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Abstract
Data mining aims at extracting useful information from
large datasets. Most data mining approaches reduce the
input data to produce a smaller output summarizing the
mining result. While the purpose of data mining (extract-
ing information) necessitates this reduction in size, the
loss of information it entails can be problematic. Specif-
ically, the results of data mining may be more confus-
ing than insightful, if the user is not able to understand
on which input data they are based and how they were
created. In this paper, we argue that the user needs ac-
cess to the provenance of mining results. Provenance,
while extensively studied by the database, workflow, and
distributed systems communities, has not yet been con-
sidered for data mining. We analyze the differences be-
tween database, workflow, and data mining provenance,
suggest new types of provenance, and identify new use-
cases for provenance in data mining. To illustrate our
ideas, we present a more detailed discussion of these con-
cepts for two typical data mining algorithms: frequent
itemset mining and multi-dimensional scaling.

1 Provenance for Data Mining

While some related work from the data mining commu-
nity has considered techniques for visualizing mining
results [8], evaluating their interestingness [13], or
detecting causal relationships [20], there are no tools
that compute mining provenance, that is, the reasons
for why and how a certain result was produced. Similar
to provenance for databases or workflows, data mining
provenance could be defined in different ways with
different use-cases in mind. Before discussing the
requirements, challenges, and use-cases, note that this
paper focuses on provenance for data mining, which is
unrelated to previous approaches that apply data mining
techniques to compute or analyze provenance [7].

Many provenance models define provenance as a sub-
set of the input data that caused an output of interest
to appear in the result of a transformation. For exam-
ple, a standard database provenance model named Why-
provenance [6] considers a set of input tuples of a query
to be in the provenance of an output tuple if they are
sufficient to derive the output through the query. Other
provenance models use necessity, preservation of equiv-
alence [12], or causality [6] to model these data depen-
dencies between inputs and outputs. For simplicity, and
lack of a better term, we will refer to all these models as
forms of why-provenance.

Why-provenance. The concepts underlying relational
why-provenance models (sufficiency, necessity, preser-
vation of equivalence, and causality) are also meaningful
for data mining. Retrieving the inputs that influenced a
result is especially useful for data mining, because most
data mining algorithms generate a small and condensed
result from a large input data set. While this reduction
is in line with the purpose of data mining (finding useful
information in data), it can be problematic, because data
reduction is lossy. Provenance can help to selectively
recover this information for an output of interest, thus,
helping us to better understand the result. Efficiently
generating why-provenance for data mining techniques
may not be trivial, because of the large number of in-
puts that influence a result. Furthermore, unless we can
generalize the processing of data mining algorithms in
terms of their provenance behaviour, efficient approaches
for provenance generation would have to be developed
from scratch for each such algorithm. One idea to ex-
plore in this context is to model data mining operations
as workflows or database queries and use standard fine-
grained provenance models from these application do-
mains. However, this approach may not be applicable to
all data mining algorithms and could be less efficient than
specialized provenance tracking algorithms for data min-
ing. While traditional why-provenance can be adapted
for data mining, its usefulness is limited by the fact that
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(1) the inputs of a data mining algorithm may have been
heavily preprocessed and (2) that they do not exploit con-
textual information.
Tracing provenance through preprocessing. Mining
is often preceded by preprocessing such as feature ex-
traction, de-duplication or cleaning. Thus, in addition to
tracing the provenance of a mining result back to the rele-
vant inputs, we may want to further track the provenance
of the input data through preprocessing steps. Since, pre-
processing is often expressed as a workflow (e.g., us-
ing an ETL tool) it may be possible to adapt existing
workflow provenance approaches such as VisTrails [5],
Kepler [4], Taverna [10], or the approach from Amster-
damer et al. [3] for this purpose.
Enriching provenance with “contextual” data. Tradi-
tional mining algorithms do not use “contextual” data.
For example, assume we are applying a classification al-
gorithm to a data set of Facebook pictures to determine
whether photos depict flowers. The algorithm is applied
to the raw image data. If additional information about a
photo, such as the location or timestamp are available, we
could associate it with the provenance (the input photos).
For instance, we may realize that photos of flowers taken
with snow in the background (cold locations) are often
not recognized as flowers. Contextual data is often more
useful and manageable than the actual “raw” provenance
and, thus, can aid in dealing with the large amounts of
provenance related to data mining results (for an example
see Section 2). Which part of the context is needed may
vary from use-case to use-case. The provenance system
should thus enable us to choose the context.
Responsibility for data mining provenance. Certain
data mining algorithms, such as clustering, generate a
small number of outputs from large input data sets. For
instance, the k-means [16] clustering technique generates
exactly k outputs (the clusters) from an arbitrary number
of inputs. Naturally, we can assume that some points in-
side a cluster have higher influence in its creation than
others. Pure why-provenance is not very useful for such
algorithms, because each output will depend on a large
number of inputs and the influence of an input on the
result is not modelled. Attributing an “amount of in-
fluence” to an input has been modeled as responsibility
for boolean expressions - an approach that was recently
adopted to database provenance [17] . We argue that it
can equally be adopted in data mining provenance. For
instance, the responsibility model mentioned above de-
fines responsibility of an input tuple t with respect to an
output tuple o and query q as the inverse of the mini-
mum number of inputs that have to be removed (called
the minimal contingency [17]) before the input t becomes
a counterfactual cause, i.e., the removal of t causes the
output o to be removed from the result of q. At first sight,
this concept seems to be directly translatable to data min-

