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Abstract

Program reverse engineering is the task that helps software engineers understand the archi-
tecture of large software systems. We study how the data modeling techniques known as
On-Line Analytical Processing (OLAP) can be used to enhance the sophistication and range
of reverse engineering tools. This is the first comprehensive examination of the similarities
and differences in these tasks, both in how OLAP techniques meet (or fail to meet) the
needs of reverse engineering and in how reverse engineering can be recast as data analysis.

We identify limitations in the data modeling tools of OLAP that are required in the
area of reverse engineering. Specifically, multidimensional models assume that while facts
may change dynamically, the structure of dimensions are relatively static (both in their
dimension values and their relative orderings). We show both why this is required in current

OLAP solutions and provide new solutions that effectively manage dynamic dimensions.
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Chapter 1

Introduction

1.1 Basic Background

In recent years, an increasing number of organizations have realized the competitive ad-
vantage that can be gained from the efficient access to accurate information. Information
is a key component in the decision-making process. The more information we have, the
better are the chances for successful decisions. A Data Warehouse consolidates informa-
tion from different data sources and enables the application of sophisticated query tools
for faster and better analysis. Data warehouses came into existence to meet the changing
demands of the enterprises as On-Line Transaction Processing (OLTP) systems could not
cover the analytical needs of the enterprises’ competitive environment. OLTP systems are
mainly supported by the operational databases, while they automate daily tasks, such as
the banking transactions [CD97]. Data Warehouses, on the other hand, support analytical
capabilities by providing an infrastructure for integrated, company-wide, historical data
from which the analysis process can be achieved [IH94]. A data warehouse integrates an
enterprise, which is comprised of many, older and even incompatible application systems.
One of the basic keywords in data warehouse technology is Dimensional Modeling [Fir98].
In Dimensional Modeling, a set of tables and relations forms a model, whose purpose is to
optimize decision support query performance, relative to a measure or set of measures of

the outcome of the business process that is modeled. Using the Dimensional Modeling ap-



proach, developers first decide on the business processes that are going to be modeled and
then on what each low level record in the fact table will represent. For example, one would
have all the transactions made in a bank, on a specific date and place by all customers,
stored in a table and analyze them according to the “time”, “geography” and “personal
information” dimensions.

The concept of data warehousing has been widely used in business-oriented applica-
tions. It enables analysts, managers and executives to gain clear insight into data of their
enterprise, detect anomalies and make strategic decisions for a better position of their com-

pany among others in the market. The main characteristics of this technology are [Vas98]:

e the multidimensional view of data; and

e the data analysis which can be performed through interactive and navigational query-

ing of data.

In a multidimensional system, there exists a set of numeric measures (the objects of analy-
sis), which are viewed as points in a multidimensional space consisting of several dimensions.
Each dimension can be described by a set of attributes that are related to each other accord-
ing to a hierarchy. Example dimensions can be “product”, “geography”, “time”, etc., while
example measure can be the “dollar amount” of products or the “revenue of employees”.

In this work, our main contribution will be to bring data warehouses and reverse
engineering together. In particular, we will examine how software engineers can benefit from
a multidimensional view of large software and how data analysts can benefit from access to
hidden structures in their data, obtained by Reverse Engineering approaches. The hidden
structures mostly involve graphs, which we believe can be explored and browsed using data
warehousing techniques.

Reverse Engineering involves two phases [Ti192]:

1. the identification of the components of a system and their interdependencies; and

2. the extraction of system abstractions and design information.



Intuitively, reverse engineering helps developers understand the architecture of large
legacy software systems. Several tools have been designed and built towards this goal,
mainly because the majority of legacy systems are undocumented. Even if documentation
exists, these systems help people compare the as-implemented with the as-documented
or the as-designed structure of the underlined system. Ciao [CFKW95], Dali [KC97],
ManSART [YHC97], PBS [FHK*97], Rigi [MOTU93] and SPOOL [KSRP99] are tools
that have evolved as products of the reverse engineering research.

The above tools basically operate at two levels of abstraction [Til92]:

e the code-level of abstraction; and

e the architectural-level of abstraction.

At the code-level, the focus is on implementation details, such as instantiation of variables,
how expressions are affected by certain variable values and which functions call other func-
tions inside a program. On the other hand, systems that operate at the architectural-level
extract facts that lead to a reconstruction of the actual system. Rigi, Dali and PBS use an
entity-relationship model, at the conceptual level, to represent facts about a software sys-
tem and an individual format for encoding the entities and relations. In addition, they are
all open’; in that they can be retargeted into different fact extractors or programming lan-
guages. FFact extractors are specific applications that examine the source code and reveal the
interconnections between its entities. However, none of these tools uses a Multidimensional
Database (MDDB) to store its facts.

All the aforementioned systems use graph structures as intermediate or final data
structures to model intra— and inter—-dependencies of the different components of a program.
By intra—dependencies we usually mean any dependencies that exist among the data items
of a procedure, a file, etc., and by inter—-dependencies the interactions between two or more
procedures. Examples include call graphs and Module Dependency Graphs (MDG)s.

Understanding the intricate relationships that may exist between the source code com-

ponents of a software system may become a difficult task, but at the same time it is crucial



for the maintenance of the system [MMR198]. This maintenance will have negative effect,
if it is not based on subsystem knowledge. The situation is even worse in the case of huge
systems, where any architectural view of them is not easy to infer from the source code.
That is the case where data warehouses, in conjunction with On-Line Analytical Processing
(OLAP)systems, can help. OLAP systems are widely used to allow the interactive analysis

of data properly modeled in a multidimensional way.

1.2 Motivation

Due to the presence of hidden structures that involve graphs, the proper use and analysis
of such structures is of evident value. Identifying the components of a software system and
the interactions between them using graph theoretical algorithms is one side of the coin.
The other side consists of applying mining algorithms to partition the modules of a program
into meaningful and natural regions.

Furthermore, a closer look at a software program reveals interesting information con-
cerning its structure. Structure that has either to do with their physical or architectural
design. The reverse engineering tools we referred to in the previous section (PBS, Rigi, Dali
etc.) basically use the physical structure of a software system under investigation to infer
the architectural structure. This happens because it is often the case that documentation
is non—existent for a software system (e.g. Linuz [BHB99]).

Recently, the applicability of data mining in decision making tasks has become neces-
sary since its results provide insightful information that reverse engineering tools are not
able to reveal. Data mining algorithms, such as Hierarchical Clustering and Concept Anal-
ysis, appear to be promising as far as software systems are concerned. Wiggerts gives a
substantial analysis as to why and how clustering algorithms help in the renovation and
maintenance of legacy systems [Wig97]. At the same time, several authors have been in-
volved in the analysis of systems using Concept Analysis [ST98, vDK99, SR97, MG99]. The
identification of modules, program structure and other characteristics are boosted by the

application of such an algorithm.



Both mining techniques mostly unveil:
e dependencies among the entities of the system;
e groupings or partitionings of entities; and
e relationships, especially hierarchical relationships, between entity groupings.

Navigation (or browsing) through these groups and hierarchies might help software engineers
maintain or even understand the systems under consideration. In this work, we try to
investigate how data warehouse technology and reverse engineering techniques can work
together. In particular, we shall focus on how the multidimensional view of data helps in

asking complex ad hoc queries over the information extracted by reverse engineering tools.

1.3 Contributions of the thesis

In this thesis our contributions are the following:

e we investigate how techniques, including data mining, can be used to partition and
aggregate graphs, including program analysis graphs, using On—Line Analytical Pro-

cessing techniques;

e we propose a multidimensional model for managing these groupings. Our results en-
hance the reverse engineering process by permitting integrated browsing and analysis
of the data produced by these automated techniques, together with data produced by

more human—centric documentation or reverse engineering techniques;

e we identify shortcomings in current OLAP techniques when applied to reverse en-
gineering data. We propose OLAP extensions specifically designed to permit easy
updates when the schema is modified by the introduction of new reverse engineering
results. In particular, current OLAP models assume the structure and schema of

groupings and hierarchies is static. Our solution relaxes this restriction;

e we conclude with an example of querying our multidimensional data.



