

So add DBT to a hypervisor with pass-through devices!?
p Then you'd have the problems we show you how to solve

) ...problems with interrupts!

5/17

Framework Overview

User Code

A

|. Boot normally

2. Take over

3.JIT the OS

x86 — instrumented x86 Interrupts Exceptions

6/17

Framework Overview

User Code

A

|. Boot normally

o -

3.JIT the OS

x86 — instrumented x86 Interrupts Exceptions

6/ 17

Framework Overview

User Code

A

|. Boot normally

Instrumented

OS Code

o -

3.JIT the OS

x86 — instrumented x86 Interrupts Exceptions

6/ 17

Dynamic Instrumentation

User Code

A

Instrumented
OS Code

Interrupts Exceptions

7117

Dynamic Instrumentation
Code Cache

User Code

A

Interrupts Exceptions

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

Interrupts Exceptions

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation

OS Code

User Code

A

System call example

p bbl is entry point

7117

Code Cache

Dynamic Instrumentation
OS Code Code Cache

User Code

A

System call example

p bbl is entry point

7117

Dynamic Instrumentation

OS Code

User Code

A

System call example

p bbl is entry point

7117

Code Cache

Dynamic Instrumentation

OS Code

User Code

A

System call example

p bbl is entry point

7117

Code Cache

Dynamic Instrumentation

OS Code

User Code

A

Code Cache

System call example

p bbl is entry point

7117

Dynamic Instrumentation

OS Code

User Code

A

System call example

p bbl is entry point

7117

Code Cache

Dynamic Instrumentation
OS Code Code Cache

System call example

p bbl is entry point

7117

Complications

User Code

Complications

OS Code

User Code

A

Code Cache

Reentrance
p How do you do I/O?
p Can’t use OS

87117

Complications
OS Code Code Cache

User Code

A

Reentrance Concurrency
p How do you do I/O? p Multiple CPUs using
) Can’t use OS and building cache

87117

Complications
OS Code Code Cache

User Code

A

Reentrance Interrupts ~ Concurrency
p How do you do I/O? p Multiple CPUs using
) Can’t use OS and building cache

87117

Handling Interrupts
OS Code Code Cache

User Code

Interrupts

9117

Handling Interrupts
OS Code Code Cache

User Code

Interrupts

9117

Handling Interrupts

OS Code

User Code

Interrupts

9117

Code Cache

. arrival

Handling Interrupts

OS Code

User Code

Interrupts

9117

Code Cache

. arrival

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

p Can it run interrupt handler IH immediately?

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

p Can it run interrupt handler IH immediately?

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

p Can it run interrupt handler IH immediately?

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

p Can it run interrupt handler IH immediately?

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with mterrupt’

p Can it run interrupt handler IH immediately?

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

Interrupts

What should framework do with interrupt?
p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

élockﬂ)

Interrupts

What should framework do with interrupt?
p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

élockﬂ)

Interrupts

What should framework do with interrupt?
p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

élockﬂ)

Interrupts 5 :.]

‘deadlock

What should framework do with interrupt?

p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

9117

Handling Interrupts
OS Code Code Cache

arrival
User Code

élockﬂ)

Interrupts 5 :.]

‘deadlock

What should framework do with interrupt?

p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

Need to delay

9117

Delaying Interrupts

b

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

b

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

IE I delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail

b delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?
p Avoids tail
p Problem if bbl disables interrupt

10/ 17

b

arrival

disabled

delivery

Delaying Interrupts

Where do we delay it until?

Delay until end of bb|?

p Avoids tail disabled
p Problem if bbl disables interrupt
b

® Could be any MMIO

® Framework cannot detect if enabled

delivery

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bbI1? X

) Avoids tail disabled

p Problem if bbl disables interrupt
® Could be any MMIO b —delivery

® Framework cannot detect if enabled

arrival

10/ 17

Delaying Interrupts

Where do we delay it until?

Delay until end of bb1? X
p Avoids tail

p Problem if bbl disables interrupt
® Could be any MMIO

® Framework cannot detect if enabled

Must deliver before next OS instruction

10/ 17

Framework

arrival

disabled

b

—detivery

delivery

Delaying Interrupts

Where do we delay it until?

Delay until end of bb1? X
p Avoids tail

p Problem if bbl disables interrupt
® Could be any MMIO

® Framework cannot detect if enabled

Must deliver before next OS instruction

p Delay until end of instrumentation

10/ 17

Framework

arrival

disabled

b

—detivery

delivery

Delaying Interrupts

Where do we delay it until?

Delay until end of bb1? X
p Avoids tail

p Problem if bbl disables interrupt
® Could be any MMIO

® Framework cannot detect if enabled

Must deliver before next OS instruction

p Delay until end of instrumentation

p Still duplicates tail

10/ 17

Framework

arrival

disabled

b

—detivery

delivery

How to Delay Interrupts

E|

How to Delay Interrupts
Could disable them on the CPU

E|

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable

) ol

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

¥ o]

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

) o]

push, disable

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

¥]|

push, disable pop

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

¥]|

push, disable pop
But performance would be bad

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

£

push, disable pop
But performance would be bad

Instead, have framework handle it

p Extra overhead for interrupt, cheaper instrumentation

11/ 17

How to Delay Interrupts

Could disable them on the CPU
push, disable pop

£

push, disable pop
But performance would be bad

Instead, have framework handle it
p Extra overhead for interrupt, cheaper instrumentation

p Instrumentation more frequent than interrupts

p Gigabit NIC sends interrupt every 100us = 100K instr.

