
Composite Key Generation on a

Shared-Nothing Architecture

Marie Ho↵mann1, Alexander Alexandrov1, Periklis Andritsos2, Juan Soto1,
and Volker Markl1

1 Technische Universität Berlin, DIMA, Einsteinufer 17, 10587 Berlin, Germany
2 Université de Lausanne, Institut des Systèmes d’Information, Bâtiment Internef,

1015 Lausanne, Switzerland

Abstract. Generating synthetic data sets is integral to benchmarking,
debugging, and simulating future scenarios. As data sets become larger,
real data characteristics thereby become necessary for the success of
new algorithms. Recently introduced software systems allow for synthetic
data generation that is truly parallel. The systems use fast pseudoran-
dom number generators and can handle complex schemas and uniqueness
constraints on single attributes. Uniqueness is essential for forming keys,
which identify single entries in a database instance. The uniqueness prop-
erty is usually guaranteed by sampling from a uniform distribution and
adjusting the sample size to the output size of the table such that there
are no collisions. However, when it comes to real composite keys, where
only the combination of the key attribute has the uniqueness property, a
di↵erent strategy is required. In this paper, we present a novel approach
on how to generate composite keys within a parallel data generation
framework. We compute a joint probability distribution that incorpo-
rates the distributions of the key attributes and use the unique sequence
positions of entries to address distinct values in the key domain.

1 Introduction

When big data systems have to be debugged or their performance needs to
be analyzed, large test data sets are required. Due to privacy restrictions or
locality of data sets, it is not always feasible to ship and share the original data.
Additionally, one might be interested in the analysis of data patterns that are
not present in current real world data. These are use cases where synthetic data
generation plays a vital role.

Synthetic generation of giga- and terabyte data sets becomes scalable if data
is generated truly in parallel and not only distributed, i.e., a data generating pro-
cess does not need to communicate or synchronize with other processes. This is
facilitated by a recent trend towards massively parallel shared-nothing architec-
tures where processes have no common resources and communication is typically
expensive. It is important that frameworks designed for such architectures take
the distribution of resources into account.

Traditional data generators, like dbgen from TPC-H,3 are hand-tuned scripts
dedicated to produce data for a specific schema. In the schema of TPC-H all
unique attributes are primary keys of type integer ranging from 1 to n, where n

is the final table size. By simply partitioning the sequence of integers and drawing
all other attributes independently and randomly from predefined distributions,
tuples can be generated in parallel. Process i will thereby generate the primary
keys [(i � 1) · n

N

, ..., i · n

N

] where N is the number of child processes. It is the low
complexity of the schema of TPC-H that enables parallel execution. The fixed
schemata are of few inter- and intra-column dependencies and are common to
most standard benchmarks. However, this does not su�ce to perform tasks like
validation of techniques that are sensitive to specific data patterns.

In contrast, flexible toolkits, like Myriad [1] or PDGF [11], enable the im-
plementation of use-case tailored data generators. Generators thereby o↵er the
opportunity to not only produce data sets for benchmarks but also for debug-
ging or testing purposes. Most importantly, Myriad and PDGF follow a parallel
execution model for shared-nothing architectures. That is, independent from
value domains and column constraints they split the data generation process
for tables row- or column-wise. By assigning distinct substreams of the pseu-

dorandom number generator (PRNG), which serves for sampling, to each node,
inter-process communication is avoided.

Through a hierarchical seeding strategy any value of the final data set can
be computed locally, which is integral for resolving data dependencies. To have
constant execution times, the involved class of PRNGs must be non-recursive.
Examples of commonly used PRNGs with constant lookup times are explicit in-

verse congruential generators (EICGs) [5], compound EICGs [4], or hash function

based PRNGs [9], [10].
Pseudo-random data generators (PRDGs) use the uniformly distributed out-

put of PRNGs to produce user-defined domain values for arbitrary distribution
functions through inverse transform sampling (ITS, see Section 2.2) or dictionary
lookups. ITS is su�cient to generate values for a single column for which unique-
ness holds. Consequently, these generators support all key constraints where at
least one simple key is involved. Simple keys are single attributes, whose values
uniquely identify a row. However, this approach fails if it comes to the generation
of composite keys for which only the combination of all key attributes is unique
(i.e., we cannot ensure uniqueness if no simple key is involved). Unfortunately,
all parallel data generators we are aware of su↵er from this constraint.