The thesis is organized as follows.

e In Chapter 2, we give an overview of OLAP) and Reverse Engineering systems. We

conclude giving our ideas of how these techniques can work together.

e In Chapter 3, we give the basics of hierarchical and heuristic algorithms for the
partitioning of graphs and after discussing some of the limitations of the aforemen-
tioned algorithms we conclude with our arguments on how to incorporate the results
of mining (in particular clustering) algorithms into an On-Line Analytical Processing

framework, to enhance the reverse engineering process.

e In Chapter 4, we introduce our multidimensional model for the results of a Hierar-

chical and Concept Analysis algorithm.

e In Chapter 5, we give the intuition behind extending an existing data model that
gives first—class status to dimensions in a data warehouse (the SQL(#H) data model).
We enumerate its limitations and give all definitions of our extended ESQL(H) data

model and query language.

e In Chapter 6, we conclude and offer suggestions for further research on this area.



Chapter 2

Handling groups using OLAP and its

use in Reverse Engineering

This chapter gives an overview of OLAP systems and their usage in the analysis of business
data. Moreover, since groups can be identified in data emitted from Reverse Engineering
tools, we give our ideas on how we could take advantage of OLAP systems to navigate and

query such data.

2.1 What is OLAP

In an OLAP system, data are presented to the user in a multidimensional model, which
comprises one or more fact tables and dimensions. A fact table consists of columns, each one
corresponding to a dimension ,e.g., geography, product and one (or more) corresponding to
the measure (or measures), e.g., sales amount. An example data warehouse containing the
dimensions: location, time, product and the fact table sales is depicted in Figure 2.1

Furthermore, OLAP operations, such as roll-up or drill-down, provide the means to
navigate along the dimensions of a data cube (we assume that the fact table is the relational
representation of a data cube, the n-dimensional presentation of data [GBLP95]).

While OLAP systems have the ability to answer who?” and ”what?” questions, it is

their ability to answer ”"what if?” and "why?” that sets them apart from Data Warehouses.



(a) location dimension (b) time dimension (c) product dimension

country year type
region month family
city day brand
store p_name
fact table

store, day, p_name, DollarAmt

Figure 2.1: An example data warehouse

OLAP enables decision-making about future actions. A typical OLAP calculation is more
complex than simply summing data, for example: ”What would be the effect on suit costs

2%

if fabric prices went down by 0.20/inch and transportation costs went up by 0.10/mile?”.

Based on the underlying architecture used for an OLAP application, vendors have
classified their products either as Multidimensional OLAP (MOLAP) or Relational

OLAP (ROLAP).

Multidimensional OLAP uses data stored in a multidimensional database (MDDB) so
as to provide OLAP analysis. As shown in Figure 2.2, MOLAP is a two-tier, client/server
architecture, in which the MDDB serves as both the database layer and the application
logic layer. In the database layer it is responsible for data storage, access and information
retrieval while in the application logic layer takes care of all the OLAP requests. Finally,
the presentation layer integrates with the application logic layer to provide an interface
through which users can issue their queries.

On the other hand, Relational OLAP supports OLAP analysis, by accessing data stored
in relational tables, i.e. a data warehouse. Figure 2.3 depicts the general architecture of
a ROLAP system. It is evident that ROLAP is a three-tier, client/server architecture,

in which the database uses conventional relational databases for data storage, access and
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Figure 2.2: Multidimensional OLAP (MOLAP) Architecture

information retrieval. At the application logic layer, a ROLAP engine executes the multi-
dimensional reports from the users and integrates with various presentation layers, through

which users issue their queries.
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Figure 2.3: Relational OLAP (ROLAP) Architecture

Apart from the different ways that the above architectures store their data, they both
provide managers with the information they need to make effective decisions about an or-
ganization’s strategic directions. The key indicator of a successful OLAP application is its
ability to provide information as needed, i.e., its ability to provide ”just-in-time” informa-

tion for effective decision-making. Furthermore, due to the fact that data relationships may



not be known in advance, the data model must be flexible. A truly flexible data model
ensures that OLAP systems can respond to changing business requirements as needed for
effective decision making.

Although OLAP applications are found in widely divergent functional areas, they all

require the following key features [Cou, AP98].

e Multidimensional view of data, which provides more than the ability to ”slice
and dice”; it gives the foundation for analytical processing through flexible access to
information. Database design should not prejudice which operations can be performed
on a dimension or how rapidly those operations are performed. Managers must be
able to analyze data across any dimension, at any level of aggregation, with equal

functionality and ease.

e Calculation—intensive capabilities. OLAP databases must be able to do more
than simple aggregation. While aggregation along a hierarchy is important, there is
more to analysis than simple data roll-ups. Examples of more complex calculations
include share calculations (percentage of total) and allocations (which use hierarchies

from a top-down perspective).

e Time intelligence. Time is an integral component of almost any analytical appli-
cation. Time is a unique dimension because it is sequential in character (January
always comes before February). True OLAP systems understand the sequential na-
ture of time. At the same time business performance is almost always judged over
time, for example, this month vs. last month, this month vs. the same month last

year.

2.2 What is Reverse Engineering

Many systems, when they age, become difficult to understand and maintain. Sometimes,

this task also becomes inefficient due to its high cost. A “Reverse engineering environment
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can manage the complexities of program understanding by helping the software engineers
extract high—level information from low-level artifacts” [Til98].

A major effort has been undertaken in the software engineering community to produce
tools that help program analysts uncover the hidden structure of legacy code. We already
mentioned Rigi and The Software Bookshelf as two results of this effort [MOTU93, FHK197].
These systems are basically focused on performing the central reverse engineering tasks

presented in [Til98].

1. Program Analysis. This is the task where source code analysis and restructuring

is performed.

2. Plan Recognition. This is the task where common patterns are identified. The
patterns can be behavioral or structural, depending on what relationships we are

looking for in the code.

3. Concept Assignment. This is the task that allows the software engineers to discover
human—oriented patterns in the subject system. This task is still at an early research

stage.

4. Redocumentation. This is the task that attempts to build documentation for an
undocumented, and probably old, system, that describes its architecture and func-

tionality.

From the above, it is obvious that reverse engineering tools try to extract an already
existing, but unknown, structure of a software system. This involves the break down of
the system either in system—oriented or human—oriented partitions that represent natural
groupings, i.e., different subsystems or directories of the same system.

The system examination and management is based on the use of graph structures that
are produced, and later on presented to the user, taking into advantage features of the
original code, such as function calls or file inclusion. In the next section, we discuss how

those natural groupings could be handled by an OLAP framework.
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2.3 Can OLAP be used for Reverse Engineering ?

To the best of our knowledge, program analysts have not taken advantage of a multidi-
mensional view of data that could help them model and analyze the alternative postulated
program structures. For instance, we could consider function calls stored in a fact table as

in Figure 2.4. In that figure, Function? is called by Functionl.

)

Functionl Function2

Figure 2.4: A Fact table with a graph structure

In these cases, we would like to be able to identify useful graph partitions that basically
correspond to parts of the graph with a certain property. For instance, if the graph consti-
tutes a system’s Module Dependency Graph, dense regions of the graph may correspond to
separate logical modules or subsystems of the system.

The issue in question now is how do we identify worthy graph partitions, having a
table like the one in Figure 2.4, i.e., how do we horizontally partition the fact table into
subtables with a certain structure and how do we efficiently query these systems. Therefore,
a particular algorithm has to be used to produce the partitions of the fact table, and in
addition an OLAP system to represent and query the results. At this point, we would
like to stress that our focus will not be on imposing a specific structure on our table but

extracting its inherent one. This process should be based on the following decision steps:

(1) What is the current format of our data;

(2) What is the algorithm under consideration; and

(3) What models have OLAP researchers proposed and used, and how information about

the results of our techniques can be incorporated in them.

