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Abstract—The majority of the algorithms in the software clustering literature utilize structural information to decompose large software

systems. Approaches using other attributes, such as file names or ownership information, have also demonstrated merit. At the same

time, existing algorithms commonly deem all attributes of the software artifacts being clustered as equally important, a rather simplistic

assumption. Moreover, no method that can assess the usefulness of a particular attribute for clustering purposes has been presented

in the literature. In this paper, we present an approach that applies information theoretic techniques in the context of software

clustering. Our approach allows for weighting schemes that reflect the importance of various attributes to be applied. We introduce

LIMBO, a scalable hierarchical clustering algorithm based on the minimization of information loss when clustering a software system.

We also present a method that can assess the usefulness of any nonstructural attribute in a software clustering context. We applied

LIMBO to three large software systems in a number of experiments. The results indicate that this approach produces clusterings that

come close to decompositions prepared by system experts. Experimental results were also used to validate our usefulness

assessment method. Finally, we experimented with well-established weighting schemes from information retrieval, web search, and

data clustering. We report results as to which weighting schemes show merit in the decomposition of software systems.

Index Terms—Reverse engineering, reengineering, architecture reconstruction, clustering, information theory.
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1 INTRODUCTION

A common phenomenon in large software projects is
that their size and complexity increases with time,

while the system’s structure deteriorates from continuous
maintenance activities. As a result, the task of under-
standing such large software systems can be quite hard. The
problem is often exacerbated in the case of legacy systems
by the absence of the original developers and the lack of up-
to-date documentation.

An approach that can be of significant help to the process
of understanding, redocumenting, or reverse engineering a
large software system is to create a meaningful decomposi-
tion of its structure into smaller, more manageable sub-
systems. Many researchers have attempted to create such
decompositions automatically, giving rise to the research
area of software clustering.

The majority of the software clustering approaches
presented in the literature attempt to discover clusters by
analyzing the dependencies between software artifacts,
such as functions or source files [22], [18], [21], [29], [28],
[13], [25], [17], [35]. Software engineering principles, such as
information hiding or high-cohesion and low-coupling are
commonly employed to help determine the boundaries
between clusters.

Other approaches have also demonstrated merit. Using
naming information, such as file names or words extracted

from comments in the source code [5], [3], [23], has been
shown to be a good way to cluster a given system. The
ownership architecture of a software system, i.e., the
mapping that shows which developer is responsible for
what part of the system, can also provide valuable hints [9].
Some researchers have also attempted to combine structural
information (based on dependencies) with nonstructural
information (based on naming) in their techniques [4].
Others have proposed ways of bringing clustering into a
more general data management framework [1]. Finally,
concept analysis [20], [30] and pattern matching [8], [27]
have also been successfully used to cluster large software
systems.

Even though the aforementioned approaches have
shown that they can be quite effective, there are still several
issues that can be identified:

1. There is no guarantee that the developers of a legacy
software system have followed software engineering
principles such as high-cohesion and low-coupling.
As a result, the validity of the clusters discovered
following such principles, as well as the overall
contribution of the obtained decomposition to the
reverse engineering process, can be challenged.

2. Software clustering approaches based on high-
cohesion and low-coupling often fail to discover
utility subsystems, i.e., collections of utilities that do
not necessarily depend on each other, but are used in
many parts of the software system (they may or may
not be omnipresent nodes [25]). Such subsystems do
not exhibit high-cohesion and low-coupling, but
they are frequently found in manually created
decompositions of large software systems.

3. It is not clear what types of nonstructural attributes
are appropriate for inclusion in a software clustering
approach. Clustering based on the lines of code of
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each source file is probably inappropriate, but what
about using timestamps? Ownership information
has been manually shown to be valuable [10], but its
effect in an automatic approach has not been
evaluated. The study in [6] was inconclusive as to
the usefulness of comments and identifier names.

4. Software clustering algorithms commonly treat all
attributes of the software artifacts equally. However,
a domain expert clustering the same system would
invariably assign different importance to particular
attributes based on her intuition. As a result, she
might consider certain attributes as more important
than others for the determination of the clusters.

In this paper, we present an approach that addresses
these issues. Our approach is based on minimizing
information loss during the software clustering process.

The objective of software clustering is to reduce the
complexity of a large software system by replacing a set of
artifacts with a cluster, a representative abstraction of all
artifacts grouped within it. Thus, the obtained decomposi-
tion is easier to understand. However, this process also
reduces the amount of information conveyed by the
clustered representation of the software system. Our
approach attempts to create decompositions that convey
as much information as possible by choosing clusters that
represent their contents as accurately as possible. In other
words, one can predict with high probability the features of
a given object just by knowing the cluster that it belongs to.

In terms of the first issue raised above, our algorithm
makes no assumptions about software engineering princi-
ples followed by the developers of the software system. It
also creates decompositions that convey as much informa-
tion about the software system as possible, a property that
should be helpful to the reverse engineer. Furthermore, as
will be shown in Section 2, our approach can discover
utility subsystems as well as ones based on high-cohesion
and low-coupling. Addressing the third issue raised above,
any nonstructural attribute may be included in our
approach. As a result, our approach can be used in order
to evaluate the usefulness of attributes, such as timestamps
or ownership. Finally, our approach can accommodate any
weighting scheme that assigns importance to the various
attributes considered during clustering.

The contributions of this paper can be summarized as:

. The introduction of a novel software clustering
approach based on the minimization of information
loss during the clustering process. We formulate the
software clustering problem within the Information
Bottleneck framework and introduce a scalable
algorithm called LIMBO that clusters large data sets
effectively and efficiently.

. The development of a method that can evaluate the
usefulness of nonstructural attributes for clustering
purposes. The method was validated by evaluating
four different nonstructural attributes whose useful-
ness, or lack thereof, was already established.

. The first study on the applicability of weighting
schemes to the software clustering process. Since
our approach can easily incorporate weighting
schemes, we conducted experiments with several

well-established weighting schemes from informa-
tion retrieval, Web search, and data clustering. We
report results as to which weighting schemes show
merit in the decomposition of software systems.

The structure of the rest of this paper is as follows:
Section 2 presents some background from Information
Theory, as well as the way our approach quantifies
information loss for software systems. Section 3 presents
LIMBO, a scalable hierarchical clustering algorithm that
improves on the Agglomerative Information Bottleneckmethod
[31]. In Section 4, we compare LIMBO to several other
software clustering algorithms that have been presented in
the literature. In Section 5, we present a method that
assesses the usefulness of any nonstructural attribute to the
software clustering process. Section 6 introduces five
different weighting schemes and presents experimental
results of applying them to three large software systems.
Finally, Section 7 concludes the paper and presents
directions for future work.