In this paper we present a novel approach on how to overcome this limitation.
Our basic approach is to use the unique row identifiers to address distinct key
tuples in the discretized space of all possible keys.

The rest of the paper is organized as follows. In Section 2 we give a more for-
mal description of the problem of parallel composite key generation. In Section
3 we present our algorithm with an accompanying example followed by an eval-
uation part (Section 4) and a discussion (Section 7). Notations and additional
examples are provided in the appendix.

3 http://www.tpc.org/tpch/

2 Composite Keys

2.1 Definition

Our composite key generation approach is explained and evaluated based on the
relational model [3], although our approach is not restricted to this particular
data model. We use the term ‘table’ as a synonym for a relation R whose columns
are a set of attributes A and whose rows are tuples. Single tuples are addressed
by keys, a subset of attributes for which uniqueness must hold. This constraint
is checked by the database management system when tuples are inserted or
modified. Although a table may have many columns, we only consider the d

columns that are relevant when forming a key, i.e., A = {A
1

, A
2

, ..., A
d

}.
In the context of databases, composite keys are identifiers of two or more

attributes (d > 1) for which at least one attribute does not make up a simple key.
In other words, for composite keys there exists at least one key attribute that is
not unique. In contrast, compound keys are keys of two or more attributes where
each attribute makes up a simple key in its own right. To make this distinction
clearer, examples are given in the appendix (Section A).

2.2 Problem Statement

Our goal is to generate a table of n key tuples, each of them forming a ‘real’
composite key of d attributes. Moreover, the resulting key set should respect
intra-table dependencies and satisfy attribute distributions in expectation.

To understand why guaranteeing uniqueness on a combination of non-unique
attributes is technically more challenging than producing a single, unique column
we will first describe how synthetic data is generated by parallel data generator
tools (PDGs) like Myriad or PDGF. Typical demands on the output of PDGs
are:

i) attribute values are distributed according to arbitrary, derived or user-defined
distributions;

ii) attribute values may conditionally depend on other attributes;
iii) concrete attribute values are not correlated to process identifiers or their

sequence position in the generation process, unless it is intended.

The above requirements can be satisfied if data generators use a class of
PRNGs whose sequence can be accessed randomly and that show a high degree
of randomness, i.e., they pass various tests for randomness. These properties
ensure that we can partition the sequence of random numbers without the need
to compute previous values, i.e., we have constant access time. We can therefore
recompute values from other substreams in constant time to resolve attribute
dependencies without querying remote processes – a key property for paral-
lelization. Compound EICGs and some hash functions are PRNGs with these
properties. Both are implemented in Myriad. Panneton et al. [10] give concrete
examples of hash functions passing several tests for randomness.

PRNGs provide the input for pseudorandom data generators. The uniformly
distributed output is normalized to [0, 1] and mapped to the target domain via
inverse transform sampling. Given a continuous or discrete distribution function
f : X 7! [0, 1], with X being a continuous, discrete (numerical or categorical)
domain, we compute its cumulative distribution function (CDF) F

X

: X 7!
[0, 1], F

X

(x) = P (X x) on a random variable X 2 X and take the inverse (see
Figure 1 as an illustrative example).

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F − 1(0.65)

domain value

n
o
rm

a
li
ze
d
ra

n
d
o
m

n
u
m
b
er

Fig. 1. Illustration of the inverse transform sampling technique. Given a set of
uniformly distributed values from [0, 1], we want to simulate normally distributed
values f / N (x|µ = 2, � = 1) (orange) in [0, 6]. Putting a normalized value y 2 Y

from a uniform distribution into the inverse of its CDF F

X

=
R
X

�1 f

X

(t)dt (red)
produces a domain value that is distributed according to the target distribution
function (gray path).

From the sampling perspective, composite keys fall into two groups. The first
group exhibits at least one unique attribute (see example schema Composite1 in
the appendix), while the second group exhibits none (see schema Composite2),
which means that uniqueness holds exclusively for the join of all key columns.
Data according to the first group can be generated with the same approach
that applies to simple keys (i.e., we produce a unique attribute column which in
turn ensures uniqueness for the whole key tuple). The other key attributes are
sampled according to their target distributions.

