
Experiential Preference Elicitation for Autonomous HVAC Systems

(Supplemental Material)

Andrew Perrault and Craig Boutilier

1 Proofs

Theorem 1. Any EE instance can be formulated as a POMDP.

Proof. The fundamental idea of the proof is to embed the set of possible rewards in the POMDP state space.

This transformation is related to Poupart et al.’s [3] method of solving Bayesian reinforcement learning

problems by formulating them as POMDPs. State transitions act on S, but never change the reward

embedded in the state; thus, for any distinct r, r′ ∈ R, the corresponding embedded state sets S(r) and S(r′)

do not communicate. The reward uncertainty distribution may be discrete or continuous (necessitating a

POMDP with infinite states in the latter case). The action space A is augmented by the set of queries,

so the agent can ask queries or take (original) actions; queries cause no state transition. The observation

function for (original) actions reflects full observability of the (original) state space (observations are the

states themselves), while for queries, the observation function captures the distribution over responses.

Figures 1 and 2 give a visual example of the transformation. Figure 1 shows the MDP of a two-state EE

model where the reward in each state is either 0 or 1. Figure 2 shows the equivalent POMDP representation

where there is a single query action available for each state.

We begin by constructing a model without elicitation.

!(#)!(%)

Figure 1: Diagram of a simple two-state MDP with deterministic transitions.

1

! ","
(") !{","}

(()

! (,"
(") !{(,"}

(()

! ",(
(") !{",(}

(()

! (,(
(") !{(,(}

(()

Figure 2: Diagram of the corresponding POMDP, where dashed lines represent query actions. There is one
query action available in each state.

Formally, let S be the same as S in the MDP, except each state is duplicated |R| times, with a copy

corresponding to each possible reward function. We denote the set of states where r is the true reward

function as S(r). Consider a state sr ∈ S(r) that corresponds to s ∈ S. A(sr) is a superset of A(s).

• Transitions: for each action a ∈ A(s) and each state s′r ∈ S′(r) with corresponding original state s′,

Psra(s′r) = Psa(s′). P ′sra(s′r) is zero otherwise.

• Observations: each action emits the observation ωs′ with probability 1, which informs the agent of the

identity of the state s′ ∈ S corresponding to the state s′r it has transitioned into.

• Rewards: the reward is r(sr, a) = r(s, a).

• Initial state distribution: β′ is β(sr) = Pr(r)β(s) where β(s) is the initial state distribution in the

MDP.

The model now matches the EE instance exactly, but there is no way for the agent to gain information

about the true reward function. To allow this, we will augment the action set with “querying” actions.

These actions do not cause state transitions, but they emit observations that reveal information about the

true reward function. The rewards of the actions are negative and given by the query cost function.

Let q ∈ Q be a query. Create a corresponding action aq which is available from every state.

• Transitions: aq causes no transitions. Psraq (sr) = 1.

• Rewards: r(s, aq) = −C(q, s) where s is equal to the state history. We need to augment the POMDP’s

state space to track the necessary history for both the query cost function C and the query response

function. This augmentation only affects the rewards and observations of querying actions. For exam-

ple, suppose our query cost and response models depend on the shortest distance between the queried

2

state and any state we have visited in the last 50 states. We would need to augment the state repre-

sentation with a S50 vector representing the past 50 visited states. If the model depends on an infinite

state history (as do those in “Query Response and Cost Models” section), the POMDP requires an

infinite dimensional state in the worst case.

• Observations: let Ω contain
⋃
q Nq. Osraq = Dq(r, s).

The agent can now perform elicitation. This concludes the construction, except for one issue: discounting.

In the POMDP, discounting is applied when any action is taken (including a query), but in the EE model,

discounting is only applied when a control action is taken. POMDPs can be extended so that certain actions

do not cause discounting (and this does not interfere with many standard results). If we wish to make no

such modification, we can augment the state space (storing the number of queries that have been asked so

far) to fix the problem.

We show that an optimal policy for the POMDP is optimal for the EE instance. Observe that for a

given sequence of actions and queries and a starting state distribution, the expected reward in the EE and

POMDP models is identical. The actions have the same transition probabilities except that the POMDP

state has the reward information embedded in it, and action trajectories can never cross from a state with a

particular reward embedded to a state with a different reward embedded. The queries have the same costs

associated with them and do not cause the state to change in either model. Thus, because the set of policies

is the same in each model and the expected reward of each policy is the same, the optimal policy in the

POMDP is the same as that in the EE.

Note that the POMDP belief state for an EE problem will reflect the agent’s posterior over R, reflecting

information captured about a user’s preferences by queries and responses. POMDPs have been used to

model elicitation problems in the past [1, 2]. These formulations differ from ours because they require only

one state for each potential reward function.

We discuss the three main obstacles in the POMDP reduction and their impacts from a practical and

theoretical perspective. The first is that the POMDP may require infinite states if R is continuous. This

is not an important issue for two reasons: i) it would occur for any PE scenario where the support of R

is infinite, regardless of model; and ii) the state space of POMDPs is often approximated in practice, even

when it is finite, because of the high computational complexity of solving POMDPs.