2 BACKGROUND

This section introduces the main concepts from Information
Theory that will be used throughout the paper. We present
the Agglomerative Information Bottleneck algorithm and show
examples of how it can be used with both structural and
nonstructural attributes. We also motivate the use of
weighting schemes by introducing an example in which
the presence of weights over the different attributes
produces different results with respect to the unweighted
version of the data.

In this paper, we use the term attribute to refer to
different types of information that may characterize a
software artifact, such as its dependencies to other
artifacts, the name of its developer, or its timestamp. The
different values that each attribute takes are called features.
For instance, the set of features of a given software artifact
may be {f1, f2, Alice, Jan-2005}, if it depends on artifacts f1
and f2, is developed by Alice, and was last modified in
January 2005.

2.1 Basics from Information Theory

In the following paragraphs, we give some basic defini-
tions of Information Theory and their intuition. These
definitions can also be found in any information theory
textbook, e.g., [14].

Throughout this section we will assume the dependency
graph of an imaginary software system given in Fig. 1. This
graph contains three program files f1, f2, and f3, and two
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utility files u1 and u2. This software system is clearly too

trivial to require clustering. However, it will serve as an

example of how our approach discovers various types of

subsystems.
Our approach starts by translating the dependencies

shown in Fig. 1 into the matrix M shown in Table 1. The

rows of this matrix represent the artifacts to be clustered

while the columns represent the values of the attributes

that describe these artifacts. Since our example contains

only structural information (nonstructural attributes will

be added in Section 2.4), the features of a software artifact

are other artifacts. To avoid confusion, we will represent

the software artifacts to be clustered with italic letters,

e.g., f1; u1, and the corresponding features with bold

letters, e.g., f 1;u1.
In matrix M, we indicate the presence of features with 1

and their absence with 0. Note that, for a given artifact a,

feature f is present if a depends on f , or f depends on a.

This was a choice made to simplify this example. One may

decide that feature f is present only if a depends on f

without affecting the rest of this discussion.
Let A denote a discrete random variable taking its values

from a set of artifacts AA. In our example, AA is the set

ff1; f2; f3; u1; u2g. If pðaiÞ is the probability mass function of

the values ai that A takes (ai 2 AA), the entropy HðAÞ of

variable A is defined by

HðAÞ ¼ �
X
ai2AA

pðaiÞ log pðaiÞ:

Intuitively, entropy is a measure of disorder; the higher

the entropy, the lower the certainty with which we can

predict the value of A. We usually consider the logarithm

with base two. Thus, entropy becomes the minimum

number of bits required to describe variable A [14].
Now, let B be a second random variable taking values

from the set BB of all the features in the software system. In

our example, BB is the set ff1; f2; f 3;u1;u2g. Then, pðbjjaiÞ is
the conditional probability of a value bj of B given a value ai
of A. The conditional entropy HðBjAÞ is defined as

HðBjAÞ ¼
X
ai 2 AA

pðaiÞHðBjA ¼ aiÞ

¼ �
X
ai 2 AA

pðaiÞ
X
bj 2 BB

pðbjjaiÞ log pðbjjaiÞ:

HðBjAÞ gives the uncertainty with which we can predict the

value of B given that a value of A appears.

An important question that arises is: “to what extent can

the value of one variable be predicted from knowledge of

the value of the other variable?” This question has a

quantitative answer through the notion of mutual informa-

tion, IðA;BÞ, which measures the amount of information

that the variables hold about each other. The mutual

information between two variables is the amount of

uncertainty (entropy) in one variable that is removed by

knowledge of the value of the other one. More precisely, we

have

IðA;BÞ ¼ HðAÞ �HðAjBÞ ¼ HðBÞ �HðBjAÞ ¼ IðB;AÞ:

Mutual information is symmetric, nonnegative, and equals

zero if and only if A and B are independent.
Let us consider a particular clustering Ck of the elements

of AA. We introduce a third random variable C taking values

from set CC ¼ fc1; c2; . . . ; ckg, where c1; c2; . . . ; ck are the k

clusters of Ck. The mutual information IðB;CÞ quantifies

the information about the values of B (the features of the

software system) provided by the identity of a cluster (a

given value of C). The higher this quantity is, the more

informative the cluster identity is about the features of its

constituents. Therefore, our goal is to choose Ck in such a

way that it maximizes the value of IðB;CÞ.
The maximum value for IðB;CÞ occurs when jCCj ¼ jAAj,

i.e., each cluster contains only one object. The minimum

value for IðB;CÞ occurs when CCj j ¼ 1, i.e., when all objects

are clustered together. Interesting are the cases in-between,

where we seek a k-clustering Ck, that contains a sufficiently

small number of clusters (compared to the number of

objects), while retaining a high value for IðB;CÞ.
Recasting the problem of software clustering within the

information theory context, we normalize matrix M in

Table 1, so that the entries of each row sum up to one.

Formally, for each artifact ai, we define

pðaiÞ ¼ 1=n; ð1Þ

pðbjjaiÞ ¼
M½ai; bj�P
b2BB M½ai; b�

: ð2Þ

The normalized matrix M for our example is depicted in

Table 2.
Each row of the normalized matrix holds the feature

vector of an artifact, which is equivalent to the conditional

probability pðBjA ¼ aiÞ.
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2.2 Agglomerative Information Bottleneck

Slonim and Tishby [31] proposed a solution to the

optimization problem of finding a clustering of small

cardinality and large information content. Their approach

is called the Agglomerative Information Bottleneck (AIB)

algorithm. It has been successfully used in document

clustering [32] and the classification of galaxy spectra [26].

Similar to all agglomerative (or bottom-up) techniques,

the algorithm starts with the clustering Cn, in which each

object ai 2 AA is a cluster by itself. As stated before,

IðA;BÞ ¼ IðCn;BÞ. At step n� ‘þ 1 of the AIB algo-

rithm, two clusters cx; cy in ‘-clustering C‘ are merged into

a single component c� to produce a new ð‘� 1Þ-clustering
C‘�1. As the algorithm forms clusterings of smaller size,

the information that the clustering contains about the

features in BB decreases; that is, IðB;C‘�1Þ � IðB;C‘Þ. The
clusters cx and cy to be merged are chosen to minimize

the information loss in moving from clustering C‘ to

clustering C‘�1. This information loss is given by

�Iðcx; cyÞ ¼ IðB;C‘Þ � IðB;C‘�1Þ. We can also view the

information loss as the increase in the uncertainty of

predicting the features in the clusters before and after the

merge.
After merging clusters cx and cy, the new component

c� ¼ cx [ cy has [31]

pðc�Þ ¼ pðcxÞ þ pðcyÞ; ð3Þ

pðbjjc�Þ ¼
pðcxÞ
pðc�Þ pðbjjcxÞ þ

pðcyÞ
pðc�Þ pðbjjcyÞ: ð4Þ

Tishby et al. [33] show that

�Iðcx; cyÞ ¼ ½pðcxÞ þ pðcyÞ� �DJS½pðbjjcxÞ; pðbjjcyÞ�; ð5Þ

where DJS is the Jensen-Shannon (JS) divergence, defined as

follows: Let px ¼ pðbjjcxÞ and py ¼ pðbjjcyÞ and let

�pp ¼ pðcxÞ
pðc�Þ px þ

pðcyÞ
pðc�Þ py

denote the weighted average distribution of distributions px
and py. Then, the DJS distance is:

DJS½px; py� ¼
pðcxÞ
pðc�ÞDKL½pxjj�pp� þ

pðcyÞ
pðc�ÞDKL½pyjj�pp�:

DKL is the Relative Entropy, or the Kullback-Leibler (KL)

divergence, a standard information-theoretic measure of the

difference between two probability distributions. Given two
distributions p and q over a set A, the relative entropy is

DKL½pkq� ¼
X
ai 2 AA

pðaiÞ log
pðaiÞ
qðaiÞ

:

Intuitively, the relative entropy DKL½pkq� is a measure of the
redundancy in an encoding that assumes the distribution q,
when the true distribution is p.

Then, DJS distance is the average DKL distance of px and
py from �pp. It is nonnegative and equals zero if and only if
px ¼ py. It is also bounded above by one, and it is
symmetric. Note that the information loss for merging
clusters cx and cy, �Iðcx; cyÞ, depends only on the clusters cx
and cy and not on other parts of the clusterings C‘ and C‘�1.

Intuitively, at each step, AIB merges two clusters that
will incur the smallest value in �I. The probability of the
newly formed cluster becomes equal to the sum of
probabilities of the two clusters (3) and the conditional
probability of the features given the identity of the new
cluster is a weighted average of the conditional probabilities
in the clusters before the merge (4).

2.3 Structural Example

By applying the equations of the previous section to our
example software system, we can compute all pairwise
values of information loss (�I). These values are given in
Table 3. The value in position ði; jÞ indicates the information
loss we would incur if we chose to group the ith and the jth
artifact together.

Clearly, if utility files u1 and u2 get merged in the same
cluster, cu, we lose no information about the system, since
they have exactly the same structural features. On the other
hand, we lose some information if f1 and f2 get merged in
the same cluster cf , which is the same loss of information if
any pair among the program files forms a cluster. Table 4
depicts the new matrix after forming clusters cf and cu.
Intuitively, cu represents the dependencies of its constitu-
ents exactly as good as u1 and u2 before the merge, while cf
is almost as good. We compute the probabilities of the two
new clusters using (3) from Section 2.2 as pðcfÞ ¼ 2=5 and
pðcuÞ ¼ 2=5, while the new distributions pðBjcfÞ and pðBjcuÞ
are calculated using (4) of the same section. The obtained
values are shown in Table 4.

The new matrix of pairwise distances is given in Table 5,
which suggests that cf will next be merged with f3 as their
�I value is the minimum. This indicates that our approach
is able to discover both utility subsystems (such as cu) as
well as cohesive ones (such as the cluster containing f1, f2,
and f3).
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It is important to note that our approach commonly

discovers several utility subsystems in large software

systems, since it is unlikely that all utilities serve all

program files as in this example. In a large software

system, there are probably sets of utilities that serve

particular subsystems. Our approach is able to cluster

together such sets of utilities, since their elements have

similar feature sets.

2.4 Nonstructural Example

One of the strengths of our approach is its ability to

consider various types of information about the software

system. Our example so far contained only structural

attributes. We will now expand it to include nonstructural

attributes as well, such as the name of the developer or the

location of an artifact.
All we need to do is extend the universe BB to include the

values of nonstructural attributes. This way our algorithm is

able to cluster the software system in the presence of meta-

information about software artifacts.
The files of Fig. 1 together with their developer and

location are given in Table 6.
The normalized matrix when BB is extended to

ff1; f2; f 3;u1;u2;Alice;Bob;p1;p2;p3g is given in Table 7.
After that, IðA;BÞ is defined and clustering can be

performed as in the case of structural data, without

necessarily giving the same results. More on this issue will

be presented in the experimental evaluation section of this

paper.

2.5 Incorporating Weighting Schemes

In the example of the previous section, we normalized each

row of matrix M in order to make it a probability

distribution. This way, we consider the appearance of a

feature in a vector as probable as any of the other ones in

the same vector. If we represent importance with numerical

weights, the aforementioned conceptualization of our soft-
ware system assigns equal importance to all attributes.

However, in a real-life reverse engineering project, there
may be valid reasons to assign different importance to
different attributes. For example, the importance of owner-
ship information (what file was developed by which
developer) might be quite different for a system developed
using agile methodologies as opposed to more traditional
approaches, such as the waterfall model.

One of our goals in this paper is to study how particular
weighting schemes over the attributes of the artifacts being
clustered influence the resulting clusters. Our approach
allows for any weighting scheme over the attributes to be
applied. We describe how this is done through an example.

Consider the feature vectors in Table 7. By applying (5),
we can compute all pairwise values of information loss (�I).
These values are given in Table 8. The value in position ði; jÞ
indicates the information loss we would incur if we chose to
group the ith and the jth artifact together.

From the information losses of Table 8, we conclude that
the algorithm is going to merge pair ðu1; u2Þ, which has the
lowest value of 0:08. Eventually, the same clusters as in the
structural case will be formed.

Let us now assume that a particular weighting scheme
has assigned weights to the attributes in this example
(larger weights correspond to more important attributes).
If this weighting scheme considers the developer of each
file as its most important attribute, the vector of weights
w may be

w ¼ ð0:05; 0:05; 0:05; 0:05; 0:05; 0:30; 0:30; 0:05; 0:05; 0:05Þ:

In other words, the two developer features (Alice and Bob)
are considered six times more important for our clustering
purposes than the rest of the features.
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TABLE 6
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Normalized Matrix of System Dependencies with Structural and Nonstructural Features



In order to have the importance implied by this

weighting scheme reflected in matrix M, we replace each

appearance of a feature in an artifact with its weight and

normalize the rows of matrix M so that they sum up to one.

