
Detecting Correlated Columns in Relational Databases
with Mixed Data Types

Hoang Vu Nguyen• Emmanuel Müller•◦ Periklis Andritsos� Klemens Böhm•

•Karlsruhe Institute of Technology (KIT), Germany
{hoang.nguyen, emmanuel.mueller, klemens.boehm}@kit.edu

◦University of Antwerp, Belgium �University of Toronto, Canada
emmanuel.mueller@uantwerp.be periklis.andritsos@utoronto.ca

ABSTRACT
In a database, besides known dependencies among columns (e.g.,
foreign key and primary key constraints), there are many other cor-
relations unknown to the database users. Extraction of such hidden
correlations is known to be useful for various tasks in database op-
timization and data analytics. However, the task is challenging due
to the lack of measures to quantify column correlations. Correla-
tions may exist among columns of different data types and value
domains, which makes techniques based on value matching inap-
plicable. Besides, a column may have multiple semantics, which
does not allow disjoint partitioning of columns. Finally, from a
computational perspective, one has to consider a huge search space
that grows exponentially with the number of columns.

In this paper, we present a novel method for detecting column
correlations (DECOREL). It aims at discovering overlapping groups
of correlated columns with mixed data types in relational databases.
To handle the heterogeneity of data types, we propose a new cor-
relation measure that combines the good features of Shannon en-
tropy and cumulative entropy. To address the huge search space,
we introduce an efficient algorithm for the column grouping. Com-
pared to state of the art techniques, we show our method to be more
general than one of the most recent approaches in the database lit-
erature. Experiments reveal that our method achieves both higher
quality and better scalability than existing techniques.

1. INTRODUCTION
In relational databases, there are different types of column de-

pendencies, e.g., foreign key and primary key constraints, condi-
tional functional dependencies. Besides, columns can be correlated
while not having any explicit value association. This is because
from a design point of view, databases tend to use several columns
with different representations to capture correlated information: zip
codes, cities, states, longitudes, and latitudes. Second, correlations
among columns also naturally emerge due to their statistical prop-
erties, e.g., in TPC-H the status of an order and the date it is placed
are correlated while their value domains apparently do not have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’14, June 30 - July 02 2014, Aalborg, Denmark
Copyright 2014 ACM 978-1-4503-2722-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2618243.2618251

anything in common [34]. Another example of column correlations
and their importance in real-world applications is given below.

EXAMPLE 1. The facility management at our university (KIT)
collects and stores energy consumption indicators, e.g., electricity,
gas, and heating. Besides the explicitly specified column depen-
dencies, there are correlations among the real-valued consumption
indicators themselves, with the total area of buildings (real-valued
numerical), the number of employees in buildings (discrete numer-
ical), and the location of buildings (categorical). Such correlations
are unknown a priori. However, they are highly interesting to and
useful for the facility management. First, they help the management
to better understand the data. Second, they facilitate the discovery
of interesting patterns in consumption indicators by steering the
management’s focus to groups of correlated columns. Third, facil-
ity management can create materialized views based on interesting
column correlations extracted for efficient data exploration [29].
Lastly, column correlations can be exploited to construct predic-
tion models to monitor energy consumption and hence, save the
management from investing in new energy smart meters.

Besides the scenario described in Example 1, column correla-
tions are also useful for relational databases from other domains. In
particular, for database research, column correlations are known to
be useful for schema matching/extraction [3, 13], index recommen-
dation [15], query optimization (e.g., selectivity estimation) [31],
and other efficiency improvements (by creating materialized views,
data partitions, etc.). Regarding schema matching and extraction,
as shown later (Section 7), groups of correlated columns encom-
pass various types of column relationships, such as: (a) foreign
key and primary key constraints, (b) two foreign keys referring to
the same primary key, (c) a column in a base table and its derived
columns in views, (d) two columns in two views originating from
the same column in a base table, and (e) columns with no explicit
relationship but semantically correlated. Besides, detecting groups
of correlated columns also assists data analytics in, e.g., clustering
high dimensional databases [24], and association analysis [20].

However, discovering groups of correlated columns is difficult
due to several open challenges. First, since databases store informa-
tion in different formats, one needs a correlation measure that can
handle different data types, namely, real-valued numerical, discrete
numerical, and categorical. Existing work either focuses only on
the two latter types [4, 9] or is applicable to only the first type [23,
24]. Columns with heterogeneous data types in turn abound in
many real-world databases.