For the second group of composite keys this approach is not applicable. Each
key attribute may contain repeated values according to its particular distribution
function (e.g., the first attribute may follow a uniform distribution, the second
attribute a normal distribution, and so forth). A näıve approach would be to
sample attribute-wise conditioned on already generated domain values. However,
this approach does not scale, since it requires parsing all of the data. On a shared-
nothing architecture this would be prohibitively expensive.

We will now describe an approach for generating composite keys that is
applicable within the parallel data generation frameworks for shared-nothing
architectures described introductorily. From now on, we use the term composite

key as a synonym for the aforementioned second group that contains no unique
single attribute.

3 Algorithm

3.1 Preliminaries

We describe the composite key generation problem from the perspective of a
data generating process running on a shared-nothing architecture. In total we
have N processes that together produce n unique composite key tuples.

We will later see that we do not sample, but rather permute indices to keep
the uniqueness property of tuple identifiers. Thus, a node has instances of pseu-
dorandom permutation functions (PRPs) that shu✏e an input integer in a unique
manner. The PRPs are keyed functions whose output domain size is adjustable.
This is an essential property as explained in the next section. We will denote a
PRP by

⇡ : K ⇥ E ⇥ D 7! D.

where K is the key space for seeding the PRP, D the target size for the output,
and E the input. We address elements of a PRP in an array-like fashion, notated
as [·]. For the same key and domain size, ⇡

k,d

[i] 6= ⇡

k,d

[j] holds for all i, j i↵
i 6= j.

As initial input the process receives a process identifier in [0..N � 1], and
the total table size n. It also receives an instance of a PRP function together
with a seed k 2 K which enables each process to use the same permutation. As
part of the configuration, a process has information about the attribute domains
A

i

and their target distributions, given attribute-wise as discrete histograms B
i

.
Attribute domains may be nominal or real-valued.

3.2 Idea

The core idea of our algorithm is to produce a bijective mapping between a set
of unique tuple identifiers and the tuple space for each data generating process.
The tuple identifiers are given by the non-intersecting ranges of indices that are
assigned to the data generating processes. For example, process N

1

produces
table entries with identifiers [1, 2, ..., r

1

], process N

2

for identifiers [r
1

+ 1, r

1

+
2, ..., r

2

], and so forth.
To be able to produce a unique mapping we assume that the domains of the

attributes of interest are discretizable and their particular distributions are given
in terms of histograms (univariate or conditioned). From the set of histogram
distributions, we form a multidimensional joint histogram. However, instead of
sampling with the aid of PRNGs, identifier ranges are mapped to bins such
that the relative range corresponds to a particular bin height of joint histogram.

In doing so, we respect the joint probability distribution of the key attributes.
Given a unique tuple identifier, we first assign a bin and then pick a tuple within
the bin. Algorithm 1 summarizes these steps:

Algorithm 1: Composite Key Generation.
Input: nodeID, N, n, A, B
Output: Data

1 // Compute joint histogram
2 C := jointHistogram(B)
3 // Generate n/N composite keys
4 for id (nodeID� 1)·n/N to nodeID·n/N do
5 // Find bin for current tuple identifier
6 binID := findBin(id, C)
7 // Convert scalar to tuple
8 Data[id] = id2Tuple(id, A, CbinID)

9 end

Usually, tuple identifiers are distributed in a sequential manner among data
generating nodes, like described previously with processes N

1

and N

2

. Since these
identifiers will later correspond to tuple indices of the ordered set of all possible
tuples, which is much larger, we break the correlation by introducing shu✏ing.
Shu✏ing of identifiers will be applied preliminary to the bin assignment step
(line 6 of Algorithm 1) and to the assignment of a multidimensional tuple within
a bin (line 8 of Algorithm 1). After introducing the accompanying example,
we will explain in more detail the computation of the joint histogram, the bin
assignment, and the tuple assignment step.

3.3 Accompanying Example

For the purposes of illustration, we will consider an example from biochemistry.
Assume we would like to generate a table of composite keys of two attributes:
proteins and amino acids. The building blocks of proteins are amino acids and
their derivates. We restrict our example to three common proteins, i.e., collagen
(c), actin (a), and hemoglobin (h) and six amino acids, i.e., Glycine (G), Proline
(P), Alanine (A), Glutamine (Q), Arginine (R), and Aspartic acid (D). For all
compounds we use the one-letter notation.