Using the example vector w given above the new matrix M

is given in Table 9.
The new pairwise distances are given in Table 10.
In the presence of importance for the attributes, the

closest artifacts are now f2 and f3 since, in addition to

having similar structural features, they were also both

developed by Bob. As a result, the first clustering step will

merge f2 and f3 into a cluster cf23 .
More importantly, as evidenced by the second highest

values in Table 10 (presented in italics), the subsequent

steps will merge f1 and u1, as well as cf23 and u2. Thus, the

two clusters that will eventually be formed will be ff1; u1g
and ff2; f3; u2g. This indicates clearly that assigning im-

portance to particular attributes can significantly impact the

clustering process.
After this illustrative example, we are now ready to

formally define the data representation in the presence of

weights for the attributes. For each vector ai we define:

pðaiÞ ¼ 1=n; ð6Þ

pðbjjaiÞ ¼
wðbjÞ �M½ai; bj�P
b 2 BB wðbÞ �M½ai; b�

: ð7Þ

It is clear that (2), presented earlier, is just a special case
of (7), where all features have equal weight.

Finally, it is interesting to note that our approach
provides maximum flexibility to the weighting schemes,
since it allows for different weights to be assigned to
particular values of a given attribute. For instance, one
might decide that the fact that Alice developed a particular
artifact is the most important factor for our clustering
purposes. In this case, the weight vector might be

w ¼ ð0:05; 0:05; 0:05; 0:05; 0:05; 0:55; 0:05; 0:05; 0:05; 0:05Þ:

3 CLUSTERING USING LIMBO

Given a large number of artifacts n, the Agglomerative
Information Bottleneck algorithm suffers from high compu-
tational complexity, Namely, Oðn2 lognÞ, which is prohibi-
tive for large data sets. In this section, we introduce the
scaLable InforMation BOttleneck (LIMBO) algorithm that
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Data Representation with Weights
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improves on the AIB algorithm and is capable of handling
larger inputs.1

Our aim is to use the AIB algorithm but on a smaller set
of artifacts. In order to reduce the number of artifacts, we
perform an initial phase, where artifacts are summarized in
a newly created set SS of summaries that we call Summary

Artifacts, (SA). A summary artifact is denoted by SAðSÞ,
where S is the set of artifacts it summarizes. Its probability
distribution is derived from the probability distribution of
the elements of S as described in the following section. The
only difference between a summary artifact and an
“original” artifact is that the summary artifacts did not
exist prior to the application of our approach.

Intuitively, we are trying to merge the original artifacts
into summaries that have the same characteristics as the
original artifacts, i.e., they store the distributions of features
and can be used in the expressions of the AIB method.

3.1 The LIMBO Clustering Algorithm

We now present the LIMBO algorithm. In what follows, n is
the number of original artifacts, and q is the number of
features all artifacts are expressed over.

The LIMBO algorithm proceeds in four phases. In the
first phase, we summarize the original artifacts into a set SS
of SAs. In the second phase, the Agglomerative Information

Bottleneck algorithm is employed on SS in order to produce a
series of clusterings of SAs with decreasing cardinality. The
third phase transforms these clusterings into decomposi-
tions of the original artifact set. Finally, phase 4 selects one
of these decompositions as the final result.

Phase 1: Creation of the Summary Artifacts. In this
phase, original artifacts are read one by one. The first
artifact a1 is converted into the summary artifact SAðfa1gÞ,
whose probability vector is equal to that of a1. For each
subsequent artifact ai, we compute its distance to each
existing SA.

The distance between an original artifact ai and a
summary artifact SAðSjÞ is the information loss that we
would incur if we added ai into Sj. By applying (5) from
Section 2.2, we can compute this information loss as

�I ai; SAðSjÞ
� �

¼ 1

jSjj þ 1
þ jSjj
jSjj þ 1

� �
DJS½pðBjaiÞ; pðBjSAðSjÞÞ�:

Next, we identify the summary artifact SAðSminÞ with
the smallest distance to ai. If this distance is smaller than
a predefined threshold (described in Section 3.2), then
SAðSminÞ is replaced by a new summary artifact
SAðSmin [ faigÞ. The probability distribution for the new
summary artifact is given by:

pðBjSAðSmin [ faigÞÞ

¼ 1

jSminj þ 1
pðBjaiÞ þ

jSminj
jSminj þ 1

pðBjSAðSminÞÞ:

If the distance �I
�
ai; SAðSminÞ

�
is larger than the

predefined threshold, ai is converted into a new summary

artifact SAðfaigÞ, whose probability vector is equal to that
of ai.

In order to reduce the amount of time it takes to find
SAðSminÞ, we organize the SAs into a B-tree-like data
structure with a branching factor of E (default value is 4).
This results in the computational complexity of this phase
being OðqEn logE nÞ [2]. The I/O cost is OðnÞ since only one
scan of the data is required.

Phase 2: Application of the AIB algorithm. Phase 1
replaces the set of original artifacts with a much smaller
set of SAs. In the second phase, our algorithm employs
the AIB algorithm to cluster the set of SAs. The input to
the AIB algorithm is the set of conditional probability
distributions of all SAs created in the first phase. This
phase creates many clusterings of the summary artifacts,
one for every value between 2 and jSSj. Note that the AIB
algorithm is applied only once, with intermediate cluster-
ings recorded at each step.

The time for this phase depends upon the number of
SAs, which can be much smaller than n (depending on the
threshold used in Phase 1). The computational complexity
of this phase is OðjSSj2logjSSjÞ. There is no I/O cost involved in
this phase since all computations are done in main memory.

Phase 3: Associating original artifacts with clusters.

Phase 2 produces jSSj � 1 clusterings, each one containing a
number of probability distributions representing its clus-
ters. In the third phase, we perform a scan over the set of
original artifacts and assign each one of them to the cluster
to which it is closest, with respect to the DKL distance, in all
clusterings.

The I/O cost of this phase is the reading of the data set
and the clusterings from the disk. The CPU complexity is
OðjSSj2qnÞ, since each artifact is compared against all clusters
in all clusterings, a total of jSSjðjSSjþ1Þ

2 � 1 clusters.
Phase 4: Determining the number of clusters. In order

to choose an appropriate number of clusters k, we examine
the decompositions created in Phase 3 for ascending values
of k starting at 2. Let Ck be a clustering of k clusters and
Ckþ1 a clustering of kþ 1 clusters. If the clusters in Ck reflect
inherent groupings in the data, then Ckþ1 must contain the
same clusters, except that one of them has been split into
two (since the number of clusters must increase). Using
MoJo [36], we can detect this situation by computing the
distance between Ckþ1 and Ck, i.e., the value of
MoJoðCkþ1; CkÞ. If this value is equal to one, the difference
between the two clusterings must be a single Join operation
between two clusters of Ckþ1 to produce the k clusters of Ck.
As a result, k is chosen as the smallest value, for which
MoJoðCkþ1; CkÞ ¼ 1. Section 4 presents experimental data
that indicate that this is indeed an effective method to
choose the number of clusters.