ing algorithms. In clustering, the responsibility of a data
point p can be defined as the number of points that we
need to remove before p, such that the cluster (contain-
ing p) is removed from the output. However, p will al-
ways be in some cluster if the clustering represents all
data. Hence, to develop a notion of responsibility for
clustering, we need to consider the change in the clus-
ter structure after removing one or more points from the
input data. For instance, we may consider each point
p in a cluster as a cause and calculate its responsibility
as the amount of change to the clustering that is caused
by removing p. For k-means the change could be de-
fined as the distance between an original cluster mean
and a new mean after removal of point p. In contrast to
the responsibility model mentioned above, this definition
would not take interdependencies between inputs into ac-
count (which requires a notion of contingency). Extend-
ing this idea, we could consider every set of points as
a contingency and calculate the responsibility of a point
according to a given contingency in the same manner as
for causes, but computed over the clustering that is gen-
erated from the input minus the contingency. The global
responsibility of a point can then be defined as the sum of
responsibilities for all potential contingencies (weighted
by the size of the contingencies and normalized by the
total number of possible contingencies).

In summary, existing notions of responsibility would
have to be recast and adapted for data mining. Re-
sponsibility provides a natural way to extract interest-
ing parts from the provenance (we might only return the
top-k inputs in the provenance according to responsibil-
ity) and, thus, may be used to address the problem of
large amounts of provenance attached to a single result.
The latter is particularly interesting in clustering since by
ranking the influence of input tuples we are able to better
understand the cluster quality. If all responsibility scores
are similar for the points in a cluster, this means that its
quality is high. In other words, it is not easy to find a
point to remove from it, without taking away valuable
information responsible for its creation.
Parameter vs. Data Responsibility. Most mining algo-
rithms are sensitive to changes in input parameters such
as the number of clusters k for k-means clustering [16],
the minimum support for frequent itemset mining [2],
the distance measure for density based clustering algo-
rithms, or the number of dimensions and fitness-measure
for multidimensional scaling [14]. We could define no-
tions of responsibility that exclusively capture the re-
sponsibility of data (as discussed above), or alternatively,
new notions that model the relative dependence of a re-
sult on the data vs. parameter settings (see Section 3 for
an example). Conceptually, this type of responsibility is
related to approaches in clustering that measure how sta-
ble a clustering is as parameters change [15].
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How- and process-provenance. So far we have limited
the discussion to data provenance, i.e., which parts of the
input data influence an output. Workflow provenance and
certain types of database provenance (provenance poly-
nomials [12] and transformation provenance [9]) model
in which way the relevant input data is used by the trans-
formation or which parts of a transformation (e.g., a
workflow) influence the result. This type of provenance,
which has been called process provenance and some-
times has been termed how-provenance (when record-
ing the disjunctive and conjunctive use of data in prove-
nance polynomials), may also be useful in a data mining
context. Another line of provenance research that could
be applied for this purpose are adaptations of program
analysis techniques for provenance (e.g., [18]). Consider
the iterative k-means clustering algorithm. Starting from
randomly chosen cluster means, the algorithm repeats
the following two steps until the solution converges. In
the first step, each point is assigned to the cluster with the
