
01 / 17

Comprehensive Kernel
Instrumentation

via
Dynamic Binary Translation

1

Angela Demke Brown Ashvin Goel

University of Toronto

Peter Feiner

01 / 17

Complexity of Operating Systems

2

01 / 17

Complexity of Operating Systems
Growth in code size

‣ Palix, ASPLOS 2011

‣ Many new drivers!

2

01 / 17

Complexity of Operating Systems
Growth in code size

‣ Palix, ASPLOS 2011

‣ Many new drivers!

More swearing

‣ Vidar Holen, 2012

2

200

150

100

50

$^&@
!%&%!
*&#@
$%!^%*
penguin

Sw
ea

r
C

ou
nt

1.0 2.1.2 2.3.36 2.6.12 2.6.24 2.6.36

01 / 17

Complexity of Operating Systems
Growth in code size

‣ Palix, ASPLOS 2011

‣ Many new drivers!

More swearing

‣ Vidar Holen, 2012

Bugs are inevitable!

‣ Need coping strategies

2

200

150

100

50

$^&@
!%&%!
*&#@
$%!^%*
penguin

Sw
ea

r
C

ou
nt

1.0 2.1.2 2.3.36 2.6.12 2.6.24 2.6.36

01 / 17

Tools would be nice
Awesome tools for user code

‣ Memcheck

‣ Program Shepherding

Use Dynamic Binary Translation (DBT)

‣ Rewrite binaries as they execute

‣ No need for source

Frameworks make building DBT tools easy

‣ DynamoRIO, Valgrind, Pin

No framework for OS code

3

01 / 17

Our Framework

4

01 / 17

Our Framework
Ported DynamRIO to Linux kernel

‣ Runs on bare metal

4

01 / 17

Our Framework
Ported DynamRIO to Linux kernel

‣ Runs on bare metal

Port took 18 Months

4

01 / 17

Our Framework
Ported DynamRIO to Linux kernel

‣ Runs on bare metal

Port took 18 Months

Built OS debugging tools in 5 days

‣ Heap debugging

• Use after free

• Heap corruption

‣ Stack overflow monitor

4

01 / 17

Our Framework
Ported DynamRIO to Linux kernel

‣ Runs on bare metal

Port took 18 Months

Built OS debugging tools in 5 days

‣ Heap debugging

• Use after free

• Heap corruption

‣ Stack overflow monitor

Practical

‣ One author ran system on her desktop for 1 month

4

01 / 17

What About Hypervisors?

5

01 / 17

What About Hypervisors?
VMWare can use DBT on guests

‣ No instrumentation API

5

01 / 17

What About Hypervisors?
VMWare can use DBT on guests

‣ No instrumentation API

PinOS has instrumentation API

‣ PinOS = Pin + Xen

‣ Guest needs emulated devices

• Useless for most driver code

5

01 / 17

What About Hypervisors?
VMWare can use DBT on guests

‣ No instrumentation API

PinOS has instrumentation API

‣ PinOS = Pin + Xen

‣ Guest needs emulated devices

• Useless for most driver code

5

Other
6%

Arch
25%

FS
9%

Net
6%

Sound
6%

Drivers
47%

Palix, ASPLOS 2011

01 / 17

What About Hypervisors?
VMWare can use DBT on guests

‣ No instrumentation API

PinOS has instrumentation API

‣ PinOS = Pin + Xen

‣ Guest needs emulated devices

• Useless for most driver code

So add DBT to a hypervisor with pass-through devices?

‣ Then you’d have the problems we show you how to solve

‣ ... problems with interrupts!
5

Other
6%

Arch
25%

FS
9%

Net
6%

Sound
6%

Drivers
47%

Palix, ASPLOS 2011

01 / 17

OS Code

Framework Overview

6

User Code

ExceptionsInterrupts

1. Boot normally

2. Take over

3. JIT the OS

x86 → instrumented x86

01 / 17

OS Code Framework

Framework Overview

6

User Code

ExceptionsInterrupts

1. Boot normally

2. Take over

3. JIT the OS

x86 → instrumented x86

01 / 17

Instrumented
OS Code

OS Code Framework

Framework Overview

6

User Code

ExceptionsInterrupts

1. Boot normally

2. Take over

3. JIT the OS

x86 → instrumented x86

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Instrumented
OS Code

ExceptionsInterrupts

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code

Code Cache

ExceptionsInterrupts

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

ExceptionsInterrupts

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

bb3

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

bb3

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

bb3

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

bb3

Framework

Dynamic Instrumentation

7

User Code

OS Code Code Cache

bb1

bb2

bb3

bb2

bb1

System call example

‣ bb1 is entry point

01 / 17

bb3

Framework

Complications

8

User Code

OS Code

bb1

bb2

bb3

bb2

bb1

Code Cache

01 / 17

bb3

Framework

Complications

8

User Code

OS Code

bb1

bb2

bb3

bb2

bb1

Code Cache

Reentrance

‣ How do you do I/O?