2

Upon this, we can now answer “what if?”, “wh and “where?” questions on the
) )

system under consideration. An example OLAP query could be: “What would be the

12



effect on the memory subsystem if the function call to foo() from bar() is omitted and
the io.h header file is moved to the /system directory?”. Unlike traditional OLAP, the
effect will likely not be a numeric aggregate, but rather a new grouping of entities produced
either by a query or by mining or program analysis algorithms. This also makes the the
“multidimensional view of data” and “time intelligence” properties of more importance
compared to the “Calculation—intensive capabilities” one.

Moreover, current reverse engineering tools do not support Version Control of a soft-
ware system. In order to investigate differences among versions of the system, one needs
to examine all versions individually, and manually find all points of interest. On the other
hand, in an OLAP framework, time is treated as a separate dimension, making historical
data easier to analyze.

In our work, we shall consider data that are originally in the Rigi Standard Format
(RSF) format [MWT94, WTMS94] which is used by existing systems, such as Rigi and
The Software Bookshelf [FHKT97], to provide understanding of software legacy systems. In
the following chapter we present some graph theoretical and mining algorithms that can
be used to unveil groups in software engineering data which can later on be modeled in an

OLAP environment.
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Chapter 3

Identifying Partitions and the use of

Hierarchies

As already mentioned in previous chapters, the problem of analyzing and understanding
information related to a software system consists of finding proper and meaningful partitions
of a graph. In reverse engineering such graphs include control flow, data flow and resource
flow graphs [MU90]. They capture the dependencies or interactions among the software
entities that comprise a system.

Graph based algorithms are used in the software engineering and data mining commu-
nity to find natural partitions of the set of vertices, or edges of a graph, and what follows
is an overview of these techniques and how they can be used. We conclude with an anal-
ysis of which of the aforementioned techniques are suitable for adaptation in an On-Line

Analytical Processing (OLAP) system.

3.1 Clustering Algorithms

3.1.1 Hierarchical Clustering

The first family of algorithms that result in groupings of the initial data set is the one of

clustering algorithms. Their main purpose is to find natural and meaningful partitionings,

14



or clusters. In some problems the produced clusters can be used “as is”, while in others
they may form the basis of constructing consequent clusters, thus producing a hierarchy of
clusters. This section gives an overview of the two major categories of hierarchical clustering
algorithms: agglomerative (or bottom-up) and divisive (or top-down). Before proceeding
with the brief description of these algorithms, we introduce the notion of a sequence of
partitions that are nested to each other [JD88].

Consider a set N of k data items (in our case this can be the set of nodes or edges):

N ={ny,ng,...,nx}

A partition C of N breaks it into subsets {Cy,C4,...,C),} such that:

CZﬂC]:®71SZ7J§m77’%J7 and

cCiuCyuCsU...uC, =N
The set C is called a clustering and each of the C;’s a cluster.

Definition 1 Partition D is nested into C if every cluster of D is a proper subset of a

cluster of C.

In the following clusterings, D is nested in C, but D’ is not:

C = A{(z1,z3,27), (z2,24), (¢5, 26, 78) } (3.1)
D = {(‘rh‘r?))v(‘r7)7(‘r27‘r4)7(‘r5)7($67$8)} (3'2)
D' = {(z1,22,23), (24, 26), (v5, 27, 78)} (3.3)

Agglomerative Clustering

In agglomerative clustering [JD88], each data point starts being an individual cluster. As
the algorithm goes on, clusters are merged to form larger clusters, thus nesting a clustering

into another partition. The merging of clusters is based on a similarity (or dissimilarity)

15



function that decides how similar (or dissimilar) two clusters are.
Figure 3.1 is an example of how the agglomerative function works on a data set of 4
points. A special type of tree structure is used to depict the mergings and clusterings of

each level. This structure is called a dendrogram.

() (). (0)) & 0 o @

{(21,29), (23), (24) }

{(21,29), (v3,24) }

{(I1,$27 QJ3,I4)}

Figure 3.1: An example of agglomerative clustering

A large collection of agglomerative algorithms is presented in [JD88].

Divisive Clustering

Divisive clustering algorithms [JD88] perform the task of clustering in reverse order. Start-
ing with all the data points in a single,” big”, cluster, such an algorithm iteratively divides
the “big” cluster into smaller ones. This type of algorithms are not very popular due to
their high computational complexity: at each step, the number of partitions to consider is

exponential [JD&8].

Most of the above cases often lead to expensive solutions and maybe not near optimal
ones. These are the cases where we need to employ a smart procedure to identify meaningful
and interesting clusters of a graph. Heuristic approaches, then, come into play in an attempt
to find optimal solutions in a moderate amount of time. Researchers use variations of already
known techniques, such as hill-climbing [KL70, MMR*98] to prune the search space of

clusters in order to find “good” clusters in the minimum possible amount of time. Depending

16



on the domain under consideration, different heuristics can be applied, with different results,

and certain attention should be paid to their evaluation.

3.2 Discussion on the usage of graph theory and clustering algo-

rithms in reverse engineering

Evaluating various techniques that perform clustering is crucial, and our concentration

should be on the following [CWT78]. three issues:
(1) on what data will the methods be applied;
(2) what is the computational cost of a method;and
(3) how “good” are the clusters.

To the above, we add a fourth issue for consideration, which emanates from the amount of

disk and memory space available:

(4) whether the algorithm is suitable for in-memory execution or the data should reside

on disk.

We shall be dealing with graph data from the program domain, specifically we’ll focus
on what has been called Module Dependency Graphs or MDG’s [MMR'98]. An MDG is
a directed graph whose nodes are entities of a software system (procedures, files etc.) and
whose edges are relationships between them. The nodes and edges may be accompanied
with attributes that depict properties of each procedure (developer, version, fan-in, fan-out
etc.). A software system seems easy to analyze when the number of modules (nodes) is
fairly small. In this work, we are interested in analyzing large legacy systems, consisting of
several thousands of nodes and edges, which often come undocumented. Our goal is to find
partitionings of the MDG in a way that the produced subsets are natural and represent
interesting information inherent in the system. Although there might be some structure

inside a software system, we are often unable to single out individual components.
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Agglomerative and divisive algorithms have been proposed by Wiggerts [Wig97] as a
means of performing hierarchical clustering given an MDG-like graph. Both categories of
algorithms are based on a similarity or dissimilarity measure among the nodes of the graph.
This measure has to be updated each time a new clustering is formed or split into smaller
ones. The measure obviously affects the number and the quality of the clusters, mainly due

to the following reasons:

1. a node (module) might end up being in a wrong cluster due to ties;

2. different measures can give different clusterings.

In the hierarchical algorithms, it is not clear what happens if there are more than one edge
between two nodes, hence we have a multi-graph. We would say that these algorithms
are inefficient, even inapplicable in such cases. To make matters worse, parallel edges often
appear in MDG’s, for example when a function calls another function in two different points
of the program.

Heuristic approaches seem to alleviate this pain and moreover give natural clusters of
a system. Mancoridis et al. describe a system that generates meaningful clusters based on
the inter- and intra-connections of nodes in MDG’s [DMM99, MMCG99, MMR*98]. The
clusters conform to the widely used heuristic of “low-coupling and high cohesion”, a heuristic
widely used in software engineering. Low coupling is a software principle which requires
that interactions between subsystems should be as few as possible, while high cohesion is a
related principle that requires that interactions within a subsystem should be maximized.
Inside the described framework, a genetic algorithm is applied to an MDG, that explores,
in a systematic way, the extremely large space of partitions and gives a “good” one. Their
system, called BUNCH, operates well for any given set of nodes and edges.