Second, it is unclear how to decide if a group of columns with
arbitrary data types is correlated. Besides being inapplicable to all

three data types, existing work focuses on pairwise correlation anal-
ysis. However, correlations among columns usually are multi-way
(also called ‘mutual’). Examples of mutual correlations include
composite keys and hence, composite functional dependencies [8,
30] where several columns functionally govern other columns.

Third, a column may have multiple semantics making disjoint
partitioning of columns undesirable. For instance, in our Energy
database, the electricity column belongs to a group representing
the interaction between energy consumption and time. It is also
part of a group capturing the correlation between energy consump-
tion of buildings and their characteristics (e.g., total area, loca-
tion). Hence, a grouping where columns may participate in mul-
tiple groups is required. Recent studies [3, 12, 34] target disjoint
groupings and do not address this issue.

Fourth, the induced search space grows exponentially with the
number of columns. It does not have any explicit (anti-)monotonicity
property as correlation scores in general are not (anti-)monotonic [27,
35]. Thus, techniques reminiscent of the Apriori search [8, 14, 24,
30] are inapplicable. Work not relying on the Apriori search, such
as [23], however focuses exclusively on numerical data. This leaves
space for further research on how to efficiently detect groups of cor-
related columns in mixed data typed databases.

Finally, when mining overlapping groups, one may end up with
a large number of groups, which essentially convey similar infor-
mation regarding the underlying database. This hinders manual in-
spection and post-analysis, e.g., when the facility management of
KIT wants to select a few interesting groups for further analysis.
Most existing studies [8, 14, 24, 30] do not take this into account
and overwhelm users with redundant output.

We address all five challenges by proposing DECOREL, our novel
method for Detecting Column Correlations. In short, to tackle the
large search space without any explicit (anti-)monotonicity prop-
erty, we show that one can find mutual correlations through pair-
wise correlations. Based on this result, DECOREL solves the prob-
lem based on efficient pairwise correlation analysis in a graph of
database columns. This helps DECOREL to both achieve high qual-
ity of groups detected and scale for large databases. For correlation
analysis, we propose CORR—our novel pairwise correlation mea-
sure that works with both cumulative distribution functions and
probability mass functions, i.e., it is applicable to different data
types. To ensure succinctness of the output, we present a method
based on the Minimum Description Length principle [7]. It pro-
duces a lossless summary of the groups output, and achieves up to
an order of magnitude size reduction ratio in our experiments.

Overall, we make the following contributions:
(1) We show the feasibility of estimating mutual correlations by
pairwise correlations. Thereby, we transform the search space into
a column graph based on pairwise correlations. We efficiently mine
this graph to find overlapping groups of correlated columns.
(2) We introduce a new correlation measure that is applicable to
different data types, in particular, real-valued numerical, discrete
numerical, and categorical. We describe how to compute our mea-
sure efficiently on empirical data.
(3) We present an MDL-based output summarization phase, which
is geared towards guaranteeing succinctness of output groups, and
hence, facilitates manual inspection and post-analysis.
(4) As an example of the generality and applicability of correla-
tion analysis to discovering column relationships, we show that our
correlation test is more general than a state of the art distribution
test [34], and hence, can discover column relationships missed by
previous approaches.
(5) Experiments on both synthetic and real-world databases show
DECOREL to achieve higher quality than existing methods, in par-

ticular when handling databases with mixed data types. Further,
DECOREL also outperforms competitors in terms of scalability
with both the database size and the number of columns.

Our paper is organized as follows. Section 2 covers related work.
Section 3 provides preliminaries and general notions. Section 4
gives the details of our correlation measure. Section 5 explains how
to find mutual correlations through pairwise correlations. Section 6
describes our algorithm for grouping correlated columns. Section 7
presents our analysis on the generality of DECOREL compared to
a recent approach [34]. Section 8 reports our empirical study. Sec-
tion 9 concludes the paper with directions for future work.

2. RELATED WORK
ECLUS [34] groups database columns that have similar distri-

butions. It differs from DECOREL in many aspects. First, it uses
the EMD test [18] which is bound to discover groups of columns
with the same data type and overlapping value domains. A detailed
analysis on this issue is given in Section 7. Second, it only detects
non-overlapping groups and hence, misses other semantics that a
column may have.