‣ Can’t use OS

01 / 17

bb3

Framework

Complications

8

User Code

OS Code

bb1

bb2

bb3

bb2

bb1

Code Cache

Reentrance

‣ How do you do I/O?

‣ Can’t use OS

Concurrency

‣ Multiple CPUs using
and building cache

01 / 17

bb3

Framework

Complications

8

User Code

OS Code

bb1

bb2

bb3

bb2

bb1

Code Cache

Reentrance

‣ How do you do I/O?

‣ Can’t use OS

Concurrency

‣ Multiple CPUs using
and building cache

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*
iret

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*
iret

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*
iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*
iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*

What should framework do with interrupt?

iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

iret

arrival

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

iret

arrival

tailInterrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

• Problem if instrumentation isn’t reentrant

iret

arrival

tailInterrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

• Problem if instrumentation isn’t reentrant

iret

arrival

tail

lock(l)

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

• Problem if instrumentation isn’t reentrant

iret

arrival

tail

lock(l)

lock(l)

Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

• Problem if instrumentation isn’t reentrant

iret

arrival

tail

lock(l)

lock(l)

deadlock
Interrupts

01 / 17

Framework

Handling Interrupts

9

User Code

OS Code

bb1 bb1

Code Cache

IH
IH*

What should framework do with interrupt?

‣ Can it run interrupt handler IH immediately?

• Problem if instrumentation isn’t reentrant

iret

arrival

tail

lock(l)

lock(l)

deadlock

Need to delay

Interrupts

01 / 17

Delaying Interrupts

10

Framework

bb1

arrival

01 / 17

Delaying Interrupts

10

Where do we delay it until? Framework

bb1

arrival

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

Framework

bb1

arrival

delivery

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

pending
interrupt

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

pending
interrupt

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

pending
interrupt

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

pending
interrupt

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

Framework

bb1

arrival

delivery

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

Framework

bb1

arrival

delivery

disabled

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

• Could be any MMIO

• Framework cannot detect if enabled

Framework

bb1

arrival

delivery

disabled

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

• Could be any MMIO

• Framework cannot detect if enabled

Framework

bb1

arrival

delivery

disabled

✗

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

• Could be any MMIO

• Framework cannot detect if enabled

Must deliver before next OS instruction

Framework

bb1

arrival

delivery

disabled

✗

delivery

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

• Could be any MMIO

• Framework cannot detect if enabled

Must deliver before next OS instruction

‣ Delay until end of instrumentation

Framework

bb1

arrival

delivery

disabled

✗

delivery

01 / 17

Delaying Interrupts

10

Where do we delay it until?

Delay until end of bb1?

‣ Avoids tail

‣ Problem if bb1 disables interrupt

• Could be any MMIO

• Framework cannot detect if enabled

Must deliver before next OS instruction

‣ Delay until end of instrumentation

‣ Still duplicates tail

Framework

bb1

arrival

delivery

disabled

✗

delivery

01 / 17

How to Delay Interrupts

11

bb1

01 / 17

Could disable them on the CPU

How to Delay Interrupts

11

bb1

01 / 17

Could disable them on the CPU

How to Delay Interrupts

11

bb1

push, disable

01 / 17

Could disable them on the CPU

How to Delay Interrupts

11

bb1

push, disable pop

01 / 17

Could disable them on the CPU

How to Delay Interrupts

11

bb1

push, disable

push, disable pop

01 / 17

Could disable them on the CPU

How to Delay Interrupts

11

bb1

poppush, disable

push, disable pop

01 / 17

Could disable them on the CPU

But performance would be bad

How to Delay Interrupts

11

bb1

poppush, disable

push, disable pop

01 / 17

Could disable them on the CPU

But performance would be bad

Instead, have framework handle it

‣ Extra overhead for interrupt, cheaper instrumentation

How to Delay Interrupts

11

bb1

poppush, disable

push, disable pop

01 / 17

Could disable them on the CPU

But performance would be bad

Instead, have framework handle it

‣ Extra overhead for interrupt, cheaper instrumentation

‣ Instrumentation more frequent than interrupts

‣ Gigabit NIC sends interrupt every 100µs ≈ 100K instr.