A = {A

1

, A

2

}
A

1

= {c, a, h}
A

2

= {G, P, A, Q, R, D}

The normalized frequencies of the three proteins in mammal tissues and their
composition from amino acids are given in the tables below:

Table 1. Proteins and their normal-
ized frequencies.

protein frequency
c 0.7
a 0.2
h 0.1

Table 2. Six amino acids and their
normalized frequencies in collagen,
actin, and hemoglobin.
protein amino acid frequency

G P A Q R D
c 0.40 0.23 0.15 0.09 0.07 0.07
a 0.17 0.10 0.18 0.24 0.11 0.20
h 0.28 0.09 0.23 0.17 0.06 0.17

3.4 Joint Histogram

Let us fix our notations. For a set of attribute domains A, we have a correspond-
ing set of histograms B reflecting the discretized distributions of the attributes.
For a single histogram B

i

, we denote with �Bi the number of bins, b

low

i,j

the lower
bound, and with b

up

i,j

the upper bound (both inclusive of the bin), and f

i,j

the
relative frequency of values from A

i

that fall into the boundaries of the j-th bin:

B = {B

1

, B

2

, ..., B

d

}
B

i

= [(blow
i,1

, b

up

i,1

, f

i,1

), ..., (blow
i,�Bi

, b

up

i,�Bi
, f

i,�Bi
)], i 2 [1..d]

For our running example, we have

B = {B

1

, B

2

}
B

1

= [(c, c, 0.7), (a, a, 0.2), (h, h, 0.1)]

B

2

= [(G, A, 0.67), (Q, D, 0.33)]

Each interval [blow
i,j

..b

up

i,j

] represents a disjoint subset for attribute A
i

. The
joint histogram is the set of all combinations B

i

⌦ B

j

of intervals taken from B

1

to B

d

. If we assume independence of the attributes, we can compute the joint
frequencies � for the combined histogram as the product of all one-dimensional
bin probabilities. In our example the amino acid frequencies depend on the
protein. Table 2 displays the conditional probabilities of amino acids given a
protein. Hence, the joint probability for our two-dimensional case is

Pr[c
1

2 B

1,i

, c

2

2 B

2,j

] =
X

c

1

2B

1,i

Pr[c
1

] ·
� X

c

2

2B

2,j

Pr[c
2

|c
1

]
�
. (1)

Using Eq. 1, we receive for our running example the following joint probabilities:

Pr[c 2 C

1

] = Pr[c
1

2 B

1,1

] · Pr[c
2

2 B

2,1

|c
1

2 B

1,1

] = 0.546

Pr[c 2 C

2

] = Pr[c
1

2 B

1,2

] · Pr[c
2

2 B

2,2

|c
1

2 B

1,2

] = 0.09

Pr[c 2 C

3

] = Pr[c
1

2 B

1,3

] · Pr[c
2

2 B

2,1

|c
1

2 B

1,3

] = 0.06

Pr[c 2 C

4

] = Pr[c
1

2 B

1,1

] · Pr[c
2

2 B

2,2

|c
1

2 B

1,1

] = 0.161

Pr[c 2 C

5

] = Pr[c
1

2 B

1,2

] · Pr[c
2

2 B

2,1

|c
1

2 B

1,2

] = 0.11

Pr[c 2 C

6

] = Pr[c
1

2 B

1,3

] · Pr[c
2

2 B

2,2

|c
1

2 B

1,3

] = 0.04

For d attributes the tensor � of joint probabilities has d dimensions. When
attributes are independent, it is the result of a series of products4 of bin fre-
quencies:

� = �d

i=1

f

i

Each entry �

i

1

,i

2

,..,id = f

1,i

1

· f

2,i

2

· .. · f

d,id represents the relative frequency of
a multidimensional bin with a set of lower and upper bin edges. For variables
conditioned on others, we may replace some f

i

by the conditional probability
tables. In order to avoid lists of indices, we use a one-dimensional representation.
We apply a reshaping ⇢ : Rm

1

⇥..⇥md 7! R
Q

mi on the tensor �. The reshaping
logically arranges the tensor as a vector:

� := ⇢(�).