3.2 Threshold Value

LIMBO uses a threshold value �ð�Þ, which is a function of a
user-specified parameter �, to control the decision to merge
an artifact into an existing SA or place it in an SA by itself.
This threshold controls the amount of information loss in
our summary of the original data set. It also affects the
number of SAs created, which, in turn, determines the
computational cost of the AIB algorithm in Phase 2. A good
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choice for � is necessary to produce a concise and useful
summarization of the data set.

In LIMBO, we adopt a heuristic based on the mutual
information between variables A and B in order to set the
value of �ð�Þ. Before running LIMBO, the value of IðA;BÞ is
calculated by doing a full scan of the data set. Since there
are n vectors in A, “on average” every vector contributes
IðA;BÞ=n to the mutual information IðA;BÞ. We define the
threshold �ð�Þ as follows:

�ð�Þ ¼ �
IðA;BÞ

n
; ð8Þ

where 0 � � � n denotes the multiple of the “average”
mutual information that we wish to preserve when
merging an artifact into an existing SA. If the merge would
incur information loss more than � times the “average”
mutual information, then the new artifact is placed in an
SA by itself.

In the next section, we present experiments that compare
LIMBO to existing software clustering algorithms.

4 COMPARISON OF LIMBO TO OTHER CLUSTERING

ALGORITHMS

In order to evaluate the applicability of LIMBO to the
software clustering problem, we applied it to three large
software systems of known authoritative decomposition
and compared its output to that of other well-established
software clustering algorithms.

The software systems we used for our experiments came
in a variety of sizes and development philosophies:

1. TOBEY. This is a proprietary industrial system that
is under continuous development. It serves as the
optimizing backend for a number of IBM compiler
products. The version we worked with was com-
prised of 939 source files and approximately 250,000
lines of code. The authoritative decomposition of
TOBEY was obtained over a series of interviews with
its developers.

2. Linux. We experimented with version 2.0.27a of the
kernel of this free operating system that is probably
the most famous open-source system. This version
had 955 source files and approximately 750,000 lines
of code. The authoritative decomposition of this
version of the Linux kernel was presented in [11].

3. Mozilla. The third software system we used for our
experiments was Mozilla, an open-source Web
browser. We experimented with version 1.3 that
was released in March 2003. It contains approxi-
mately four million lines of C and C++ source code.

We built Mozilla under Linux and extracted its
static dependency graph using CPPX and a dynamic
dependency graph using jprof. A decomposition of
the Mozilla source files for version M9 was
presented in [16]. For the evaluation portion of our
work, we used an updated decomposition for
version 1.3 [37].

The software clustering approaches to which we com-
pared LIMBO were the following:

1. ACDC. This is a pattern-based software clustering
algorithm that attempts to recover subsystems
commonly found in manually created decomposi-
tions of large software systems [35].

2. Bunch. This is a suite of algorithms that attempt to
find a decomposition that optimizes a quality
measure based on high-cohesion and low-coupling.
We experimented with two versions of a hill-
climbing algorithm, which we will refer to as NAHC
and SAHC (for nearest and steepest-ascend hill-
climbing) [22]. Bunch allows combinations of these
two algorithms as well. However, we did not see
improved results when a combination was used, so
we will only report results for the pure versions of
the two algorithms.

We experimented with version 3.3.6 of Bunch.
This version contains a facility that identifies certain
artifacts as “libraries” and places them in a separate
subsystem. Since this is similar to identifying utility
subsystems, we conducted experiments with this
version as well. We will refer to the two algorithms
as NAHC-lib and SAHC-lib when this feature is
turned on.

3. Cluster Analysis Algorithms. We also compared
LIMBO to several hierarchical agglomerative cluster
analysis algorithms. We used the Jaccard coefficient
that has been shown to work best in a software
clustering context [4]. We experimented with four
different algorithms: single linkage (SL), complete
linkage (CL), weighted average linkage (WA), and
unweighted average linkage (UA).

In order to compare the output of the algorithms to the
authoritative decomposition, we used the MoJo distance
measure2 [34], [36]. MoJo measures the distance between
two decompositions of the same software system by
computing the number of Move and Join operations one
needs to perform in order to transform one to the other.
Intuitively, the smaller the distance of a proposed decom-
position to the authoritative one, the more effective the
algorithm that produced it.

It is important to note that the MoJo distance measure
does not include a Split operation. If the process of
transforming an automatically created decomposition A to
the authoritative decomposition B requires the splitting of a
cluster, this has to be simulated by a series of Move
operations. This penalizes the algorithm that created A for
producing a decomposition whose clusters are too coarse.
On the other hand, decompositions containing too fine-
grained clusters are penalized by having to perform a large
number of Join operations. Finally, decompositions at the
right level of granularity, but incorrect placement of objects
into clusters are penalized by having to perform a large
number of Move operations.

For the experiments presented in this section, all
algorithms were provided with the same input, the
dependencies between the software artifacts to be clustered.
In this case, the software artifacts were source files, while
the dependencies were procedure calls and variable
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references. The value of � chosen for TOBEY and Linux was
0:0, while the value for Mozilla, a larger data set, was 0:2.
Since Bunch is using randomization, its algorithms were
run five times with each input. We report the average
values rounded to the closest integer. The traditional cluster
analysis algorithms were run with a variety of cut-point
heights. The smallest MoJo distance obtained is reported
below. This biases the results significantly in favor of the
cluster analysis algorithms since in a different setting the
cut-point height would have to be estimated without
knowledge of the authoritative decomposition. However,
as will be shown shortly, LIMBO outperforms the cluster
analysis algorithms despite this bias in all cases but one.

Table 11 presents the results of our experiments. With
the exception of UA and Mozilla, LIMBO created a
decomposition that is closer to the authoritative one for all
example systems, although the nearest-ascend hill-climbing
algorithm of Bunch comes very close in the case of Linux, as
is ACDC in the case of TOBEY, and ACDC, SAHC, and WA
in the case of Mozilla. The difference in MoJo distance in
these cases is too small to be used for the purpose of
ranking these algorithms. However, the results in Table 11
clearly indicate that LIMBO performs at least as well as
other existing algorithms.

We believe that the fact that LIMBO performed so well
can be attributed mostly to its ability to discover utility
subsystems. An inspection of the authoritative decomposi-
tions for all systems revealed that they contain such
collections of utilities. Since, in our experience, that is a
common occurrence, we are optimistic that similar results
can be obtained for other software systems as well.

The results of these experiments indicate that the idea of
using information loss minimization as a basis for software
clustering has definite merit. Even though further experi-
mentation is required in order to assess the usefulness of
LIMBO to the reverse engineering process, it is clear that it
can create decompositions that are close to the ones
prepared by humans.