nearest mean according to some given distance function.
Then, a new mean for the cluster is computed and this
becomes the new centroid of the points in it. One preva-
lent problem in clustering is handling data sets that con-
tain outliers, that is, points far from their cluster centroid.
For example, k-means clustering is sensitive to outliers,
because outliers have a disproportionately large effect on
cluster means. Assume we define the how-provenance
of a point in a cluster produced by k-means as the list of
means to which it has been assigned by the algorithm. If
we combine how-provenance with a notion of responsi-
bility, the effect of outliers can be detected easily. For
example, assume we expected two points to be in differ-
ent clusters, but the algorithm assigned them to the same
cluster. We could search for points that have high respon-
sibility for a mean that is in the how-provenance of both
points. Such a point may be an outlier that caused the
two clusters to be merged.

Provenance for missing results. Extensions of (mostly
database) provenance techniques have been used to de-
termine why a particular answer is not in the result of a
transformation (query). Conceptually, these approaches
can be classified into two categories: 1) approaches that
compute a change to the input data that would cause the
missing answers to appear in the result and 2) approaches
that determine how to change the query to cause the
missing result to show up. The first type can be more
or less directly applied to clustering algorithms. The
second approach could be adapted to compute how to
tweak the parameters of the mining algorithm to gener-
ated the missing result. However, both approaches would
be prohibitively expensive if we have to rerun a mining
algorithm for each modification to the input or param-
eters. These approaches require incremental adaptation
of mining results based on changes to the inputs and pa-

rameters. This idea has been used by Ikeda et al. [11]
to provide incremental maintenance for workflows based
on provenance. Recent work in duplicate detection com-
pactly represents multiple de-duplicated data sets pro-
duced from different parameter settings for a duplicate
detection algorithm. Arguably, similar ideas could be ap-
plied for data mining provenance.

In summary, we analyzed how existing notions of
provenance may transfer to data mining, outlined new
types of provenance that are useful in a data mining con-
text, and sketched challenges for realizing provenance
management for such algorithms. In the remainder of
the paper, we discuss more concrete versions of these
concepts for two specific data mining algorithms.

2 Frequent Itemset Mining

One of the most prevalent data mining tasks is Frequent
Itemset Mining (FIM). Given a set of transactions that
are sets of items from a fixed domain D of items, FIM
computes subsets of D, called frequent itemsets, which
appear in a fraction of transactions above a certain mini-
mum support threshold σ .
Why-provenance. The why-provenance of a frequent
itemset should model which input transactions are used
to construct an output frequent itemset. Arguably, the
transactions in the input that contain an itemset I caused
I to be frequent. Thus, we could simply define this set of
transactions to be the why-provenance of I.

Definition 1 (Why-Provenance) The why-provenance
W (I) of an itemset I in a database D is the set of trans-
actions containing I: W (I) = {t|I ⊆ t ∧ t ∈ D}.

FIM is an example of a mining algorithm that oper-
ates on a preprocessed input. Usually we can expect
the database containing transaction data to store addi-
tional information about each transaction (e.g., informa-
tion about the customer or the store). A meaningful
why-provenance model should link this contextual infor-
mation with the provenance. We envision a provenance
management system for FIM that allows a user to select
what part of the available data should be linked to the
transactions in the why-provenance of a frequent itemset
and to ask queries over this information.