In our example, the reshaping of joint probabilities would be a row-wise
concatenation. Let C denote the set of d-dimensional bins with frequencies �:

C = [C
1

, C

2

, ..., C

�C], �

C

= |B
1

| · ... · |B
d

|
C

i

= (ci
low

, ci
up

, �

i

) 2 B

1

⇥ B

2

⇥ ... ⇥ B

d

ci
low = [clow

i,1

, c

low

i,2

, ..., c

low

i,d

]

ci
up = [cup

i,1

, c

up

i,2

, ..., c

up

i,d

]

If we use the above notation for our example, the joint histogram is:

C

1

= ([c, G], [c, A], 0.546)

C

2

= ([c, Q], [c, D], 0.161)

C

3

= ([a, G], [a, A], 0.09)

C

4

= ([a, Q], [a, D], 0.11)

C

5

= ([h, G], [h, A], 0.06)

C

6

= ([h, Q], [h, D], 0.04)

The ordering of the proteins and amino acids will be kept throughout the
whole paper (e.g., C

3

represents actin combined with the three amino acids
Glutamine, Arginine, and Aspartic acid).

3.5 Bin Assignment

Following the construction of a multidimensional histogram, the next step is to
guarantee that in expectation �

i

· n of the n key tuples will lie in bin C

i

. We
construct a step function that maps tuple identifiers to bin indices with ranges
adjusted according to �:

findBin : [0..n � 1] 7! [0..�

C

� 1]

4 denoted by �

findBin(id) =

8
>>>>>>>><

>>>>>>>>:

1, if 0 id < n�

1

2, if n�

1

 id < n(�
1

+ �

2

)
...

...

k, if n

P
k�1

i=1

�

i

 id < n

P
k

i=1

�

i

...
...

�

C

, if id � n

P
�C�1

i=1

�

i

The following figure illustrates the bin assignment step for our joint histogram
of the example:

C1

C2

C3

C4

C5

C6

id

0

1

2

3

4

...

7

�1n =

�2n =

�6n =

B1

B2

Figure 1: Bin assignment based on input range identifier. Left: range identifiers
from [0..n � 1 = 7], right: bins from the joint histogram.

1

Due to the sequential assignment of identifiers to the data generating nodes,
we obtain a clustered bin assignment. Hence, each process will generate keys that
lie in the same or in adjoined bins. We can decorrelate node and bin identifiers
by first applying a keyed permutation function that shu✏es the tuple identifier:

binID := findBin(⇡
n

[id], C)

In our toy example, we would like to produce n = 8 composite keys by N = 2
processes. N

1

generates keys for initial identifiers in [0..3] and N

2

for [4..7]. To
shu✏e the indices, we simply XOR the identifiers with random pad k, say 5.

⇡

k=5,D=8

[id] = id � k.

The step function for bin assignment and the assignment of identifiers to bin
IDs are given below. Note that bin C

3

and C

6

are empty due to rounding and
the small output size n.

findBin
C

(id) =

8
>><

>>:

1, if 0 id < 3
2, if 3 id < 6
4, if 6 id < 7
5, else

id ⇡

5,8

[id] binID =
findBin(⇡

5,8

[id])

N

1

0 5 2
1 4 2
2 7 5
3 6 4

N

2

4 1 1
5 0 1
6 3 2
7 2 1

3.6 Tuple Assignment

Given the bin identifier i of the joint histogram from the previous step, we again
make use of the uniqueness of id to compute a relative tuple index tupleID in
C

i

. This can then be used to map attribute-wise to the output domain. The
relative position of id is obtained by subtracting the lowest tuple identifier that
is assigned to C

i

. This information is given by the step function of the bin
assignment step, i.e.,

tupleID := id � min(findBin�1

C

(id)).

Note that we use here a simplified description, since id may not directly be
used, but its shu✏ed value (⇡[id] instead of id). The relative tuple identifier
is in [0..�

i

· n). If we think of the output domain values as an ordered set, we
address the first �

i

· n tuples. Backmost tuples that correspond to identifiers in
[�

i

· n, ..., �

Ci) are missed. We can hit any tuple in C

i

with equal probability if
we shu✏e the indices. Hence, we again shu✏e identifiers before converting the
scalars to values in the output domain. The parameter D for the output domain
of the shu✏e function is the bin cardinality of C

i

, tID = ⇡

D=Ci [tupleID]. To
produce a key = (a

1

, a

2

, ..., a

d

) 2 A

1

⇥ A

2

⇥ .. ⇥ A

d

from the shu✏ed scalar
tuple identifier, we iteratively compute integer division of a rest and the total
cardinality of the subsequent dimensions (see Algorithm 2). This last conversion
step corresponds to the procedure id2Tuple listed in Algorithm 1 and is shown
below:

Table 3 shows the final result for our accompanying example. To permute
the relative tuple identifier, we use ⇡

3

– a shift by one, i.e., ⇡

3

[i] = (i+1) mod 3.