It is interesting to note that turning the library facility on
for Bunch produced worse results in four out of six cases. In
fact, NAHC was always negatively affected by it. Even
when the use of the library facility produced improved
results, the obtained decompositions were not as close to
the authoritative one as those of other algorithms. This
behavior can probably be attributed to the fact that all
libraries are placed in the same subsystem even though they
might be serving different parts of the system.

Another interesting observation is the fact that the
cardinality of the decompositions produced by the various
algorithms varies considerably. LIMBO produced decom-
positions of much larger cardinality that the authoritative
one for Linux and Mozilla. Despite this fact, it still had one
of the smallest MoJo distances, which implies that the
clusters were well-formed (fewer Move operations were
required).

In the case of TOBEY, LIMBO appears to be at the right
level of granularity. However, the Bunch algorithms
appeared to produce course decompositions. In order to
give them a fair comparison, we modified their options so
that they produce decompositions at the “detailed level”
(the default behavior is to produce decompositions at the
“median level”). However, this invariably resulted in
decompositions of cardinality 300 or more. The MoJo
distances of these decompositions were quite larger than
the ones reported in Table 11.

We also tested LIMBO’s efficiency with all systems.
LIMBO was able to cluster TOBEY and Linux in approxi-
mately 31 seconds, while Mozilla required only 18 seconds.
The similarity in the efficiency of LIMBO for the TOBEY
and Linux systems does not come as a surprise, since the
number of source files to be clustered was similar (939 in
TOBEY and 955 in Linux) and � was set to 0:0 in both cases.
On the other hand, the improvement in the execution time
for Mozilla can be attributed to the higher � value (0:2).

Finally, we were interested to see how effective was our
method of selecting the number of clusters k in Phase 4 of
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LIMBO. For this reason, we computed the MoJo distance to
the authoritative decomposition for all clusterings pro-
duced in Phase 3. The obtained results are shown in Fig. 2.
As can be seen in these diagrams, the selected decomposi-
tion is always quite close to the optimum one. In fact, the
error rate was always less than 6 percent (in the case of
Mozilla it was only 0.23 percent). This makes us confident
that, in a setting where the authoritative decomposition is
unknown, LIMBO will select a meaningful decomposition.

5 A USEFULNESS ASSESSMENT METHOD

Several software clustering approaches have attempted to
utilize nonstructural information as a clustering criterion
[5], [6]. However, no method that can evaluate the
usefulness of any nonstructural attribute has been pre-
sented in the literature. In this section, we utilize LIMBO’s
ability to combine structural and nonstructural attributes
seamlessly in order to develop a method that assesses the
usefulness of nonstructural attributes to the reverse
engineering process.

Let us assume that, for a given software system, we have
a number of nonstructural attributes that we would like to
evaluate. Our method creates inputs for LIMBO that contain
all possible combinations of these attributes, together with
the structural information. By running LIMBO on all these
inputs and comparing the outputs to the authoritative
decomposition, we can establish whether the inclusion of a
particular nonstructural attribute to any combination
produces improved decompositions or not. Consistent
results across different software systems should be a good
indication of the usefulness, or lack thereof, of the attribute
in question.

In the following, we provide evidence for the validity of
this method, by applying it to four attributes of established
usefulness. The types of nonstructural attributes we con-
sidered are:

. Developers (dev): This attribute gives the ownership
information, i.e., the names of the developers
involved in the implementation of the file. In case
no developer was known, we used a unique dummy
value for each file.

. Directory Path (dir): In this attribute, we include the
full directory path for each file. In order to increase

the similarity of files residing in similar directory
paths, we include the set of all subpaths for each
path. For example, the set of features for this
attribute for file drivers/char/ftape/io.c is
the set {drivers, drivers/char, drivers/

char/ftape} of directory paths.
. Lines of Code (loc): This attribute includes the number

of lines of code for each of the files. We discretized
the values using two different schemes:

1. The first scheme divides the full range of loc
values into the intervals ð0; 100�, ð100; 200�,
ð200; 300�, etc. Each file is given a feature such
as RANGE1, RANGE2, RANGE3, etc.

2. The second scheme divides the full range of loc
values into a number of intervals so that each
interval contains the same number of values.
Files are given features in a similar manner to
the previous scheme.

In our experiments, both schemes gave similar

results. For this reason, we will only present results

for the first scheme.
. Time of Last Update (time): This attribute is derived

from the time-stamp of each file on the disk. We
include only the month and year.

These attributes were chosen because we had clear

expectations about their usefulness. Directory structure is a

very common way to organize a software system, so we

expected dir to produce meaningful clusterings. Decom-

position based on ownership (dev) has also been shown to

have merit [10]. On the other hand, our hypothesis was that

loc and time would produce decompositions further away

from the authoritative one. Experimental confirmation of

these hypotheses would indicate the validity of the

usefulness assessment method presented in this section.
Our experiments were performed on Linux and Mozilla.

We considered all possible combinations of the aforemen-

tioned nonstructural attributes added to the structural

information. These combinations are depicted in the lattice

of Fig. 3. At the bottom of this lattice, we have the structural

dependencies and, as we follow a path upwards, different

nonstructural attributes are added. Thus, in the first level of

the lattice, we only add individual nonstructural attributes.

Each addition is represented by a different type of arrow at
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each level of the lattice. For example, the addition of dir is
given by a solid arrow. There are 15 possible combinations
of nonstructural attributes that can be added to the
structural information.

Each combination of nonstructural attributes in Fig. 3 is
annotated with the MoJo distance between the decomposi-
tion created by LIMBO and the authoritative decomposition
for Linux (L) and Mozilla (M). For example, for the
combination dev+dir+loc+time at the top of the lattice,
L:184 M:179 means that the MoJo distance between the
automatic decomposition and the authoritative one was 184
for Linux and 179 for Mozilla. The results are also given, in
ascending order of MoJo distance, in Table 12. The table
also includes the number of clusters that the proposed
decomposition had in each case.

In order to avoid basing our results solely on the use of
the MoJo distance measure, we measured the similarity of
the proposed decompositions to the authoritative one using
two other measures, namely, the Koschke-Eisenbarth (KE)
measure [19] and EdgeSim [24]. Both of these are normal-
ized to a percentage scale. The higher their value, the closer
the two decompositions are. The values we obtained are
also presented in Table 12.

Let us start our discussion by comparing the various
evaluation measures. Although there are clearly differences
of opinion between them, one can see that, in the case of
Mozilla, all measures clearly agree that the four less
effective combinations are structural, time, loc, and loc+time.
Furthermore, as the MoJo value decreases, the values of the
other two measures tend to increase. Things are not as clear
in the case of Linux, but a similar trend can still be detected.