Example 1 A popular example in the frequent itemset
mining literature is a survey [1] studying the behavior
of young supermarket shoppers. This survey noted that
{Diaper, Beer} is a frequent itemset, i.e., these items
are often bought together by shoppers. Though {Diaper,
Beer} may be interesting as it is an unexpected result, to
interpret this result we may want to understand why it
is frequent. Using our definition of why-provenance, we
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would say it is frequent because it appears in a specific
set of perhaps one million transactions. However, this
set alone does not give us much insight.

The actual source of the {Diaper, Beer} story [1]
cites that this frequent itemset comes from analyzing data
from only 25 OSCO drug stores, between 5:00PM and
7:00PM. This information is part of the provenance in-
formation for the {Diaper, Beer} itemset as it describes
(more intuitively to a human) the set of transactions
which contributed to making {Diaper, Beer} frequent.
Being able to link the why-provenance with such contex-
tual information (such as the stores in which the transac-
tions took place), can add tremendous value to the min-
ing results. Given a system as envisioned above, the user
can retrieve the why-provenance of an itemset and also
specify what attributes should be used to describe the
provenance to get a more concise (and understandable)
description of the why-provenance.

How-provenance. For queries, how-provenance ex-
plains how tuples are used and combined in a query. In
FIM, transactions are not combined in complex ways,
rather it is the way items are combined within trans-
actions that determines what itemsets will be frequent.
Hence, for itemsets, we want to explain how items and
sets of items co-occur and to give insight into how the
transactions supporting an itemset (the why-provenance)
are actually giving evidence for the itemset [19].

3 Multi Dimensional Scaling

Multi-dimensional Scaling [14] (MDS) maps a set
of observations with pair-wise similarities into an m-
dimensional space so that the distance of the points rep-
resenting the observations in that space reflects the pair-
wise similarities. MDS algorithms usually use a fitness
measure to model how well the input similarities are pre-
served by a mapping. Thus, an MDS problem can be
represented as an optimization problem where the goal
is to find a solution (layout) with maximal fitness. An
example application for MDS is marketing. Customers
are asked to rate similarities of products and concepts
(e.g., how “classy” is a car) and MDS is used to create a
two-dimensional layout that depicts these similarities.

MDS is an example of a data mining algorithm that ex-
tracts relevant information from the input by compress-
ing it while trying to preserve the characteristics of the
input data. This concept has also been applied by other
data mining approaches including dimensionality reduc-
tion techniques such as principal component analysis.
The loss of information entailed by the compression may
cause misinterpretations. For example, if two cars are
close in the layout this either means that they are con-
sidered similar (according to the similarity matrix gen-

erated from customer perceptions) or that they were put
close together because this maximized the fitness (or any
combination of these two causes).

Even simple why-provenance, e.g., defining the why-
provenance of a set of points in the layout as their
original pair-wise similarities, would help to distinguish
between actual similarities in the data and similarities
that are artifacts of the fitness-measure. More complex
responsibility-style provenance could be used to further
explain which other similarities or parts of the fitness-
measure or algorithm caused the similarity in the layout
to differ from the “real” similarity.

4 Conclusions

In this paper, we discuss how traditional notions of prov-
enance translate to data mining. We identify new use-
cases, the need for novel types of provenance that can
be used to better interpret data mining results, and the
need to analyze to what extent a result is based on the
data vs. based on the parameter choices for the algo-
rithm. We consider how the concept of responsibility
may be adapted for data mining algorithms by consid-
ering gradual changes to a specific result instead of the
existence of that result in the output. We argue that prov-
enance should be enriched with contextual information
to improve its utility and to make the large amounts of
provenance generated for mining results more manage-
able. By means of two use cases - frequent itemset min-
ing and multidimensional scaling - we illustrate these
generic concepts on concrete mining algorithms.
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