CORDS [9] mines overlapping pairs of correlated columns. Nev-
ertheless, it lacks a mechanism to combine those pairs into larger
meaningful groups. In addition, its χ2 test is only applicable to dis-
crete and categorical data. DECOREL in turn detects overlapping
groups of two or more columns and is applicable to real-valued,
discrete, and categorical data.

GORDIAN [30] and DUCC [8] aim at finding overlapping com-
posite primary keys. That is, unlike DECOREL, they do not detect
groups of columns that are correlated but do not form any key.

Finding overlapping groups of correlated columns is also ad-
dressed by selectivity estimation methods, such as [31]. Neverthe-
less, for efficiency reasons, they keep the group sizes small (typi-
cally 2). Thus, their goal is not to optimize the quality of groups.
In contrast, DECOREL discovers groups that are potentially use-
ful for multiple purposes, e.g., selectivity estimation. Applying
DECOREL to each specific task is a subject of our future work.

Clustering relational columns has also been explored in [1]. It
groups columns based on generic data types. The type informa-
tion of columns is captured using q-grams. Thus, this method can
also benefit DECOREL when there is insufficient information to
correctly identify data types of columns.

Performing correlation analysis in relational database schemas
has already been studied in, for example, [9, 13, 33]. However,
existing techniques resort to either the χ2 test, or the traditional
information theoretic correlation measures (e.g., mutual informa-
tion). These measures are in turn designed specifically for discrete
and categorical data. Hence, they are unable to handle real-valued
data well. DECOREL in contrast works on mixed data types, i.e.
with both cumulative distribution functions and probability mass
functions. Thus, it is able to avoid the limitations of existing corre-
lation measures.

Mining groups of correlated columns can be seen as mining cor-
related subspaces. Most existing solutions [5, 14, 24] model the
search space as a lattice and explore it in an Apriori manner. Nev-
ertheless, this assumption does not always hold since correlation
scores in general are not (anti-)monotonic [27, 35]. Moreover,
Apriori search also suffers from efficiency issues and tends to de-
tect only fragments of high dimensional correlated subspaces [23].
Non-levelwise search does exist [23], however focuses exclusively
on numerical data. DECOREL in turn is both efficient and able
to detect groups of correlated columns in databases with heteroge-
neous data types.

3. PRELIMINARIES
Let R be the set of relations in the database. We write C as

the set of all columns in R. We regard each column C ∈ C as
a random variable with a distribution p(C). For notational conve-
nience, we use C to represent both the column C and its associated
random variable. If C is discrete or categorical, p(C) is named
the probability mass function (pmf for short). Otherwise, i.e., C is
real-valued, p(C) is called the probability density function (pdf for
short). Let g = {Ci}di=1 ⊆ C be a group of columns. We write
p(C1, . . . , Cd) as the joint probability function of all columns in g,
or of g for short. If g contains all discrete, or all categorical, or a
mix of discrete and categorical columns, p(C1, . . . , Cd) is a pmf.
If g contains all real-valued columns, p(C1, . . . , Cd) is a pdf. For
simplicity, we call it probability function in any case.

A correlation function CORR assigns each group g with at least
two columns a non-negative real-valued correlation score, denoted
as both CORR(g) and CORR(C1, . . . , Cd). In principle, CORR(g)
quantifies the extent to which its joint probability function differs
from the product of its marginal probability functions [27]. The
larger the difference, the higher CORR(g) is, i.e., the more corre-
lated the columns of g are. When g has a high correlation score,
we regard g to be a group of correlated columns. In that case, the
columns of g are (a) mutually (multi-way) correlated if g has more
than two columns, and (b) pairwise correlated otherwise. (We dis-
cuss later how to decide if a correlation score is high.) When the
context is clear, we omit ‘pairwise’ and ‘mutually’.

To facilitate our discussion, we now review two popular correla-
tion measures: mutual information (for two columns only) and to-
tal correlation (for more than two columns) [6]. They are based on
(differential) Shannon entropy and are widely used in the database
literature [13, 31, 33]. Their definitions are as follows:

DEFINITION 1. (MUTUAL INFORMATION) The mutual infor-
mation of two columns C1 and C2 is

I(C1, C2) = H(C1)−H(C1|C2) = H(C2)−H(C2|C1)

where H(.) is the (differential) Shannon entropy.