Algorithm 2: Conversion of scalar to tuple of output domain.
Input: tupleID, A, C

i

Output: a
1 tID := ⇡

D=Ci [tupleID]
2 rem := tID
3 for k = 1..d� 1 do
4 // Bin cardinality for subsequent dimensions

5 � :=
Q

d

j=k+1|{a 2 A
j

|clow
ij

 a cup
ij

}|
6 // Compute absolute index

7 pos := brem/�c+A
k

.indexOf(clow
ik

)
8 a

k

:= A
k

[pos]
9 rem := rem mod�

10 end

11 pos := rem + A
k

.indexOf(clow
dk

)
12 a

d

:= A
d

[pos]

Table 3. Conversion of id and binID to tuples. The last two steps are performed
by Algorithm 2

.

id binID tupleID = tID = tuple
id � min(findBin�1(binID)) ⇡

3

[tupleID]

N

1

5 3 0 1 (a,P)
4 2 1 2 (c,D)
7 5 0 1 (h,P)
6 4 0 1 (a,R)

N

2

1 1 1 2 (c,A)
0 1 0 1 (c,P)
3 2 0 1 (c,R)
2 1 2 0 (c,G)

4 Evaluation

Implementation into Myriad. For shu✏ing tuple identifier we implemented the
permutation scheme proposed in Section 7.1. The algorithm for synthetic com-
posite key generation was tested on a numerical data set – the stellar data set
from the Sloan Digital Sky Survey (SDSS). After determining the feature set for
the composite key attributes for both data sets we proceed as follows:

i) Computation of the histograms B for each feature.
ii) Execution of the composite key generation algorithm with di↵erent scaling

factors or partition schemes.
iii) Optional testing for duplicates.
iv) Computation of distribution error (see Eq. 2) by comparing initial his-

tograms f and histograms f̃ computed on output files.

error(f, f̃) =
1

|A|

|A|X

i=1

1

|B
i

|

|Bi|X

j=1

�
f

ij

� f
f

ij

�
2

. (2)

All tests were performed with two Intel Xeon Processors E5620 (12M Cache,
2.40 GHz, 5.86 GT/s Intel QPI) and 50 GB main memory.

4.1 Sloan Digital Sky Survey Data Set

The Sloan Digital Sky Survey (SDSS) data set contains the positions of celestial
bodies, i.e. spherical coordinates right ascension (ra) and declination (dec) and
the amount of light emitted at di↵erent wavelengths. Since no two objects have
the same position, ra and dec form a composite key. We queried the data of
1000 objects in the field of the galaxy NGC 2967 (see SQL query below) and
computed histograms of four bins per dimension. The values were discretized by
cutting their floating point values after five decimal places.

SELECT top 1000 p . obj id , p . ra , p . dec
FROM galaxy p ,

dbo . fgetNearByObjEq (145 . 5 14 , 0 . 3 36 , 4) n
WHERE p . ob j id=n . ob j id

For the first test we launched the binary with varying number of processes N, i.e.
1 to 16 processes generating a table of 1 GB size. The execution time includes
the writing of data to hard disk, see Table 4:

Table 4. Error and execution times [s] with varying partition schemes and
constant table size of 1 GB.

N 1 2 4 8 16
Error 0.593e-4 0.593e-4 0.593e-4 0.593e-4 0.593e-4
Time 155 80 45 35 25

As a second test we varied the data set size from 100 MB to 100 GB, but kept
the partition scheme fixed. Since the first test already covered testing for dupli-
cates, we omitted the writing of data to hard disk and computed the histograms
on-the-fly:

Table 5. Error and execution times [s] with varying table sizes and 8 processes.
Size 100 MB 1 GB 10 GB 100 GB
Error 0.8264e-4 0.8265e-4 0.8238e-4 0.8244e-4
Time 0.34 1.8 6.1 9.4

5 Results

The resulting data sets were sorted and checked for duplicates by the Linux
command line tools sort and comm. For all tests and partition schemes the pair-
wise comparison of the resulting data files showed that no duplicates had been
generated.