11/ 17

Delaying with Patches

Example: interrupt 239 arrival

ot |

12/ 17

Delaying with Patches

Example: interrupt 239

It |

12/ 17

arrival

Interrupt Stack Frame

Interrupts enabled

yes

Delaying with Patches

Example: interrupt 239

= i

12/ 17

arrival

Interrupt Stack Frame

Interrupts enabled

yes

Delaying with Patches

Example: interrupt 239 arrival

The framework -
I

. Patches next native

instruction int 239

Interrupt Stack Frame

Interrupts enabled

yes

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework -
I

. Patches next native

Instruction int 239
2. Disables interrupts on iret

Interrupt Stack Frame

NO|
Interrupts enabled |yes

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework -
I

. Patches next native

Instruction int 239
2. Disables interrupts on iret

3. iret Interrupt Stack Frame

NO|
Interrupts enabled |yes

12/ 17

Delaying with Patches
Example: interrupt 239 arrival
|. Patches next native
Instruction int 239
2. Disables interrupts on iret

The framework Framework

3. iret Interrupt Stack Frame

NO|
Interrupts enabled |yes

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework Framework

|. Patches next native

Instruction int 239
2. Disables interrupts on iret

3. iret Interrupt Stack Frame

NO|
Interrupts enabled |yes

12/ 17

Delaying with Patches

Example: interrupt 239 arrival
The framework Framework [
|. Patches next native
Instruction int 239
2. Disables interrupts on iret
3. iret Interrupt Stack Frame

NO|
Interrupts enabled |yes

Patch Interrupt Stack Frame

Interrupts enabled | no

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework Framework

|. Patches next native
Instruction int 239
2. Disables interrupts on iret

3. iret Interrupt Stack Frame

NO|
Interrupts enabled |yes

Patch Interrupt Stack Frame

Interrupts enabled | no

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework im

|. Patches next native

Instruction _ire239-

2. Disables interrupts on iret

3. iret Interrupt Stack Frame
No
4. Removes patch Interrupts enabled |yes

Patch Interrupt Stack Frame

Interrupts enabled | no

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework im

|. Patches next native

Instruction _ire239-

2. Disables interrupts on iret

3 iret Interrupt Stack Frame
No

4. Removes patch Interrupts enabled |yes

5.

Interrupts on iret

Patch Interrupt Stack Frame

Interrupts enabled |ho

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

o U A W DN

The framework im

Patches next native

Instruction _ire239-

Disables interrupts on iret

iret Interrupt Stack Frame
NO|
Removes patch Interrupts enabled |yes

Interrupts on iret

E\undilnstl‘umented Interrupt Patch Interrupt Stack Frame
ahdier

Interrupts enabled |ho

12/ 17

Delaying with Patches

Example: interrupt 239 arrival

The framework Framework

o U A W DN

Patches next native

Instruction I _ire239-

Disables interrupts on iret

iret Interrupt Stack Frame
No

Removes patch Interrupts enabled |yes

Interrupts on iret

E\undilnstl‘umented Interrupt Patch Interrupt Stack Frame
andier

Interrupts enabled |ho

12/ 17

Delaying with Patches

Example: interrupt 239

The framework

|. Patches next native
Instruction

Disables interrupts on iret
Iret
Removes patch

Interrupts on iret

o U A W DN

Run instrumented interrupt
handler

Okay, what's the performance?
12/ 17

Framework

arrival

I e 939

Interrupt Stack Frame

NO|
yes

Interrupts enabled

Patch Interrupt Stack Frame

Interrupts enabled |ho

Performance

Ran framework with instruction counting tool
p Intel Quad Core i7 2.8Ghz, 8GB, 64-bit Ubuntu 10.10

Low application overhead
p JavaScript, Mozilla Kraken: 3% overhead
p Parallel Linux kernel compile: 30% overhead
® [8% user time increase
® [43% system time increase
Overhead commensurate with OS activity

p How bad can this get?

13/ 17

Stress Test Setup

Apachebench and Filebench

Configured benchmarks to stress CPUs and kernel
) Large buffer cache - no disk I/O
p Many threads - lots of context switching

p 100% utilization - shows interrupt processing overhead

nthreads | data size
fileserver 50 1.25 GB
webserver 100 | 15.6 MB
S/ebproxy 100 T 15 6 MB concurrency level 200
varmail 16 | 15.6 MB
Table 1. Filebench parameters Apa chebench Parameters

14/ 17

Throughput (ops/s)

Stress Test Results

B Native

Apachebench Filebench B Instrumented
20000
15000
10000
5000
0
apachebench fileserver webserver webproxy varmail

Less than 5x - Reasonable overhead for debugging tools

15717

Throughput (ops/s)

Stress Test Results

B Native

Apachebench Filebench B Instrumented
20000
15000
10000
5000
0
apachebench fileserver webserver webproxy varmail
CPU-bound |O-bound

Less than 5x - Reasonable overhead for debugging tools

15/ 17

Summary

Enables dynamic binary instrumentation of OS

Makes it easy to write complex instrumentation
Built useful memory checking tools

Works with arbitrary devices & drivers

16/ 17

Questions!

17/ 17