DEFINITION 2. (TOTAL CORRELATION) The total correlation
of {Ci}di=1 is

T (C1, . . . , Cd) =

d−1∑
i=1

H(Ci+1)−H(Ci+1|C1, . . . , Ci) .

To ease presentation, we first describe CORR in the next section.
Then we explain the intuition of reasoning about mutual correla-
tions by means of pairwise correlations in Section 5. Finally, we
introduce our efficient group discovery algorithm in Section 6.

4. OUR CORRELATION MEASURE
As a basic building block of our method, we present our corre-

lation measure in this section. Our general goal is to mine groups
with arbitrary numbers of correlated columns. Yet we will show
later that one can find such groups by analyzing pairs of correlated
columns. As a result, our CORR measure of correlation is pair-
wise (we describe how to form the joint distribution of two columns
in Section 4.3.1). To understand CORR, we first discuss the limi-
tations of mutual information and total correlation on real-valued
data. For brevity, we focus on mutual information. However, the
same arguments hold for total correlation.

4.1 Issues of Mutual Information

In short, mutual information is unsuited for real-valued columns
in both theoretical and practical aspects. From a theoretical point
of view, for two columns X,Y ∈ C, I(X,Y) ≥ 0 with equal-
ity iff X and Y are independent, i.e., p(X,Y) = p(X) · p(Y).
Intuitively, the more X and Y are correlated, the lower the condi-
tional entropies H(X|Y) and H(Y |X) are, i.e., the higher their
mutual information (see Definition 1). Thus, a high mutual in-
formation score often indicates a correlation between X and Y .
We use the word often because Shannon entropy, a constituent el-
ement of traditional mutual information, is only well defined for
discrete/categorical data. Its continuous form (differential entropy)
suffers from some unexpected properties, such as [26]: (a) it can be
negative, and (b) that the differential entropy of X given Y equals
to zero does not imply that X is a function of Y . Thus, unlike
the discrete/categorical case, a high mutual information score be-
tween real-valued X and Y , though indicating that X and Y are
correlated, conveys less information on their actual correlation. In
particular, it does not say if X is a function of Y or vice versa.

From a practical point of view, to compute mutual information
for the real-valued case, we need the pdfs, which usually are un-
available and need to be estimated, e.g., by discretization. Such an
estimation in turn tends to produce overly simple or complex his-
tograms due to the lack of knowledge on the number and width of
histogram bins. As a consequence, computing mutual information
on real-valued data may cause inaccurate correlation scores, i.e.,
wrong groupings of columns.

To overcome the problems of mutual information, next we intro-
duce a specific handling of real-valued columns based on cumula-
tive entropy—a substitute of Shannon entropy for real-valued data.

4.2 Cumulative Entropy
To address the drawbacks of differential entropy and hence, mu-

tual information on real-valued data, we propose to work with cu-
mulative distributions that can be computed directly on empirical
data. In particular, we aim at a notion of entropy defined using
cumulative distributions of real-valued columns. Therefore, we in-
troduce cumulative entropy (CE), as follows:

DEFINITION 3. (CUMULATIVE ENTROPY CE) The cumula-
tive entropy of a real-valued column X , denoted as h(X), is

h(X) = −
∫
P (X ≤ x) logP (X ≤ x)dx .

Our notion of cumulative entropy is based on [26, 24]. Similarly
to differential entropy, the cumulative entropy of X captures the
amount of uncertainty contained inX . Differently from differential
entropy, it is defined based on the cumulative distribution P (X ≤
x). Since 0 ≤ P (X ≤ x) ≤ 1, we obtain h(X) ≥ 0 (we adopt
the standard convention that 0 log 0 = 0 [20]). This means that
CE is always non-negative, just like Shannon entropy defined on
discrete/categorical data. The conditional CE is given as.

DEFINITION 4. (CONDITIONAL CE) Consider a column Y .
If Y is discrete or categorical, then

h(X|Y) =
∑

h(X|y)p(y)

where p(Y) is the pmf of Y . Otherwise,

h(X|Y) =

∫
h(X|y)p(y)dy

where p(Y) is the pdf of Y .

The conditional CE has two important properties as follows.

THEOREM 1. First, h(X|Y) ≥ 0 with equality iffX is a func-
tion of Y . Second, h(X|Y) ≤ h(X) with equality iff X is inde-
pendent of Y , i.e., p(X,Y) = p(X) · p(Y).