This observation implies that all measures would agree

on the qualitative side of our results presented below, i.e.,

that our hypotheses on the usefulness of various nonstruc-

tural attributes have been confirmed. As a result, the rest of

this discussion focuses primarily on the MoJo distance

values.
As already hinted at above, an immediate observation is

that certain combinations of nonstructural attributes pro-

duce clusterings with a smaller MoJo distance to the

authoritative decomposition than the clustering produced

when using structural input. However, in other cases, the

MoJo distance to the authoritative decomposition has

increased.
A closer look reveals some interesting trends:

. Following a solid arrow in the lattice always leads to
a smaller MoJo value. This indicates that the
inclusion of directory structure information pro-
duces better decompositions, an intuitive result.

. Following a dashed arrow leads to a smaller MoJo
value as well, although the difference is not as
dramatic as before. Still, this indicates that owner-
ship information has a positive effect on the obtained
clustering, a result that confirms the findings of Holt
and Bowman [10].

. Following a dotted arrow decreases the quality of
the obtained decomposition (in a few cases, at the
top of the lattice, the quality remains practically
unchanged). This confirms our expectation that
using the lines of code as a basis for software
clustering is not a good idea.
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. Finally, following the arrows that indicate addition
of time leads mostly to worse clusterings, but only
marginally. This indicates that time could have merit
as a clustering factor, but maybe in a different
setting. It is quite possible that, if we obtain
information about which files are being developed
around the same time by examining the revision
control logs of a system, we will get better results.

In summary, the experimental results confirm our

hypothesis that directory structure and ownership informa-

tion are important factors for the software clustering

process, while lines of code are not. Temporal information

might require more careful setup before it can be effective.

These results present a strong indication that the method

presented in this section can be used to assess the

usefulness of other nonstructural attributes as well. Further

research is, of course, required in order to determine

whether these results hold true for a variety of software

systems or are particular to open-source systems, such as

Linux and Mozilla.

6 EVALUATION OF WEIGHTING SCHEMES

One of the important properties of our approach is the fact

that different weights can be applied to individual

attributes (or their features) according to their importance

for the clustering process. In this section, we present

experimental results using established weighting schemes

that assign importance based on the structure of the data set

being clustered. In a software clustering scenario, software

architects may assign weights based on their expert

knowledge of the software system in question.

The weighting schemes we considered are described
below. The weights derived by each weighting scheme can
be applied directly to (7).

1. Mutual Information (MI). Given a set of features BB,
the correlation of two features bi and bj can be
computed using the mutual information Iðbi; bjÞ. The
higher the mutual information is, the stronger this
correlation. We suggest computing the weight wðbjÞ
for each feature bj as the average mutual information
between bj and each other feature bi, 1 � i � jBBj,
i 6¼ j, computed by

wðbjÞ ¼
1

jBBj � 1

XjBBj
i¼1;i 6¼j

Iðbi; bjÞ:

Intuitively, this scheme considers the features with
high correlation to all other features as more
important.

2. Linear Dynamical Systems (LDS). Dynamical Sys-
tems have been previously used in the clustering of
attribute values in a database table [15]. Given a set
of features, we assign an initial set of weights to
them, called the initial configuration w0 (commonly,
the initial weights are equal). Then, the dynamical
system applies a function f : RRn ! RRn to create a
new vector w1. This process repeats until we reach a
point where fðwiÞ ¼ wi. This is called the fixed point
of the dynamical system.

A common example for function f is the summa-
tion operator (in this case, the dynamical system is
called “linear”). This operator computes the new
weight for a particular feature by summing the old
weights of the features with which it cooccurs in the
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artifacts. It has been shown that linear dynamical
systems always converge [15].

In our case, we used a linear dynamical system
with all features having equal weight in the initial
configuration. The weight distribution used in the
experiments is the weight vector at the fixed point of
the dynamical system.

3. TF.IDF. This is a scheme widely used in information
retrieval to assign weights to document terms [7]. In
our case, the documents are the vectors representing
the artifacts, and the terms are their features.

Given an artifact ai 2 AA, the weight of feature bj 2
BB is given by

wðbjÞ ¼ tfðbjÞ � log idfðbjÞ
� �

;

where tfðbjÞ (term frequency) is the frequency of
feature bj in the vector of ai and idfðbjÞ (inverse
document frequency) is the fraction n=nbj , where n is
the number of artifacts, and nbj is the number of
vectors containing the feature bj.

Intuitively, the TF.IDF weight of a feature is high
if this feature appears many times within a vector
and, at the same time, a smaller number of times in
the collection of the vectors. The latter means that
this feature conveys high discriminatory power. For
example, in a data set of software artifacts, file
stdio.h, which is used by a large number of
software files, will have a lower weight compared to
file my_vector.h, which is connected to a smaller
fraction of files.

4. PageRank. This is a weighting scheme proposed and
widely used in search engines [12] to compute a
webpage’s importance (or relevance). PageRank can
be used when the relationships among different
artifacts are given by a graph. The main idea behind
PageRank is that a feature is deemed important if it
has a large number of incoming edges from other
important features.

Early experiments with PageRank indicated that
this weighting scheme was not beneficial to the
clustering process. For this reason, we also experi-
mented with Inverse PageRank, a weighting scheme
that reverses the order in which PageRank assigns
weights to the different features.

5. Dynamic Usage. Edges in a dependency graph
indicate only potential relationships between the

objects they connect. For example, a procedure call
may or may not be executed when the system is run.
Furthermore, it is quite common that particular
edges are heavily used, while others are used only
rarely.

These observations indicate that the static picture
of a dependency graph might belie what actually
happens when the system it represents is in use. It is
intuitive to conjecture that the amount of usage of a
particular object is related to its importance.

For this reason, the fifth weighting scheme we
chose is based on dynamic usage. Assuming that
each edge in the dependency graph of a software
system is associated with a weight that represents its
usage, each feature in the corresponding artifacts
was assigned a weight equal to the weight of the
edge that connects the node represented by the
feature to the node represented by the artifact. The
weights of the features in the same artifact were, of
course, normalized prior to the execution of LIMBO.

Mozilla was the only software system that was used to
evaluate the usage data weighting scheme. The main reason
for this was the fact that, in order to extract meaningful
dynamic usage data from a software system, one needs a
comprehensive test suite that ensures good coverage of as
many execution paths as possible. Such a test suite was not
available for TOBEY or Linux. However, we were able to
use the Mozilla “smoketests” for this purpose. The dynamic
dependency graph we obtained contained information
about 1,202 of the 2,432 source files that are compiled
under Linux. The results presented in this section are based
on the decomposition of these 1,202 files.