We should note here the existence of graph theoretical algorithms that try to capture
groups in graph structures. Namely, algorithms that investigate strongly connected com-
ponents or articulation points might be of significant interest for our problem. Strongly

connected components identify the “pieces” that comprise a graph, and two vertices are

18



in the same component if and only if there is some path between them [Wes96]. On
the other hand articulation point algorithms find vertices whose deletion disconnect a
graph [Ski98]. Although both type of algorithms do not require significant amount of mem-
ory and space [CLR92], their applicability is not proven in the software reverse engineering

domain.

In the previous algorithms, we could add that of finding cliques in a graph. Intuitively,
a clique is a graph in which each pair of vertices is an edge. A complete graph ( a graph in
which all pairs of vertices form edges) has many subgraphs that are not cliques, but every
induced subgraph of a complete graph is a clique [Wes96]. Finding cliques, however, is an
NP-complete problem [CW78], and in [MM65] Moon and Moser showed that the number

of cliques in a graph may grow exponentially with the number of nodes.

In our work, we do not consider any graph theoretical algorithm.An interesting question
that arises when a clustering algorithm is applied, has to do with the identity of the clusters.
If the algorithm is hierarchical, the question also includes the identity of the levels produced.
One way to deal with it, is to use existing domain knowledge about the software system.
In the following section, we present a more natural technique widely used in the software

engineering community, that of Concept Analysis.

3.3 Concept Analysis

Concept analysis is a means to identify groupings of objects that have common attributes.
In 1940 G. Birkhoff [Bir40] proved that for every binary relation between “objects” and
their “attributes”, a lattice can be built, which allows remarkable insight into the structure

of the original relation. The following definitions and the example are taken from [LS97].

In concept analysis we consider a relation 7 between objects O and attributes A, hence

T COx A. A formal context is the triple:

C=(0,AT)
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For any set of objects O C O, their set of common attributes is defined by:

o(0)={a€e A|VoeO:(o,a) e T}

while, for any set of objects A C A, their set of common objects is given by:

T(A)={0o€ O |Vae A: (0,a) € T}

A pair (O, A) is called a concept, if:

A=0(0) and O = 7(A)

Such a concept corresponds to a maximal rectangle in the table 7. A maximal rectangle is

a set of objects sharing common attributes.

Concept analysis starts with the table 7 indicating the attributes of a given set of
objects. It then builds up so-called concepts which are maximal sets of objects sharing
certain features. All possible concepts can be grouped into a single lattice, the so-called
concept lattice . The smallest concepts consist of few objects having potentially many
different attributes, the largest concepts consist of many different objects that have only

few attributes in common. A formal concept and its concept lattice extracted from a

FORTRAN source file are shown in Figure 3.2.

‘Vl V2 V3 V4 V5 V6 V7 V8

END| X X
SUBROUTINE R3(...) END| X X X
SUBROUTINE R1(...) COMMON /C2/ V3V4 END X X X X X
COMMON /C1/ V1V2 COMMON /C4/ V6 V7V8 END XX X X % %
END END
SUBROUTINE R2(...) SUBROUTINE R4(...)
COMMON /C2/ V3 V4 COMMON /C2/ V3V4
COMMON /C3/ V5 COMMON /C3/ V3 V3Vv4
COMMON /C4/ V6 V7V8
END
V1Vv2 V6V7,V8
END R1 R3
R4

Figure 3.2: A source code, its variable usage and its concept lattice [.S97]
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The set of all the concepts of a given table conform with a partial order:

(O1,41) <(02,43) <= 01 C0; <= A1 DA

In the concept lattice, the infimum, or join, of two concepts is computed by intersecting

their eztents, the extent of a concept being the set of its objects O:
(Ol, Al) AN (02, Ag) = (01 N OQ, U(Ol N 02))

Thus, an infimum describes the set of attributes common to two sets of objects.
The supremum, or meet, is computed by intersecting the intents, the intent of a concept

being the set of its attributes A:
(Ol, Al) V (027 AQ) = (T(Al N Ag), AN Ag)

Thus, a supremum describes a set of common objects which share the two sets of attributes.

In order to interpret a concept lattice, we also need to define the following:
pla) = \/{c € L(IC) | a € intent(c)}

which corresponds to a lattice element labeled with a, and
v(0) = /\{c € L(C) | o€ extent(c)}

which corresponds to a lattice element labeled with o. The property that connects a concept

lattice with its table is as follows:
(0,0) € T <= 7(0) < ufa)

Hence, attributes of object o are just those which show up above o in the lattice, and the
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objects for attribute a are those which show up below a.
Interpreting the concept lattice of Figure 3.2, we have the following, according to the

aforementioned definitions:

All subroutines below p(V'3) (R2, R3, R4) use V3 (and no other subroutines use
V3). All variables above v(R4) (V3,V4,V5,V6,V7,V8) are used by R4 (and

no other variables use R4). Thus, the concept labeled R4 is:

g =v(R4) = ({R4},{V3,V4,V5, V6, V7, V8})

and the concept labeled V5/R2 is:

e = u(V5) = v(R2) = ({R2, R4}, {V3,V4,V5))

It is obvious that ¢; < ¢g. This can be read as: ” Any variable that is used by
subroutine R2 is also used by R4”. Similarly, p(V5) < u(V3) = u(V4), which
is read as: “All subroutines which us V5 will also use V3 and V4. Moreover,
the infimum of V5/R2 and V6,V7,V8/R3 is labeled R4 meaning that R4 (and

all subroutines below v(R4)) uses both V5 and V6,V7, V8.

After all, the lattice uncovers a hierarchy of conceptual clusters implicit in the origi-
nal table. To handle those conceptual clusters in a multidimensional way and, furthermore,
query them, we need to introduce a proper multidimensional model. Several researchers have
proposed variations of a multidimensional model [Fir98, IH94, PJ99, Vas98, CT97, AGS97]
and our work will center towards an extension of it so as to include clusters and concepts.
From our description of hierarchical clustering it seems reasonable for our task to use an
agglomerative algorithm that incorporates a hierarchy, with clusters organized in a “clus-
ter” dimension. The following chapter gives a first approach towards the multidimensional

modeling of clustering and concept analysis.
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Chapter 4

The Multidimensional Model

This chapter introduces our approach to the multidimensional model that will incorporate
the results produced by reverse engineering tools and mining algorithms. First, we give the
definitions of the model for the hierarchical clustering algorithms, and then we extend it to

include the results of concept analysis.

4.1 A Multidimensional Model for managing hierarchical clusters
We consider the following.

e F be a set of features over which we perform the clustering. Hence, F is given by:

F= (f]af?w'wfﬂ)

where f; can be a function—call, a file inclusion, etc.
e A be a set of nodes. A is given by:
./4 — (r/l],r/lg,...,A[)

where A; can be a file, function, variable, etc.
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The dependencies (i.e. interactions between entities of the software system) that we have

are of the form:

Ay Ty 4, (4.1)

where A;, A; and fj could, for example, comply with the schema of (Figure 4.1), which is
used in the Software Bookshelf tool [FHKT97]. Each of the nodes A; has a domain, denoted

by dom(A;), which corresponds to the values it can take. Intuitively, features represent

include

file
funcdcl, funcdef )
> function
librarycal sourceref,
linkref
funcdcl . .
———— > library function %—
Yy
vardcl, vardef .
variable
macrodef, usemacro
macro
typedef, usetype
yp yp -  type
structdef, usestruct
> struct
uniondef, useunion )
union
enumdef, useenum enum

Figure 4.1: The schema for the relations used in Software Bookshelf

edge labels on the relations that connect two entities (nodes).
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Each feature may be accompanied by a set of attributes: B{i, Bgi, .. .,B!;Q, where B,J:z

is the k-th attribute of feature f;. If fi=function-call, a set of attributes can be:

tion—call .
B{“”C onTeat - —  line number

tion—call
Bg“m T = number of parameters passed

In the same sense, a node A; may also be accompanied by a set of attributes: BIA’, B;’, e, B]fi.