The proof of Theorem 1 is available on our website.1 These two
properties of CE are identical to those of Shannon entropy on dis-
crete and categorical data. Thus, CE is a reliable replacement of
differential entropy on real-valued data. Following [24], h(X) can
be computed in closed form. We now proceed to introduce CORR.

4.3 Correlation Measure CORR

Our correlation measure CORR essentially combines the nice
properties of both Shannon entropy and cumulative entropy. In
particular, assume that we want to measure the correlation between
two columns X and Y . CORR(X,Y) is defined as:

DEFINITION 5. (CORRELATION MEASURE CORR) CORR(X,Y)
is equal to

• H(X)−H(X|Y) if X is categorical,

• h(X) − h(X|Y) if X is numerical (either real-valued or
discrete).

Note that if Y is discrete or categorical, then

H(X|Y) =
∑

H(X|y)p(y) .

Otherwise,

H(X|Y) =

∫
H(X|y)p(y)dy .

Since CORR(X,Y) may not be equal to CORR(Y,X), CORR is
asymmetric. This is beneficial for analyzing asymmetric depen-
dencies among columns; one of which is the functional depen-
dency [9]. For instance, zip code functionally determines the city
name but the reverse may not be true.

EXAMPLE 2. Consider our Energy database from Example 1.
Let E be the column capturing the electricity consumption (real-
valued) of each building, N be the column for its number of staffs
(discrete), and L be the column for its location (categorical). Fol-
lowing Definition 5, we have:

CORR(E,N) = h(E)− h(E|N)

CORR(E,L) = h(E)− h(E|L)

CORR(N,E) = h(N)− h(N |E)

CORR(N,L) = h(N)− h(N |L)

CORR(L,E) = H(L)−H(L|E)

CORR(L,N) = H(L)−H(L|N)

CORR is asymmetric, e.g., in general CORR(E,L) 6= CORR(L,E).

In Definition 5, whenX is numerical, we compute CORR(X,Y)
using CE since CE is applicable to both real-valued and discrete
data. This helps us to avoid further checks of data types. In reality,
database programmers sometimes declare discrete columns as real-
valued, and such a check may cost additional effort. We prove the
following result:
1
http://www.ipd.kit.edu/~nguyenh/ssdbm14-appendix.pdf

X
r d c

Y
r Case 1 Case 1 Case 1
d Case 2 Case 2 Case 2
c Case 3 Case 3 Case 3

Table 1: Matrix of computation. ‘r’ is for real-valued, ‘d’ for
discrete, and ‘c’ for categorical.

THEOREM 2. CORR(X,Y) ≥ 0 with equality iffX and Y are
statistically independent. CORR(X,Y) attains its maximal value
when X is a function of Y .

PROOF. If X is categorical, we have CORR(X,Y) = H(X)−
H(X|Y). Following [6],H(X) ≥ H(X|Y), i.e., CORR(X,Y) ≥
0. Equality happens iff H(X) = H(X|Y), i.e., X and Y are
statistically independent. In addition, CORR(X,Y) ≤ H(X) with
equality iff H(X|Y) = 0, which means X is a function of Y .

If X is numerical, we have CORR(X,Y) = h(X) − h(X|Y).
Using Theorem 1, we arrive at the results.

Based on Theorem 2, we derive the following lemma:

LEMMA 1. CORR(X,Y) > 0 iff p(X,Y) and p(X) · p(Y)
are different.

We will use Lemma 1 in Section 5 where we explain how to find
mutual correlations by means of pairwise correlations.

4.3.1 Forming joint distributions
Assume that we want to compute CORR(X,Y) where X and

Y are two columns. If X and Y belong to the same relation R,
their joint distribution is defined as the projection ofR onto (X,Y)
(duplicates are kept).

If X and Y belong to two different relations R1 and R2, re-
spectively, without any join relationship, their joint distribution is
undefined, and they are considered to be independent.

If R1 and R2 have some join relationship, then we form a joint
distribution for X and Y by performing a left outer join between
R1 and R2. In this scenario, the outer join is preferred to the inner
join since we want to punish unmatched values. The left outer join
is used to reflect the asymmetric nature of CORR.