The experimental results in Table 4 show that the partitioning has no influ-
ence on the data quality – the averaged errors between the initial histograms
and the ones computed on the resulting data sets are constant. The experiment
also shows that our composite key generation algorithm is parallelizable, since
the execution times decrease when more processors are initiated. The second
test (see Table 5) points out that with larger scalings the initial distributions
are still respected and data is not skewed. Note, that errors of Table 4 and Table
5 are not comparable since di↵erent bucket widths were used.

6 Related Work

There is much work done in synthetic data generation. Gray et al. [6] were
one of the first to propose strategies for scalable data generation. For example,
they propose a forking scheme where each process generates a partition of each
table. They also showed how to use multiplicative groups to produce sequences
of numbers that are dense and unique.

Bruno and Chaudhuri developed a flexible data generation tool [2] including
a Data Description Language (DGL). The basic construct for generating values
is the iterator. Iterators can be combined, nested or concatenated to produce
complex types. DGL also allows for querying existing data during the generation
of new data. Iterators produce their output sequentially and may be consumed
by other iterators. However, their bu↵ering technique via shared memory makes
their approach unscalable.

In his PhD thesis, Hoag [7], [8] presented a parallel synthetic data generator
(PSDG) along with an XML-based data description language. The synthetic data
specification accepts five types of generation constraints: uniform, histogram,
value sequences, and formular constraints involving operators, constants, built-
in functions, or field values.

Rabl et al. [11] presented a parallel data generation framework (PDGF) which
is Java-based like PSDG, but has an execution model close to the one of Myriad.
It uses a hash function based pseudorandom number generator with constant ac-
cess time which enables e�cient substream partition and recomputation between
nodes.

In contrast to PDGF Myriad employs an XML-to-source compilation tech-
nique and makes extensively use of C++ templates. This ensures a minimal
amount of expensive virtual function calls inside the generation loop and o↵ers
extensibility at code-level.

7 Discussion

7.1 Permutation

The most dominant operation a↵ecting the execution time is the querying of
the PRP to achieve a uniform distribution within a bin. For each tuple that is
written, there is one PRP call. Below we show how we constructed a pseudo-
random permutation function ⇡ within the Myriad framework, which exploits
the already implemented PRNG. Under the condition that the PRNG produces
numbers with multiplicative prediction resistance, we can simply concatenate
random numbers and the prediction resistance scales with it in a multiplicative
way. For example, concatenating two 64-bit samples that are prediction resistant
under multiplication results in a 128-bit number with multiplicative prediction
resistance. Let PRNGmult denote the multiplicative prediction resistant genera-
tor

PRNGmult : {0, 1}q ! {0, 1}r.

We can construct a PRNG with arbitrary domain size n and seed s by calling
the PRNG d log

2

n

r

e times and concatenate its bit representation

PRNGmult,gen

s

: N ! N, n 7! (PRNGmult(j))
j=s..d log

2

n
r e

We can shu✏e or permute the virtual tuple identifier in ⇥(d log

2

n

r

e) time by

XORing the identifier with the pad resulting from PRNGmult,gen

s

:

⇡ : {0, 1}log2

n ! {0, 1}, (n, i) 7! PRNGmult,gen

s

(n) � i. (3)

In the field of cryptography, this encryption scheme is known as Vernam’s cipher
or one-time pad, which obtains perfect secrecy 5. In our case this means that we
obtain a shu✏e that cannot be distinguished from a ‘real’ shu✏e.

Usually, the domain cardinalities do not exceed 64 bits. Thus, we have to
query the PRNG only once and have in fact constant computation time for
shu✏ing a single number. Since the initial seed s and the total number of tuples
n are distributed among all nodes, the permutation of the assigned identifier
range can be computed locally.

7.2 Discretization

For our composite key generation algorithm we assume as input discretized dis-
tributions. Discretizing the target distributions is not restrictive, and natural in
two ways. Firstly, when replicating a database instance column distributions are
read out in form of histograms collected by the optimizer of a database manage-
ment system. Secondly, during the data generation process the bit representation
of numbers fixes the number of decimal places. In this way, the number of items
in a bin is countable, which is exploited by some sampling algorithms.