If A;=file, the set of attributes that can be defined is the following:

Bfle = number of lines
Bgle = number of if statements
Bfle = number of function calls

For each feature f;, we create a table with the following schema:

fi(Ai, Aj, {B"Y)

where {B/} is the set of attributes for f;. In the above, f; is a fact table of our Data
Warehouse. Since we might have parallel edges, i.e., multiple appearances of a pair (4;, 4;),

we give each pair a unique identifier, and the following is the updated schema of the fact

table f;:

For example, if f;=function-call, then, according to Iigure 4.1, A; = A; =function, and a

fact table could look like the following;:
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id || funcl | func2 | line # | # of parameters passed
1 foo | printf 25 0
2 foo | scanf 30 1
3 || main foo 100 3
4 || main | printf | 105 2
5 bar | printf | 200 0

For each node A; we create a table with the following schema:

pi(Ai, {B*})

where {B4i} is the set of node attributes for the node A;.

From Figure 4.1 we can easily infer that a fact table incorporates a graph structure. For
instance, all dependencies of the form of Figure 4.1 constitute a graph. We are interested in
splitting the nodes of the graph into meaningful horizontal partitions. Considering a node
A;, from the original set, as an individual cluster, we can apply a hierarchical clustering

algorithm on that set of nodes.

An initial clustering is defined as:
fi . gpli pli Ji
Dy A{Cy;,Chyy ..., Cp )

where each CJ;lk is a cluster that corresponds to a node Ay, which participates in feature f;,
i.e.,

Dhch = A, Yk

Given a similarity (or dissimilarity) function G we may start by trying to find which

are the clusters that can be formed from the initial clustering DJ;Z. We call this clustering

DJ;Z = {C?J 76?27 e '7C§ln}
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and D’g is nested in D’? since each Cj;lk of Dj;l is a proper subset of a Cﬁ of D?.
Definition 2 Operator < denotes the nesting of one clustering into another with respect
to a feature f;. Hence, if DI is nested in D’;, we write:
i Ji
Dh 4 Dy

The cardinality, i.e. number of clusters, of a clustering DY is denoted by HD{;H and thus,

in the above: 1 < k < ||DI|| and 1 <1 < ||D}||. Hence, |Di|| > | D]

We perform consecutive clusterings, say p, until we find the final clustering with ||D%|| = 1.

Let fi=function—call, A;=function with dom(A;) = {foo, bar, main, printf, scanf} and

a similarity function G. The clustering algorithm may give the following clusterings:

,DJ;unction—call — {(f00)7 (bar)7 (771(1@'71)7 (pT‘ZTLtf), (Scanf)}

DJ;“”C”O”_C“” = {(foo,bar), (main), (print f, scan f)}

DJ;“”C”O”_C“” = {(foo,bar, main), (print f, scanf)}

Dé“”“””‘““” = {(foo, bar, main, print f, scanf)}

The schema for the above hierarchical clustering is depicted in Figure 4.2 while its instan-

tiation in 4.3. Figures 4.2 and 4.3 represent a dimension D and its levels Di’.

pleall ALL pl—ealt, ALL
plealt C{;J—QI \Cég—ca” Dleatt (foo,bar, mé:) hf, scanf)
pleatt clreatt cloett C?S_C“” pleatt (foo,bar) (main) (printf,scanf)
pl-call C{Jé :Ecan ng—cazl cél >{)5—Call pl—call, (foo/)( \(b\ar) (miin) (prgt;)\(s\canf)
Figure 4.2: A clustering schema Figure 4.3: A clustering instance
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Definition 3 For each pair of clusterings Dl , Déi such that D < DJ;, there exists a roll-up

. pli
function RUP_} :
phi

{ch eplach, ek ek cel i <m<|Di 1 <p<i<ptq<|DL}

Intuitively, the RUP function aggregates one or more clusters of one clustering (DJ;’) to a

cluster of the immediate higher order clustering in the hierarchy (D’;).

If a cluster rolls—up to another cluster with the same elements, i.e., Cfl (zy, 20,00, 2)

1
rolls—up to Cgim :(y1,y2,...,yn)suchthat z; = z;,Vi,j: 1 <4,5 < n,then RUPzZ =identity.

For each pair of nodes (A,, A3) tha appears in the fact table f;, i.e, the fact table that

corresponds to feature f;, we create two tables:

D (A, {D'}\D})

DY}, (A5, {D*N\D])

where {DfZ}\DJ;z is the set of clusterings except for D’;l which is represented by A, and Ay

in each table.
The dimension D/i for the pair (A4, A) is given by:

PR fl fz
Df - DAa UDAb

After all, the schema of a Data Warehouse (DW) is like the one depicted in Figure 4.4
This example shows how inherent hierarchies in a software system can be revealed using a
hierarchical clustering, and moreover how the results of such a clustering algorithm can be
modeled in a multidimensional way. Upon the formation of such a model and storage of

the data in the tables, navigation and browsing become easy and efficient.
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f; :{ id | A, | Ay [{Bf) }

Dl :[ A, | {DIN\D} ] D :[ Ay | {DFN\D} J

Y
pa:[i ] o (m ] owy

Figure 4.4: The DW schema
4.2 A Multidimensional Model for managing concepts

In our approach to hierarchical clustering, we create all groupings without actually knowing
what each D{i represents. Concept Analysis is a means not only to discover the groupings

but also to describe them in a more natural way.

Suppose that we have a relation F©' — A, X Ay, where A, is the set of objects and A,
is the set of attributes. For instance, n, can be a set of nodes corresponding to .c files and
Ap the set of nodes corresponding to .h files. In this example, I’ is the relation that depicts
file inclusion. F is called the relation matriz in concept analysis, while here it represents
the fact table, described in the previous section. An example of a relation matrix is given

in Figure 4.5. The example was taken from[{GMA95].

The relation matrix can be accompanied by several attributes that characterize the edge
they represent(,i.e., for a relation matrix that represents file inclusion possible attributes

might be the developer of the .c files and the number of lines of the .h files).

Having such a matrix available we may start building the concept lattice of the above
relation, which depicts maximal rectangles of a relation matrix. The concept lattice for the

relation matrix of Figure 4.5 is the one of Figure 4.6.

For each object O; that appears in a Concept C;, we create the table extents with
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H Object ‘ Attribute H
1 a

M [CCR el - N =l Y o]

oo i b b ol w|w|lwl oo o o] =] =] -

R |[T| =0T —|00 ||

Figure 4.5: Example of a relation matriz

the following schema:
extents(Object, Concept)
The primary key for the above table is the combination of both attributes.

For each attribute A; that appears in a Concept C};, we create a table intents with
the following schema:

intents(Attribute, Concept)

The primary key for the above table is the combination of both attributes.

Finally, once the concept analysis algorithm has computed the concepts and the links
between them, i.e., the hierarchy inside the concept lattice, we create a table that depicts

the child — parent relationships between concepts. The schema of that table is:

hierarchy(Conceptl, Concept2)
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(top)

N

Co:({123} {a}) C10:({1,24}{c}) Ci11:({45}.{b}) C12:({2,3,5} {g})

/

ce({1.2} {ac})

Cr.({5} {beg})

C5:({2,3} {a0.i}) C6:({1,4} {cf,h})

Ci{i{acfh}) Cz({2{acai}) C3({3}{adgi}) CA({4}{bcth})

Figure 4.6: The concept lattice of the matrix in Table 1.

Primary key for the above table is the combination of both attributes. Conceptl is the
child attribute, while Concept2 is the parent one.

The above tables for our example are depicted in Figures 4.7, 4.8 and 4.9.

The schema of Figure 4.4 is now extended to include the above tables. The new schema
is given in Figure 4.10. Moreover, given the tables extents, intents and hierarchy, we
can compute any concept in the lattice using standard SQL.

We understand that for both Hierarchical Clustering and Concept Analysis algorithms,
levels are of a major importance. We need to efficiently navigate through the different levels
of the hierarchy these algorithms produce and infer things that happen above or below a
specific level. In general and for any instance of the Data Warehouse we need to be able to
view the software system from different levels of abstraction (or detail).