4.3.2 Computing CORR on empirical data
Given the definition of the CORR measure, we now describe how

we compute it based on the type of the values stored in column Y .
A detailed mapping of which case to apply for CORR(X,Y) is
given in Table 1.

Case 1: Y is real-valued
W.l.o.g., we assume that X is categorical. The case for when X
is numerical follows similarly. To compute CORR(X,Y), we need
to compute H(X) and H(X|Y). Computing H(X) is straightfor-
ward. In the following, we focus on H(X|Y).

Due to the low support characteristic of real-valued data, each
specific realization y of Y may be unique. Hence, each tuple (x, y)
in the joint distribution of X and Y is likely unique [17, 28]. Ac-
cording to Definition 5, we have

H(X|Y) =

∫
H(X|y)p(y)

with H(X|y) = lim
ε→0+

H(X|y − ε ≤ Y ≤ y + ε).

Since the total number of recordsN in the joint distribution ofX
and Y is finite, the number of values in [y− ε, y+ ε] approaches 1

as ε→ 0+. As a consequence, we likely only have one tuple (x, y)
to compute H(X|y), i.e., H(X|y) vanishes. Hence, H(X|Y) be-
comes 0! This problem, named the empty space issue [17], also
happens when X is either real-valued or discrete.

EXAMPLE 3. Suppose that the joint distribution of X (cate-
gorical) and Y (real-valued) is as follows:

X orange red orange red orange red
Y 1.00 1.01 2.00 2.01 4.00 4.01

Sticking to the exact formula of H(X|Y), we have H(X|Y) =
1
6
H(X|Y = 1.00) + 1

6
H(X|Y = 1.01) + 1

6
H(X|Y = 2.00) +

1
6
H(X|Y = 2.01)+ 1

6
H(X|Y = 4.00)+ 1

6
H(X|Y = 4.01) = 0.

Thus, CORR(X,Y) = H(X)−H(X|Y) = 1−0 = 1. This result
is not accurate since it is due to small mismatches in the values of
Y—a scenario which is common for real-valued columns. A more
correct computation of H(X|Y) is given in Example 4.

To overcome the issue, we propose to construct a histogram for
Y . This is to increase the likelihood that we have enough points for
meaningful computation. Here, any histogram construction method
can be used, e.g., the equal-frequency method. One can also apply
more sophisticated methods such as the one we are going to pro-
pose here. In a nutshell, we search for the histogram of Y that
minimizes H(X|Y), i.e., maximizes CORR(X,Y), by dynamic
programming. The search can be done efficiently by considering a
reduced set of cut points while still guaranteeing high quality. For
more details on how to achieve this, see [28]. Using this method,
we can avoid setting a fixed number of histogram bins. Hence, we
achieve a histogram that closely reflects the true distribution of Y ,
i.e., under- and over-fitting are avoided. The detail of our histogram
search is available on our website.2

By means of histogram construction, we can overcome the empty
space issue and obtain a reliable estimation of H(X|Y).

EXAMPLE 4. Continuing Example 3. To simplify our illus-
tration, we here assume that the equal-frequency technique is ap-
plied where the number of bins is 3. Note, however, that in reality
our method does not require fixing the number of bins in advance.
DECOREL produces following bins for Y : b1 = [1.00, 2.00),
b2 = [2.00, 4.00), and b3 = [4.00, 4.01]. We have H(X|Y) =
1
3
H(X|b1)+ 1

3
H(X|b2)+ 1

3
H(X|b3) = 1. Thus, CORR(X,Y) =

H(X) − H(X|Y) = 1 − 1 = 0. We note that this result makes
sense sinceX is randomly distributed in any bin of Y , i.e., knowing
the value (bin) of Y tells us nothing about X .

Note that when forming the histogram for Y , we place its NULL
values (caused by the left outer join) into the same histogram bin.
We expect the values of X in this bin to be very disparate. In other
words, the NULL bin is expected to have high entropy/CE with
respect to X . Hence, CORR(X,Y) gets smaller. This helps us to
achieve our goal of punishing unmatched values between the two
columns.

Case 2: Y is discrete
The usual way would be to compute CORR(X,Y) as when Y is
categorical. However, this approach may be prohibitive if Y has a
large number of distinct values, for example, Y is an auto-generated
primary key. To boost efficiency, similarly to Case 1, we also con-
struct a histogram for Y . The rests thus are similar to Case 1.
2
http://www.ipd.kit.edu/~nguyenh/ssdbm14-appendix.pdf

5 3

2

4

1

Figure 1: Example of an independence graph for a group g =
{C1, C2, C3, C4, C5}.