5 Under the condition that the pad is used only once and not known to the adversary

8 Conclusion

We gave a description of how to generate tuples with attribute values for which
uniqueness holds only on their combination. In the context of databases, this is
relevant for a subclass of composite keys or user-defined constraints. Our key
generation algorithm therefore extends the capabilities of the already existing
parallel data generation frameworks to more complex data. It is completely par-
allel and can be implemented such that PRNGs with constant access times are
utilized.

9 Acknowledgements

The first author would like to thank Christian Lessig for his valuable assistance
in editing. Furthermore, we thank the anonymous reviewers for their input that
helped to improve the quality of the paper.

References

1. A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: scalable and expressive data
generation. Proceedings of the VLDB Endowment, 5(12):1890–1893, 2012.

2. N. Bruno and S. Chaudhuri. Flexible database generators. In Proceedings of the
31st International Conference on Very Large Data Bases, VLDB ’05, pages 1097–
1107. VLDB Endowment, 2005.

3. E. F. Codd. A relational model of data for large shared data banks. Communica-
tions of the ACM, 13(6):377–387, June 1970.

4. J. Eichenauer-Herrmann. Explicit Inversive Congruential Pseudorandom Numbers:
The Compound Approach. Computing, 51(2):175–182, June 1993.

5. J. Eichenauer-Herrmann. Statistical independence of a new class of inversive con-
gruential pseudorandom numbers. Mathematics of Computation, 60(201):375–384,
1993.

6. J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger. Quickly
generating billion-record synthetic databases. In ACM SIGMOD Record, vol-
ume 23, pages 243–252. ACM, 1994.

7. J. E. Hoag. Synthetic Data Generation: Theory, Techniques and Applications. PhD
thesis, University of Arkansas, 2007.

8. J. E. Hoag and C. W. Thompson. A parallel general-purpose synthetic data gen-
erator. ACM SIGMOD Record, 36(1):19–24, Mar. 2007.

9. G. Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 7 2003.
10. F. Panneton and P. L’ecuyer. On the xorshift random number generators. ACM

Transactions on Modeling and Computer Simulation, 15(4):346–361, Oct. 2005.
11. T. Rabl and M. Poess. Parallel Data Generation for Performance Analysis of Large,

Complex RDBMS. DBTest, pages 1–6, 2011.

A Composite Keys

Listing 1.1 shows four SQL statements for creating simple schemata. For the
sake of simplicity the statements only declare key columns. Table Simple has

one column protein which is declared as primary key and is necessarily unique,
i.e. protein makes up a simple key. Table Compound has two attributes, each
making up a simple key in its own right, since they are declared as unique.
Tables Composite1 and Composite2 are examples of composite key declarations.
Composite1 has only one key attribute which makes up a simple key. Table
Composite2 has even two attributes for which uniqueness exclusively holds for
their combination. Possible instances of all four relations are shown below.

Listing 1.1. Table creation in SQL

CREATE TABLE Simple(

protein VARCHAR (50) PRIMARY KEY

);

CREATE TABLE Compound(

protein VARCHAR (50) UNIQUE ,

aminoacid CHAR (3) UNIQUE ,

PRIMARY KEY(protein , aminoacid)

);

CREATE TABLE Composite1(

protein VARCHAR (50) UNIQUE ,

aminoacid CHAR(3),

PRIMARY KEY(protein , aminoacid)

);

CREATE TABLE Composite2(

protein VARCHAR (50),

aminoacid CHAR(3),

PRIMARY KEY(protein , aminoacid)

);

Simple

rowid protein
1 collagen
2 hemoglobin
3 actin
4 myosin
5 kinesin

Compound

rowid protein aminoacid
1 collagen Gly
2 hemoglobin Pro
3 actin Ala
4 myosin Gln
5 kinesin Arg

Composite1

rowid protein aminoacid
1 collagen Gly
2 hemoglobin Gly
3 actin Pro
4 myosin Ala
5 kinesin Pro

Composite2

rowid protein aminoacid
1 collagen Gly
2 collagen Pro
3 kinesin Pro
4 collagen Ala
5 myosin Ala