The second, bigger, issue is that the POMDP may require an infinite-dimensional state space to keep

3

track of the state history. EE, as we define it, is not Markov whereas POMDPs must be. Infinite dimensional

POMDPs can be a problem because compressing the state dimension while keeping the relevant information

is hard. However, it is unlikely in that any practical EE system would require unbounded state history to

model responses accurately. Our definition permits unbounded state history, and we make use of it because

it is elegant, but it is not necessary from a practical perspective.

The third issue is the different way discounting is handled in the two models. This is quite annoying from

a practical perspective because it prevents any EE instance from being solved as a POMDP exactly without

requiring an infinite-dimensional state space (unless the discount factor is 1). However, from a theoretical

perspective, POMDPs having a fixed discount rate is more for ease of exposition than it is essential. From a

practical perspective, we may simply ignore the difference (or tweak the discount rate, taking into account

the expected number of queries that will be asked).

Observation 1. Consider an RL problem 〈M〉 that consists of an MDP M which is known to the agent

except for the reward function, and whenever the agent transitions into a state, it receives the reward infor-

mation for that state. This problem can be reduced to EE and the reduction requires increasing the number

of states by a factor of O(|S| × |A|).

Proof. Create an EE that retains the model details (states, actions, transitions, rewards, discount). We let

reward uncertainty R be an uninformative prior. For each state s, we allow value queries for any state-action

pair (s, a), which asks a “user” (representing the environment) for the reward for that pair, and the response

function represents the RL (stochastic) reward for that pair. Query cost is zero if asking about the action

just taken at the previous state, and infinite otherwise. To encode this query cost function, the EE state

must include the previous state visited and action taken, which causes a state space blowup of |S| × |A|.

In this EE instance, the only “available” query at a state is “free,” so it is optimal to always ask it, giving

an EE agent the same information as an RL agent.

Observation 2. Given a risk-neutral agent and an MDP with uncertain reward R, its optimal policy is that

of an MDP where each state-action reward is its expected reward under R. (This holds even if rewards are

correlated under R).

Proof. This follows from a simple argument using linearity of expectation. Let Rs,a be a random variable

representing the (possibly correlated) state-action reward according to the agent’s current beliefs. Given a

4

risk-neutral agent, the optimal policy π∗ of an MDP with uncertain reward R satisfies

π∗(s) = argmax
a∈A(s)

E

[
Rs,a + γ

∑
s′∈S

Psa(s′)V ∗(s′)

]
(1)

where

V ∗(s) = E

[
Rs,π∗(s) + γ

∑
s′∈S

Psπ∗(s)(s
′)V ∗(s′)

]
(2)

We can rewrite π∗(s) using linearity of expectation and using the fact that V ∗(s) is already an expectation

w.r.t. to R:

π∗(s) = argmax
a∈A(s)

(E[Rs,a] + γ
∑
s′∈S

Psa(s′)V ∗(s′)) (3)

We can rewrite V ∗(s) likewise:

V ∗(s) = E[Rs,π∗(s)] + γ
∑
s′∈S

Psπ∗(s)(s
′)V ∗(s′) (4)

Combining the two equations, we get the standard Bellman equation for the value function, but with Rs,a

replaced with E[Rs,a]:

V ∗(s) = max
a∈A(s)

(
E[Rs,a] + γ

∑
s′∈S

Psa(s′)V ∗(s′)

)
(5)

Since the optimal policy is the only policy that satisfies the Bellman equation, π∗ is the optimal policy of

the MDP with reward replaced by its expected value.

Observation 3. An MDP can be solved optimally given only information about the differences in rewards

between a collection of state-action pairs.

Proof. Knowing the difference in reward between all state-action pairs is equivalent to knowing the reward

function up to an additive factor. Thus, it suffices to show that adding c to the reward of each state-action

pair does not change the optimal policy.

5

The optimal policy π∗ of an MDP is a policy that satisfies

π∗(s) = argmax
a∈A(s)

(
r(s, a) + γ

∑
s′∈S

Psa(s′)V ∗(s′)

)
(6)

where V ∗(s) = r(s, π∗(s)) + γ
∑
s′∈S Psπ∗(s)(s

′)V ∗(s′).

Consider the effect on Equation 6 of replacing r(s, a) with r′(s, a) = r(s, a) + c. Each V ∗(s) will increase

by
∑
t cγ

t, where t is the number of steps remaining in the MDP. Because each V ∗(s) increases by the same

amount, π∗(s) remains the same.

References

[1] Boutilier, C. 2002. A POMDP formulation of preference elicitation problems. In Proceedings of the

Eighteenth National Conference on Artificial Intelligence (AAAI-02), 239–246.

[2] Holloway, H. A., and White, III, C. C. 2003. Question selection for multiattribute decision-aiding.

European Journal of Operational Research 148:525–543.

[3] Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An analytic solution to discrete Bayesian

reinforcement learning. In Proceedings of the Twenty-third International Conference on Machine Learning

(ICML-06), 697–704.

6

