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Tools would be nice

Awesome tools for user code
p Memcheck

p Program Shepherding
Use Dynamic Binary Translation (DBT)

p Rewrite binaries as they execute

p No need for source

Frameworks make building DBT tools easy
p DynamoRIO,Valgrind, Pin

No framework for OS code
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Our Framework

Ported DynamRIO to Linux kernel

p Runs on bare metal

Port took 18 Months
Built OS debugging tools in 5 days
p Heap debugging
® Use after free
® Heap corruption

p Stack overflow monitor

Practical

p One author ran system on her desktop for | month
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What About Hypervisors?

VMWare can use DBT on guests

p No instrumentation API :
Drivers

477

PinOS has instrumentation API
p PinOS = Pin + Xen
p Guest needs emulated devices

, Palix, ASPLOS 201 |
® Useless for most driver code

So add DBT to a hypervisor with pass-through devices!?
p Then you'd have the problems we show you how to solve

) ...problems with interrupts!
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User Code
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x86 — instrumented x86 Interrupts Exceptions
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Handling Interrupts
OS Code Code Cache

arrival
User Code
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Interrupts 5 :.]

‘deadlock

What should framework do with interrupt?

p Can it run interrupt handler IH immediately?

® Problem if instrumentation isn’t reentrant

Need to delay
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Delaying Interrupts

Where do we delay it until?

Delay until end of bb1? X
p Avoids tail

p Problem if bbl disables interrupt
® Could be any MMIO

® Framework cannot detect if enabled

Must deliver before next OS instruction

p Delay until end of instrumentation

p Still duplicates tail
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How to Delay Interrupts

Could disable them on the CPU
push, disable pop

£

push, disable pop
But performance would be bad

Instead, have framework handle it
p Extra overhead for interrupt, cheaper instrumentation

p Instrumentation more frequent than interrupts

p Gigabit NIC sends interrupt every 100us = 100K instr.
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Delaying with Patches

Example: interrupt 239

The framework

|. Patches next native
Instruction

Disables interrupts on iret
Iret
Removes patch

Interrupts on iret

o U A W DN

Run instrumented interrupt
handler

Okay, what's the performance?
12/ 17
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Performance

Ran framework with instruction counting tool
p Intel Quad Core i7 2.8Ghz, 8GB, 64-bit Ubuntu 10.10

Low application overhead
p JavaScript, Mozilla Kraken: 3% overhead
p Parallel Linux kernel compile: 30% overhead
® [8% user time increase
® [43% system time increase
Overhead commensurate with OS activity

p How bad can this get?

13/ 17



Stress Test Setup

Apachebench and Filebench

Configured benchmarks to stress CPUs and kernel
) Large buffer cache - no disk I/O
p Many threads - lots of context switching

p 100% utilization - shows interrupt processing overhead

nthreads | data size
fileserver 50 1.25 GB
webserver 100 | 15.6 MB
S/ebproxy 100 T 15 6 MB concurrency level 200
varmail 16 | 15.6 MB
Table 1. Filebench parameters Apa chebench Parameters
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Throughput (ops/s)
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B Native
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20000
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Less than 5x - Reasonable overhead for debugging tools

15717



Throughput (ops/s)

Stress Test Results

B Native

Apachebench Filebench B Instrumented
20000
15000
10000
5000
0
apachebench fileserver webserver webproxy varmail
CPU-bound |O-bound

Less than 5x - Reasonable overhead for debugging tools
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Summary

Enables dynamic binary instrumentation of OS

Makes it easy to write complex instrumentation
Built useful memory checking tools

Works with arbitrary devices & drivers
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Questions!

17/ 17