Case 3: Y is categorical
Since categorical columns have straightforward distributions and
thus information theoretic calculations, we omit further details of
how to compute CORR(X,Y).

5. FROM PAIRWISE TO
MUTUAL CORRELATION

Since our goal is to detect groups of any size, we need to compute
mutual correlations efficiently. In this section, we explain how to
find mutual correlations through pairwise correlations. Our results
are based on the theory of independence graphs [32].

5.1 Independence Graph
Consider a group g = {Ci}di=1. Using CORR, we compute its

pairwise correlation scores. Then, following [22, 31], we construct
an independence graph G for g. In short, G = (V, E) with V =
g = {Ci}di=1 (i.e., each column is a node) is undirected, acyclic,
connected, and (Ci, Cj) /∈ E ⇔ Ci⊥Cj | V \ {Ci, Cj}. That is,
two columns Ci and Cj not connected by an edge are regarded as
conditionally independent given all other columns V \ {Ci, Cj}.

EXAMPLE 5. Figure 1 depicts a possible independence graph
for a group g = {C1, C2, C3, C4, C5}. One can see that this
graph is undirected, acyclic, and connected. Further, since there
is no edge connecting C1 and C5, they are considered to be con-
ditionally independent given columns C2, C3, and C4. Therefore,
C1⊥C5 | {C2, C3, C4}.

We have the following result for the total correlation:

THEOREM 3. T (C1, . . . , Cd) is equal to
∑

(Ci,Cj)∈E

I(Ci, Cj).

PROOF. From [22], p(C1, . . . , Cd) is equal to:

∏
(Ci,Cj)∈E p(Ci, Cj)∏
C∈V p(C)deg(C)−1

where deg(C) denotes the degree of C in G.
W.l.o.g., we assume that {Ci}di=1 are all real-valued. Then we

have that T (C1, . . . , Cd) is equal to:∫
p({ci}di=1) log

p({ci}di=1)∏d
i=1 p(ci)

dc1 · · · dcd

=

∫
p({ci}di=1) log

∏
(Ci,Cj)∈E p(ci, cj)∏
C∈V p(c)

deg(C)
dc1 · · · dcd

=
∑

(Ci,Cj)∈E

∫
p({ci}di=1) log

p(ci, cj)

p(ci)p(cj)
dc1 · · · dcd

=
∑

(Ci,Cj)∈E

∫
p(ci, cj) log

p(ci, cj)

p(ci)p(cj)
dcidcj

=
∑

(Ci,Cj)∈E

I(Ci, Cj)

EXAMPLE 6. Continuing Example 5. Following Theorem 3:
T (C1, C2, C3, C4, C5) = I(C1, C2) + I(C2, C3) + I(C3, C4) +
I(C3, C5).

Theorem 3 shows a decomposition of total correlation into a sum
of mutual information terms. In other words, it tells us that we can
find mutual correlations by means of pairwise correlations.

We note that being able to estimate mutual correlations by pair-
wise correlations is insufficient. In particular, directly adopting the
result of Theorem 3, a naive solution would be as follows: For each
group g = {Ci}di=1, one measures the mutual information score
of each column pair. Then, one constructs the maximum spanning
tree to obtain the independence graph of g [22, 31]. One estimates
the total correlation score of g using Theorem 3. Finally, one picks
groups with largest scores. While this solution is straightforward,
it suffers from two issues. First, as mentioned before, mutual in-
formation is not a reliable correlation measure for real-valued data.
Second, the solution requires to examine each and every candidate
group. However, the number of groups is still exponential in the
number of columns. We address these issues next.

5.2 Our Approach
We propose to mine groups g where each member column is

correlated with most of the columns in g. We name such a group an
approximate group. Our intuition behind this design choice is that
by enforcing the requirement of almost perfect pairwise correlation
among columns of g, the edge weights of its graph G (nodes are
its columns and edge weights are pairwise correlation scores) are
large. Hence, the sum of edge weights of its maximum spanning
tree is likely large, which, according to our analysis in Section 5.1,
signifies a large total correlation score, i.e., mutual correlation.