The next chapter introduces the SQL(#) multidimensional model that gives first—class

status to the dimensions, i.e. the hierarchies they encompass.
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H Conceptl ‘ Concept2 H

H Attribute ‘ Concept H bot cl
5 o1 bot c2
5 o bot c3
c 1 bot c4
q 3 bot c7
o o7 cl c8
cl cb
| Object | Concept || f cl 2 8
1 cl 2 i 2 c5
2 c2 - c3 ch
3 c3 : <2 cd c6
4 cd 2 < o4 cll
5 7 2 <3 c5 c9
. - = c5 c12
Figure 4.7: The extents c c4 6 10
table for the lattice in Fig- f c4 = ~h
ure 4.6 g c3 o =D
% EZ c9 top
: 3 cl0 top
cll top
Figure 4.8: The intents cl2 top
table for the lattice in Fig- Figure 4.9: The hierarchy
ure 4.6

table for the lattice in Fig-
ure 4.6
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Chapter 5

The Extended SQL(#) Model

As mentioned at the end of the previous chapter, performing mining algorithms over software
data needs to be flexible, in the sense that hierarchies and levels inside them should be well
defined and easy to use. In the paper “What can Hierarchies do for Data Warehouses”
Jagadish et al. proposed a new multidimensional model, called SQL(#), which extends
the relational data model of SQL and gives first—class significance to the hierarchies in
dimensions.

In this chapter, we briefly introduce the SQL(7) model, we identify some key weak-
nesses of this model and go one step further by extending it to the (E)xtended SQL(#H) (or

ESQL(#)) model, in order to make it more general and adaptable to our needs.

5.1 The SQL(#) model

Several models have emerged to handle multidimensional data. We can briefly mention
the Star and Snowflake schemata as the most prevalent and elegant ones. However sev-
eral limitations apply to these models, with heterogeneity within and across levels being
one of them (especially for the Star schema). Restricting the case to Relational storage
of fact and dimension tables (ROLAP architecture), those models require that the com-
plete information concerning the levels of a hierarchy be stored in a single table. The

shortcomings are straightforward. For example, having a dimension named location, USA
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and Monaco are constrained to be modeled in the same way, e.g. within the hierarchy
store-city-region-country. But, as we know, Monaco is a city and a country at the
same time.

The authors of [JL.S99] refer to the limitations of the snowflake schema as the following:

e “Each hierarchy in a dimension has to be balanced”, i.e. the length from the root to

a leaf has to be the same.

e “All nodes at any level of a hierarchy have to be homogeneous”, i.e., they should

include the same attributes.

Since the hierarchies in the aforementioned models are restricted to be part of the
metadata, i.e. they do not have a first—class importance, even simple queries have to
include sequences of joins making them hard to read and understand. The SQL(#) model
tackles the above problem introducing an a extension of standard SQL.

The SQL(#) model comprises:

e A Hierarchical Domain which is a collection of attribute values arranged in such
a way that form a tree. New predicates are defined over this domain, and these

predicates are:

=, which is the standard equality predicate;

<, which corresponds to a binary relation over the set of attribute values so that

they form a tree;

<<, which is the transitive closure of <; and

— <= (resp. <<=), which corresponds to the relation that represents non-proper

child—parent (resp. descendant—ancestor) dependencies.
In general, we interpret each hierarchical domain as a special data type.

e A Hierarchy Schema, which forms a rooted Directed Acyclic Graph (DAG). In this

data structure the root has a special value All. Each node of the DAG accommodates
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a certain number of attributes including one that has a hierarchical domain, the

hierarchical attribute, and is denoted by Ayp.

e A Hierarchy Instance, which corresponds to a hierarchy schema defined as above.
In the instance, all relational tables correspond to exactly one table of the schema,
while at the same time no table can straddle hierarchy levels. This means that all the
value a table contains belong to the same dimension. Finally, tuples of a specific table
are properly related with tuples of a table (or more than one tables) above it. This
means that given a tuple in a table and the hierarchy of the hierarchical attribute

that corresponds to this tuple, we can infer its ancestors.

e A Dimension Schema, which is a name together with a hierarchy schema.

e A Dimension Instance, which is a name together with a hierarchy instance.

e A Data Warehouse Schema, which is a set of fact tables together with a set of
dimension schemas. Fact tables are restricted to include hierarchical attributes corre-

sponding to only the leaves of the appropriate dimension.

Imagine a Data Warehouse that includes the dimensions of location, time and product,
and whose fact table captures dollar amounts for sales with respect to these dimensions.

The schema of all tables that could form such a Warehouse are depicted in Figure 5.1.

In this figure locId, tId and pId are hierarchical attributes and primary keys for their
respective relations.

Recall the example of the concept lattice in Figure 4.6. Trying to use the SQL(H)
model to represent the schema of the concept analysis algorithm results, first of all, we
observe that we do not have a tree for the hierarchical domain of the first candidate for
such an attribute, which is the set of Concept Ids: {C;, 1 < ¢ < 12}. In order to do so, we
need a more general structure. Before introducing such a structure let’s see what extensions

the SQL(H) model adds to standard SQL.
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(a) location dimension (b) time dimension (c) product dimension

loc4(locld, country, manager) time3(tld, year) formal (pld, family, type)
. i | i
loc3(locld, region, manager) time2(tld, month) tiepld, name) suits2(pld, gender)

'

imported(pld, name, price)

loc2(locld, city, manager) timel(tld, day)

silk(pld, price) suitsl(pld, size)

loc1(locld, manager)

fact table

sales(locld, tid, pld, dollarAmt)

Figure 5.1: A Data Warehouse conforming to the SQL(#) model.

5.2 The Query language for the SQL(#) model

To take full advantage of the SQL(#) model a simple but powerful extension of standard
SQL is proposed in [JL.S99]. Considering single block SQL(#) queries, the basic extensions

are the following.

e DIMENSIONS clause: This clause permits the inclusion of dimension names in
a query. It is relevant to the tables mentioned in a FROM clause of standard SQL,
but they now refer to the tables of a dimension. Moreover, just like in SQL we can
declare tuple variables, in a DIMENSIONS clause all names that come right after the
dimension name are called dimension variables. Although, it will be mentioned in
the semantics of the language, dimension variables range over all tuples of all tables

appearing in a dimension.

e Hierarchical predicates: In the SELECT, WHERE, HAVING or GROUP BY
clauses of an SQL query we can include domain expressions (DEs) of the form 7.A4,
where T is a tuple variable and A an attribute name. These DEs are compared with
others, or values of compatible type. In order to take advantage of the hierarchical
operators that are defined in the SQL(#) model, we permit DEs of the form V.A

where V' is a dimension variable and A an attribute name. Moreover, we extend
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DEs to include hierarchical domain expressions (HDEs) which are of the form W. A4,
where W is a tuple/dimension variable and Aj a hierarchical attribute. HDEs can
be compared with each other using the predicates (hierarchical predicate) that are

defined in the hierarchical domain. For example, given A and B, A < B means that

A is a child of B.

5.3 Semantics of the SQL(*) query language

For the sake of simplicity, the authors of [JL.S99] use uniform SQL(#) queries. Such a query

is of the form:

SELECT domExpList, aggl.ist
DIMENSIONS dimList

FROM fromList

WHERE whereConditions
GROUP BY  groupbylList

HAVING haveConditions

Clauses that also appear in standard SQL have the same semantics. The question
is what happens with the newly introduced DIMENSIONS clause and the appearance of
hierarchical predicates in the WHERE clause. As far as the dimension variables of the DI-
MENSIONS clause are concerned, “they should range over the set of nodes in the hierarchy
associated with the dimension” [JLS99], i.e., over all heterogeneous tuples of a hierarchy
instance. The result of an SQL(#) query is a table according to the schema imposed by

the sets domExpList and aggList of the SELECT clause.