How to Delay Interrupts

11

bb1

poppush, disable

push, disable pop

01 / 17

Delaying with Patches

12

Framework bb1

arrivalExample: interrupt 239

01 / 17

Delaying with Patches

12

Framework bb1

Interrupts enabled yes

Interrupt Stack Frame

arrival

...

Example: interrupt 239

01 / 17

Delaying with Patches

12

Framework bb1

Interrupts enabled yes

Interrupt Stack Frame

arrival

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no
...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no
...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no
...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no
...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

4. Removes patch

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

4. Removes patch

5. Enables interrupts on iret

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame
yes

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

4. Removes patch

5. Enables interrupts on iret

6. Run instrumented interrupt
handler

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame
yes

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

4. Removes patch

5. Enables interrupts on iret

6. Run instrumented interrupt
handler

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame
yes

IH

...

...

Example: interrupt 239

01 / 17

Delaying with Patches

The framework

1. Patches next native
instruction

2. Disables interrupts on iret

3. iret

4. Removes patch

5. Enables interrupts on iret

6. Run instrumented interrupt
handler

12

Framework bb1

int 239

Interrupts enabled yes

Interrupt Stack Frame

arrival

no

Interrupts enabled no

Patch Interrupt Stack Frame
yes

IH

...

...Okay, what’s the performance?

Example: interrupt 239

01 / 17

Performance

13

Ran framework with instruction counting tool

‣ Intel Quad Core i7 2.8Ghz, 8GB, 64-bit Ubuntu 10.10

Low application overhead

‣ JavaScript, Mozilla Kraken: 3% overhead

‣ Parallel Linux kernel compile: 30% overhead

• 18% user time increase

• 143% system time increase

Overhead commensurate with OS activity

‣ How bad can this get?

01 / 17

Stress Test Setup
Apachebench and Filebench

Configured benchmarks to stress CPUs and kernel

‣ Large buffer cache - no disk I/O

‣ Many threads - lots of context switching

‣ 100% utilization - shows interrupt processing overhead

14

to return to the dispatcher (line 15 of HANDLE-INTERRUPT).
After the fragment is unlinked, execution returns to the inter-
rupted translation with interrupts disabled (lines 33–37). When
the CPU executes the dispatcher next, it sees the pending in-
terrupt and emulates its arrival. Translations for control transfer
instructions involve emulation in some cases. For instance, a
return instruction’s translation involves spilling a register, pop-
ping the return address off of the stack into the spilled register,
jumping to the indirect branch lookup routine, and returning to
the dispatcher if the lookup fails to find the fragment for the
return address. Interrupts during the first three steps (spilling,
popping, and jumping), take place in the fragment and are thus
handled by Case 2B. Interrupts during the last two steps are
handled by Case 3 and Case 4.

Case 2C: Interrupted during a native instruction translation.
Native state is recreated and the dispatcher is invoked immedi-
ately. The interrupt cannot be delayed because subsequent na-
tive instructions might affect interrupt delivery.

Case 2D: Interrupted during instrumentation. Undoing in this
case is unfeasible because instrumentation is arbitrary code.
So the interrupt is delayed until the end of the instrumentation
(line 20). The translation following the interrupted instrumenta-
tion is patched with a control transfer to the dispatcher (line 21).
Because DRK uses CPU-private code caches, this patch will
not affect other CPUs. However, a shared code cache could
be patched atomically if instructions following instrumentation
code were padded to the proper alignment.

Case 3: Interrupted during indirect branch lookup routine.
On the hit path of the indirect branch lookup routine, there is
a final jump instruction that transfers control to the fragment.
To delay interrupts in this case, this final jump is patched to
return to the dispatcher (line 24), effectively delaying the inter-
rupt. DRK uses CPU-private indirect branch lookup routines to
make patching simple and efficient. However, the patch could
be done atomically for shared caches at the performance cost
of spurious code cache exits on other CPUs.

Case 4: Interrupted while exiting the code cache. DynamoRIO
saves the kernel’s native state when control exits the code cache
and enters the dispatcher. If interrupted during a context switch,
DRK needs to delay the interrupt until the context switch fin-
ishes to allowing the remaining native state to be saved. To
delay interrupts in this case, DRK simply makes note of the
pending interrupt and returns to the interrupted context switch
(line 27 of HANDLE-INTERRUPT).

Case 5: Interrupted while entering the code cache. DRK has
nothing to undo because the native state was recorded during
the last code cache exit. DRK makes note of the pending inter-
rupt and calls DISPATCH with the registers saved during the last
code cache exit (line 29 of HANDLE-INTERRUPT).