It is important to note that, since some of the weighting
schemes we experimented with assume a graph-based
data set, only structural features were included in our
experiments.

Figs. 4, 5, and 6 present the weight distribution for the
three software systems and the applicable weighting
schemes. In all the figures, the y-axis is in logarithmic scale.
Weights were sorted in ascending order to facilitate
visualization. Since the various weighting schemes order
features differently, a particular feature will have a different
x-coordinate for each plot. For the same reason, the graph
for Inverse PageRank would be exactly the same as that for
PageRank.
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In Fig. 4, we present the weight distribution of all four
schemes applied to TOBEY. We observe that MI and
PageRank produce weights in the same range. Although
TF.IDF also produces weight values in the same range asMI
and PageRank for the majority of the features, there is a
number of them (30 or so) which were assigned smaller
weight values. These are shown as points in the graph of the
TF.IDF scheme, which correspond to the features closer to
the origin of the x-axis. In the case of LDS, the weights
produced are rather smaller and with a larger range. Larger
weights correspond to nodes with large in and out-degrees.

The weight distribution in the Linux data set for all
schemes follows the same pattern as in the TOBEY data set.
To illustrate the differences among the weights of MI,
TF.IDF, and PageRank schemes, we chose not to draw the
distribution of LDS in Fig. 5. This figure shows that MI
elicits the most conservative weights (all within one order of
magnitude). On the other hand, PageRank gives a high
weight to a number of nodes. These are nodes with a large
number of incoming edges from other important nodes in
the dependency graph of Linux. Finally, similar to the case
of TOBEY, there are several features to which TF.IDF
assigns smaller weight values.

Finally, Fig. 6 depicts the weight distribution produced
by the dynamic usage weighting scheme. The main
observation here is that there is a wide range of weights
(the smallest weights are five orders of magnitude smaller
than the largest ones). The distributions of the other four
schemes for Mozilla are similar to the previous two data
sets described above. TF.IDF assigns a smaller weight to

approximately 3 percent of the features, as was the case
with TOBEY and Linux.

The clustering results we obtained are shown in Table 13
(weighting schemes performing best are shown in bold).

An immediate observation is that the TF.IDF weighting
scheme outperforms all others, including the scheme that
uses no weights. This can be attributed to the fact that the
way TF.IDF assigns weights corresponds well to the way
software architects would assign importance to artifacts of
their system. Artifacts used by the majority of the system
are probably library functions that are not very important
(low idf), while artifacts rarely used are unlikely to be
central to the system’s structure (low tf). Indeed, the low
TF.IDF values assigned to a small percentage of the features
(3 percent or so) as described before correspond to
omnipresent nodes in the dependency graphs of the
example software systems. The presence of these features
in a large number of artifacts can result in unrelated
artifacts being clustered together. The reduction of their
importance through the low TF.IDF weight can only
increase the quality of the obtained clustering.

A further observation is that the LDS weighting scheme
performs quite poorly. Its weight distribution forecasted a
deviant behavior, but the most likely explanation is the fact
that it assigns large importance to nodes of large in and out-
degree. This property is shared by the PageRank weighting
scheme. Our results corroborate that this is not a desirable
property for software data.

On the other hand, it was intriguing to observe that the
Inverse PageRank weighting scheme produced results that
were among the best. In fact, the difference between its
results and those of TF.IDF is practically negligible. This
indicates that importance for Web search engines does not
imply importance for software clustering algorithms. In
fact, quite the opposite seems to be the case.

Another interesting observation is that the dynamic
usage weighting scheme performs rather well with the
Mozilla data set. Even though it is outperformed by some
weighting schemes, it still produces a decomposition of
equal quality to the static dependency graph (represented
by the None weighting scheme). Further experiments with a
more complete test suite are required to evaluate this
weighting scheme better.

It is interesting to note that the MI weighting scheme
performs fairly well. With the exception of TOBEY, it is only
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slightly edged by TF.IDF and Inverse PageRank. It would be
interesting to investigate whether MI is particularly appro-
priate for open-source systems, or that these results are only
coincidental.

Finally, it should be noted that, in the interest of
completeness, we performed experiments with the inverse
version of all weighting schemes. The performance of LDS
improved slightly, but not significantly, while the perfor-
mance of the rest dropped. This indicates that the MI,
TF.IDF, and dynamic usage weighting schemes in their
pure form encapsulate well the properties of software
decompositions.

The results presented in this section indicate clearly that
a well-chosen weighting scheme can have a significant
impact on the effectiveness of a software clustering
approach. Further experimentation with more weighting
schemes and software systems is, of course, required to
establish the properties of weighting schemes that work
well in the context of software clustering.

7 CONCLUSIONS

This paper presented the novel notion that information loss
minimization is a valid basis for a software clustering
approach. We developed an algorithm called LIMBO that
follows this approach and showed that it performs as well,
if not better, than existing algorithms.

Our approach has the added benefit that it can
incorporate in the software clustering process any type of
information relevant to the software system. This allowed
us to develop a method for the assessment of the usefulness
of nonstructural attributes. We validated this method by
assessing the usefulness of four different nonstructural
attributes of established usefulness.

We also presented a study on the applicability of
weighting schemes to the clustering process. The results
indicated that the TF.IDF, MI, and Inverse PageRank schemes
can be quite effective.

Certain avenues for further research present themselves.
Further experimentation with more software systems is one
of our plans. The decompositions created by LIMBO will
also have to be evaluated in an empirical study, where
developers of the clustered systems provide feedback on
them. We are definitely excited to investigate other
attributes that are potentially useful to the software
clustering process. Such attributes include date of creation,
revision control logs, as well as concepts extracted from the
source code using various concept analysis techniques. We
would also like to collect dynamic usage data from more
software systems in order to assess the usefulness of the
dynamic usage weighting scheme better. We are, of course,
excited to investigate other types of weighting schemes that
are potentially useful to the clustering process.

Information theory concepts were also used by Anquetil
and Lethbridge [6] to measure the mutual information and
assess the redundancy between various features. We are
interested to investigate how this work relates to ours,
especially with respect to the MI weighting scheme.

Our weighting approach assigns weights that reflect the
importance of each feature with respect to the rest of the
features. One could argue that a feature with a high weight

is unlikely to be uniformly that much more important when

compared to all the other features in the system. We intend

to investigate more localized weighting schemes in the

future.
Finally, we plan to investigate the possible benefits from

combining various nonstructural attributes with our

weighting schemes. It is quite possible that choosing the

appropriate nonstructural information together with an

effective weighting scheme might be the best way to obtain

a meaningful automatic decomposition for a given software

system.
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