The semantics of an SQL(#) query is given in the original paper [JL.S99]. We present

the semantics more formally in a following section, where we discuss the semantics of

ESQL(#).
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5.4 Limitations of the model

The model we just described offers the advantages listed below.

e Adds semantics of hierarchies to the data model and the query language:

— gives first—class status to the hierarchies by:

*x permitting heterogeneity in dimensions, and

* introducing hierarchical domains (trees) as first—class objects.

e Permits “dimension independence” of the queries. The DIMENSIONS clause allows
the definition of dimension variables and, furthermore, allows these variables to range
over the tuples of the dimension, without taking into account the schema of each
table. Therefore, the evaluation of an SQL(7?) query is the same no matter what is

the schema of the dimension tables it refers to.

o Allows the fast evaluation of SQL(#) hierarchical queries, based on bitmap indices.

However, there exist limitations that are particularly relevant to reverse engineering
data. As we already mentioned, the concept lattice of Figure 4.6 and the hierarchies that
exist in it cannot be represented by the SQL(#) model. The basic restriction is that the
hierarchical domain must be a tree. Another point is that if some of the hierarchies in the
lattice change in time, those changes might be difficult to capture. The following list gives

the two basic limitations of the model as well as the intuition behind its extension.

e Hierarchical attributes should conform to a domain that has the structure of a tree.
The example of the concept lattice of Figure 4.6 proves why such a domain becomes

inappropriate for mining and reverse engineering applications.

e Each level inside a hierarchy must be modeled as a separate set of tables. This implies
that changes in dimension values (e.g., changes in the number of levels) may lead to

schema changes.
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5.5 The ESQL(7) model

To overcome the limitations listed in the previous section we need to provide an extended
model that fits our needs. The key point for this model is to be more general than the
SQL(#) model. The notation used in the following sections is the same as in the paper of
SQL(#). Definitions that are also the same are mentioned to be so. Briefly, in our model

we propose:
e A more general structure for the hierarchical domain, and

e Levels to straddle tables, so that any arbitrary table may contain values from many

levels.

Definition 4 [Hierarchical Domain)]
A hierarchical domain s a partially ordered set < Vy, <> where Vy is a non-emply set of

attributes and < a binary relation which is reflexive, antisymmetric and transitive.

The following hold:

1. The only predicates defined on this domain are: =, <, <=, <<, <<=, (<=1is the same

as < in the above definition).
2. The equality predicate = has the standard interpretation of syntactic identity.

3. The predicate < is interpreted as a binary relation over Vy such that for every z,y €
Lz <y<= 2z <yAz#y. the graph G, over the nodes of Vy can be depicted as
a Hasse diagram [TM75]. Such a diagram is an undirected graph were all edges are

considered as arrows from bottom to top, i.e., smaller elements are placed lower.
4. The predicate << is interpreted as the transitive closure of <.

5. For any two elements u,v € Vg, u < v holds iff either v < v or u = v. Respectively

for u <<= v.
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Figure 5.2: The hierarchical domain for concept ids (Cids) of figure 4.6.

The partial order of concept ids for the example of Figure 4.6 is given in Figure 5.2.

Intuitively, Vg is an abstract data type that corresponds to hierarchies where predicate

< refers to child—parent relationships and << to (proper) ancestor-descendant ones.
Whenever an attribute A conforms to a domain which is hierarchical, we call A a

hierarchical attribute and denote it by Ay,.

Definition 5 [Hierarchical Schema]

A hierarchy schema is a triple H = (G, A, o) such that:
(i) G is a collection of nodes of any structure, having a special node All;
(i) A is an attribute set that contains a unique hierarchical attribute Ay; and

(iti) o : G — 24 is a function that associates a node u € G with a set of attributes

o(u) C A, such that Yu # All, Ay, € o(u), and o(All) = (.

All nodes of G, except All should include the hierarchical attribute Ay in their attribute list.
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Imagine that we have a dimension called Concepts and a hierarchical attribute Ay =
C'id that corresponds to Figure 5.2. If the attribute set of the hierarchy is {Cid, Objects,
Attributes}, then this attribute set can be associated with exactly one node of the hi-
erarchy. Hence, we shall have nodes: {Cid, Objects, Attributes} and {} for the node

All.

Definition 6 [Hierarchy Instance]
A hierarchy instance corresponding to a hierarchy schema H = (G, A, o) is a collection of
tables H, that satisfy the following: each table r € H corresponds to a unique node u € G,

(except for node All), and r is a table over o(u).

Note that we do not restrict the nodes to form a DAG and we permit the straddling

of tables through the levels of the hierarchy.

Definition 7 [Dimension] [J/L599]
A dimension schema D(H) is a name D together with a hierarchy schema H = (G, A, o).
We refer to attributes A as the attribute set associated with dimension D.

A dimension instance D(#H) over a dimension schema D(H) is a dimension name D

with a hierarchy instance H of H.

Definition 8 [Data Warehouse Schema] [J1.599]

A Data Warehouse Schema in the ESQL(H) model is defined as a set of dimension schemas
D;(H;), with associated hierarchical attributes A'j;b, 1 <1 < k, together with a set of fact
table schemas of the form f(Ail, .. .,Ai”, By,...,By,), where Dj ..., D;. are a subset of
the dimensions Dy, ..., Dy, and B;, 1 < j < m, are additional attributes, including any

measure attributes.

A Data Warehouse, i.e., a fact table and a dimension for a concept analysis framework
are depicted in Figure 5.3. Note that to store the Objects and Attributes columns of the
tables appearing in that figure, we are taking advantage of the object—oriented features of

SQL(3) [Ram97], which permits set-valued attributes.
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Dimension "Concepts"

Cid| Objects Attributes

c1 {1} {acf,h}

c2 {2 {acg.i} Fact Table "Basic_Concepts"
Cc3 ({3} {ad,g,i} .
ca {4 {b.cf.h} Cid
Cc5 {23} {ag,i} cl
c6 |{14) {cfh 2
c7 {1 {beg) gi
cs8 [{1,2} {ac}

co {123} (a 7
C10/{1,2,4} {c

c11|{45} {b}

c12/{2:35} {g}

Figure 5.3: An example Data Warehouse
5.6 The ESQL(*) query language

Before giving some example queries to the data model we just described, we will try to
analyze the semantics of the ESQL(#) query language. The language does not have any
differences with the SQL(7) query language as far as syntax is concerned. The difference is
that when we try to evaluate each query, we have to take into account the new, more general
hierarchical domain and the arbitrary number of tables that make up each dimension.

A uniform ESQL(H) query is defined in the same way as in the SQL(7) model [JL.S99].

In general, a uniform ESQL(#) Q is a function:
Q:D—-R

where @ is the set of database, and R a set of tables of the output, under the schema of
the attribute list that appears in the SELECT clause. Taking into account all clauses of a

uniform of an ESQL(#) query we have the following:

e SELECT clause: This clause enforces the schema of the output table. It is inter-
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preted as in standard SQL with the addition that it may contain hierarchical and

dimension attributes, i.e., attributes from the set A of a hierarchy instance.

DIMENSIONS clause: This clause permits the declaration of dimension names of
interest. All dimension variables range over the set of all (possibly non-homogeneous)

tuples of all tables associated with that dimension.

FROM clause: This clause is interpreted exactly as in standard SQL, i.e., it takes
the cross product of all tables appearing in it, while all tuple variables declared in it

range over all (homogeneous) tuples of the fact tables they refer.

WHERE clause: To pin down the semantics of this clause, we should recall the
definition of an instantiation function [JLS99]. Considering all tuple and dimension
variables, the instantiation function maps them to appropriate tables of the data
warehouse. Now, the key issue is to properly evaluate each whereCond of the WHERE
clause of an the ESQL(#) query, according to the type of relationship between the

operators and the operands. Thus:

— if the whereCond involves attributes from the fact table and operands of the same
type, the WHERE clause is evaluated exactly as in SQL. This means that all

tuple satisfying the whereCond will appear in the result.