5. Framework Evaluation
Before examining applications that are enabled by DRK, we evalu-
ate the overhead of the framework alone and with a simple instru-
mentation client. For these experiments, we operate with a large
enough maximum code cache size so that flushes do not occur. We
perform a number of stress tests with a high level of kernel ac-
tivity, to show the robustness of DRK and to illustrate worst-case
behavior. As noted in Section 2, we have not yet ported certain
DynamoRIO optimizations, such as traces, to DRK. The current
results are therefore conservative.

nthreads data size
fileserver 50 1.25 GB
webserver 100 15.6 MB
webproxy 100 15.6 MB
varmail 16 15.6 MB

Table 1. Filebench parameters

5.1 Simple Tools
We implemented two simple instrumentation clients to illustrate the
overhead of the DRK framework. Null Client does nothing. This
client illustrates DRK’s bare performance. Instruction Count keeps
a per-CPU tally of the number of instructions that have executed.
Instruction Count instruments every basic block to increment the
CPU’s counter by the number of instructions in the basic block.
Our implementation of this client uses a standard optimization that
avoids spilling and restoring the CPU’s arithmetic flags if they are
dead. Note that if an interrupt arrives after the Instruction Count
instrumentation clobbers the flags, but before the native instruction
kills the flags, then the interrupt handler will see the non-native
flag state. During our experiments, we have not seen this affect the
correctness of the kernel execution.

5.2 Experimental Results
Our test system is a Dell Optiplex 980 with 8 GB of RAM and
4 64-bit Intel Core i7 CPUs operating at 2.8GHz. We disabled
hyperthreading in the BIOS for our performance experiments, but
note that DRK runs stably with all 8 cores that are available when
hyperthreading is enabled. We use lmbench version 3.0 to get a
fine-grained view of the performance during a variety of system
activities4. We then present server and desktop benchmarks. All
results are an average of five warm runs.

Figure 4 shows the lmbench results. We have grouped tests with
similar original native performance into subfigures to better show
the performance. For simple system calls, our slowdown with the
Null client ranges from 1.4 (for the null system call) to 2.7 for
open+close. Other “fast” kernel operations have higher overheads,
with a worst-case slowdown of 4.9 during protection faults. Signal
delivery and page faults on file pages are more like system calls,
with slowdowns of 2.8 and 2.1 respectively. The results for the
other system calls are similar. The slowdowns on select and pipe
range from 1.9 to 2.5, although sock is worse. The slowdowns for
the fork calls are also similar, ranging from 2.2 up to 2.7. The
Instruction Count client adds significant additional overhead for
these simple microbenchmark tests, although as the complexity
of the operation increases, the additional overhead of Instruction
Count is less significant, as can be seen for the fork operations.

We observe that the overheads are lower for simple system
calls than for protection faults because DRK points system call
entries directly to their fragments in the code cache (as described
in Section 4.1.2), while other entry points to the kernel are more
costly. Based on these results, we are investigating optimizations
for other entry points, especially page fault exceptions.

We use the Linux port of Filebench version 1.4.9, with four of
the standard workload personalities, using the default settings for
each5. The relevant parameters for the workloads are in Table 1.
With the default parameters, the datasets easily fit in memory on
our test machine, so the workloads are not limited by the perfor-
mance of I/O operations. The filebench workloads use a specified
number of threads to perform file system operations. These threads

4 We present the most interesting lmbench results here. The raw data for
all experiments is available from our website at http://csng.cs.
toronto.edu/projects/23
5 The oltp workload hung our native system regularly.

Apachebench Parameters

concurrency level 200

01 / 17

Stress Test Results

15

0

5000

10000

15000

20000

apachebench fileserver webserver webproxy varmail

T
hr

ou
gh

pu
t

(o
ps

/s
)

Native
Instrumented

Less than 5x - Reasonable overhead for debugging tools

Apachebench Filebench

01 / 17

Stress Test Results

15

0

5000

10000

15000

20000

apachebench fileserver webserver webproxy varmail

T
hr

ou
gh

pu
t

(o
ps

/s
)

Native
Instrumented

CPU-bound IO-bound

Less than 5x - Reasonable overhead for debugging tools

Apachebench Filebench

01 / 17

Summary

Enables dynamic binary instrumentation of OS

Makes it easy to write complex instrumentation

Built useful memory checking tools

Works with arbitrary devices & drivers

16

01 / 17

Questions?

17