— if the whereCond involves attributes from dimension tables which are compared
to operands of the proper type based on a standard comparison operator, the
query is again satisfied by all tuples in the dimension tables which appear in

relationship with the operand.

— if the whereCond involves hierarchical attributes which are compared to operands
of the proper type based on a hierarchical predicate, the query is satisfied by all
tuples that are related to operands according to the hierarchical relationship, i.e.

the hierarchical domain of the hierarchical attribute.

In all the above, all comparisons are performed through the mapping of the instanti-
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ation function to the appropriate tuples. Taking the concatenation of all the results
(instantiations) from a query and restricting those tuples to the attributes that appear
in the SELECT clause, we have the final answer to the ESQL(#) query. If there is no
measure defined in the fact table of the data warehouse (as in our example) instead

of concatenation standard relational union should be employed.
¢ GROUP BY clause: It is interpreted exactly as in standard SQL.

e HAVING clause: It is interpreted exactly as in standard SQL.

5.7 Sample queries

In order to show the simplicity and power of the ESQL(#) language, we give some example

queries and explain their semantics and their step by step computation.

5.7.1 Dimensional Selection

The following single block ESQL(#) query, Q1, captures the query “find concepts that

contain more than 3 attributes”.

SELECT C.Cid
DIMENSIONS Concepts C

WHERE COUNT(C.Attributes) > 3

Here the approach is the same as in SQL(#). C will range over all tuples of the Concepts
table (here the tuples are homogeneous) and select those Cids that satisfy the condition of

the WHERE clause. The resulting table is the following:

Cid

C1

C2

C3

C4
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5.7.2 Hierarchical Join/Aggregation

The following single block ESQL(#) query, Q2, captures the query “Find the objects of

each concept that contain over 2 objects”.

SELECT C.Cid, C.0Objects
DIMENSIONS Concepts C

FROM Basic_Concepts F
WHERE F.Cid <<= C.Cid
GROUP BY C.Cid

HAVING COUNT(C.Attributes) > 2

In this case the WHERE clause contains condition: “F.Cid <<= C.Cid”, which is of the
form “W.Ap 0, opnd”. Here, we do not have the hierarchy of the levels in the concept
lattice given by the tables of the dimension Concepts. Thus, we should use the attributes

of the hierarchical domain to get the @p-relation. Let’s see how the query will be evaluated.

1. +(C)[Cid] ranges over all Cid attributes of the fact table sales, i.e., attributes {C1,C2,C3,C4,C7}.
For each of these attributes we compute the (reflexive) transitive closure relation tc,

and get:

e 1c(C'1)={C6,C10,C8,C9,top}

te(C2)={C5,C9,C12,top}

te(C3)={C5,C9,C12,top}

te(C4)={C6,C10,C11,top}

te(C7)={C11,C12,top}

Now, i(opnd) ranges over all hierarchical attributes of table Concepts. Taking also

into account the HAVING clause condition, we have:

e Using te(C'1), the instantiation of @j-relatives of C1 is:

46



Cid | Objects

C10 | {1,2,4}

co | {1,2,3)

top | {1,2,3,4,5}

e Using te(C'2), the instantiation of @j-relatives of C2 is:

Cid | Objects

c9 | {1,2,3)

C12 | {235}

top | {1,2,3,4,5}

e Using te(C'3), the instantiation of @-relatives of C3 is:

Cid | Objects

co | {1,2,3}

C12 | {235}

top | {1,2,3,4,5}

e Using te(C'4), the instantiation of @j-relatives of C4 is:

Cid | Objects

C10 | {1,2,4}

top | {1,2,3,4,5}

e Using te(C'7), the instantiation of @j-relatives of C7 is:

Cid | Objects

C12 | {235}

top | {1,2,3,4,5}

2. The final result for Q2 is the union of all the above tables:
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Cid | Objects

co | {1,2,3}
C10 | {1,2,4}
C12 | {2,3,5}

top | {1,2,3,4,5}

5.7.3 Hierarchical Join

The following ESQL(#) query, Q3, captures the query “Find the immediate breakdown of

concepts with more than 2 objects”.

SELECT C1.Cid AS Conceptl, C2.Cid AS Concept2, C2.0bjects C20bjects
DIMENSIONS Concepts C1, C2
FROM Basic_Concepts F
WHERE F.Cid <<= C1.Cid AND
€2.Cid < C€1.Cid AND
C1.Cid IN ( SELECT C.Cid
DIMENSIONS Concepts C
FROM Basic_Concepts F
WHERE F.Cid <<= C.Cid
GROUP BY C.Cid
HAVING COUNT(C.Objects) > 2 )

GROUP BY C1.Cid, C€2.Cid

Taking into consideration the result of query Q2, it is easy to infer what the result of Q3
will be: For all tuples in the result of Q2, give the Cid of its immediate child. The result is

given in the following table:
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Conceptl | Concept2 | C20bjects
C9 C8 {1,2}
9 Ch {2,3}
C10 C8 {1,2}
C10 C6 {1,4}
C12 Ch {2,3}
C12 c7 {5}
top C9 {1,2,3}
top C10 {1,2,4}
top C11 {4,5}
top C12 {2,3,5}
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Chapter 6

Conclusions

In this work, we studied ways of putting Reverse Engineering and Data Warehousing tech-
niques together. Software reverse engineering techniques try to capture the structure of,
usually, undocumented systems so that their understanding and maintenance become eas-
ier. On the other hand Data Warehousing, and specifically On-Line Analytical Processing
systems, provide the appropriate means to pose complex, ad hoc, queries on information

extracted by reverse engineering tools.

We first investigated how several graph—theoretical algorithms can be used in order to
analyze and partition graph structures that are extracted from reverse engineering tools,
such as Rigi and the The Software Bookshelf. Most of these algorithms proved to be inef-
ficient to implement due to time and space constraints and the nature of the graphs that
appear in the results. Most important is the fact that those algorithms do not reveal any
hierarchical structure of the underlying system.In the following chapters, we described how
On—Line Analytical Processing systems handle situations where hierarchies exist. A large
number of researchers have been involved in the study of such systems so as to make their
modeling and querying easier for the naive user. These systems are basically employed by
decision makers who search for trends and future estimates about their company’s critical
parameters. To the best of our knowledge OLAP systems have never been comprehensively

studied and employed in the field of reverse engineering.
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This thesis presented a new multidimensional model for hierarchical clustering and
concept analysis algorithms. Both types of algorithms are often used by software engineers
and their results yield interesting observations about the systems under consideration. How-
ever, they have never been able to store these results in a natural and easy to use manner.
Our model is the basis for optimal storage and natural way of querying this data. Further-
more, we extended the work by Jagadish, Lakshmanan and Srivastava [JL.S99], in order to
give a more general multidimensional model which provides first—class status to dimensions.
The basic intuition is that the algorithms mentioned above may give different results un-
der different parameters, or given different versions of the same program. The extensions

comprise:

e A more general structure for the hierarchical domain of a certain type of attributes,

called hierarchical attributes; and

e A refined definition of the notion of levels in this model, so that tuples may appear in

any table of a hierarchy.

Therefore, the hierarchy of levels can be extracted by the hierarchical domain of the hier-
archical attributes and if new levels appear in the conceptual level, the hierarchy schema
does not need to be changed.

The work presented in this thesis can be extended in several ways. We focus on the
evaluation of complex OLAP queries posed over the ESQL(H) model. In [JLS99], a new
algorithm based on bitmap indices is given in order to compute queries that include the
<<= and = hierarchical predicates. This algorithm does not need to be further extended
for ESQL(H) queries because it is based on a preorder traversal of the hierarchical domain.
In ESQL(#) the hierarchical domain is a partial order where such a traversal can be defined.
However, we need to consider algorithms for evaluating queries including the < hierarchical
predicate. Bitmap indices could help, and moreover, they can provide the appropriate
background for the faster evaluation of queries that entail COUNT and SUM aggregate

functions in their SELECT or HAVING clauses.
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