We support this observation by another result of ours as follows.
W.l.o.g., consider a group g = {Ci}di=1 where every Ci is corre-
lated with every other Cj . We define Ci and Cj to be correlated
iff CORR(Ci, Cj) and CORR(Cj , Ci) are large. We discuss how
to decide if a correlation score produced by CORR is large in Sec-
tion 6. We have:

CLAIM 1. {Ci}di=1 are likely mutually correlated under dif-
ferent correlation measures.

Claim 1 essentially states that if every two columns of a group
are correlated, then all of its columns are likely mutually correlated.
To verify this, we need the following result:

THEOREM 4. It holds that:

T (C1, . . . , Cd) ≥
d−1∑
i=1

H(Ci+1)−H(Ci+1|Ci) .

5 3

2

4

1

(a) g1: An approximate
group

10 8

7

9

6

(b) g2: Not an approximate
group

Figure 2: Example of approximate groups (δ = 0.5).

PROOF. From Definition 2, we have

T (C1, . . . , Cd) =

d−1∑
i=1

H(Ci+1)−H(Ci+1|C1, . . . , Ci) .

Since conditioning reduces entropy [6], we have

H(Ci+1|C1, . . . , Ci) ≤ H(Ci+1|Ci) .

Thus, we arrive at the result.

We now explain our claim. In particular, if Ci and Ci+1 are cor-
related, p(Ci, Ci+1) deviates from p(Ci)p(Ci+1) (see Lemma 1).
Thus, H(Ci+1) − H(Ci+1|Ci), which equals to the Kullback-
Leibler divergence of p(Ci, Ci+1) and p(Ci)p(Ci+1) [6], is high.
Following Theorem 4, we conclude that T (C1, . . . , Cd) is high.
This also means that the difference between p(C1, . . . , Cd) and
p(C1) · · · p(Cd) is high with respect to the Kullback-Leibler diver-
gence. Hence, {Ci}di=1 are mutually correlated, not just pairwise
correlated. Since many other correlation measures define mutual
correlation based on the difference between the joint distribution
and the product of marginal distributions [27], {Ci}di=1 are also
likely mutually correlated under those correlation measures.

In the above, we have shown that for a given group, if every two
of its columns are correlated, then its columns are likely mutually
correlated. In other words, this group is likely a group of correlated
columns. However, real-world data tends to contain noise making
perfect pairwise correlation between columns of any group not al-
ways happen. In fact, our preliminary empirical analysis points out
that sticking to the requirement of perfect pairwise correlation, we
would end up only with small groups, e.g., those containing two to
three columns. To address this issue, we go for a fault-tolerant solu-
tion. More specifically, we focus on groups g where each member
column is correlated with most of the columns in g. We will show
in Section 6 that such groups permit efficient mining. In addition,
they yield very high quality in our experiments. Below we provide
a formal definition of approximate groups.

DEFINITION 6. (APPROXIMATE GROUP) g = {Ci}di=1 ⊂ C
with d ≥ 2 is an approximate group of correlated columns iff (a)Ci
is correlated to at least dδ · (d− 1)e columns in g (0 < δ ≤ 1),
and (b) no proper superset of g is an approximate group of corre-
lated columns.

In Definition 6, we enforce the maximality requirement of ap-
proximate groups in order to eliminate redundancy. We note that
DECOREL is not constrained to this notion of approximate groups.
Depending on the application scenario, one could go for a tighter
notion, e.g., perfect pairwise correlation by setting δ = 1.

EXAMPLE 7. Figures 2(a) and 2(b) depict pairwise correla-
tions of two toy groups g1 = {C1, C2, C3, C4, C5} and g2 =

{C6, C7, C8, C9, C10}, respectively. Note that they do not depict
independence graphs. In both figures, the convention is that two
nodes are connected iff the corresponding columns are correlated.
For instance, in group g1, C1 and C2 are correlated. Assume that
δ = 0.5. According to Definition 6, g1 is an approximate group.
On the other hand, g2 does not meet the condition (a) of Defini-
tion 6 since C6 is only correlated to one column C7 (the minimum
vertex degree is d0.5 · (5− 1)e = 2). Hence, g2 is not an ap-
proximate group. We note that {C1, C2, C3, C5}, {C2, C3, C4},
and {C3, C4, C5} are also approximate groups. However, with the
maximality requirement, these groups will not be output since they
are redundant with respect to g1.

To solve our problem of detecting groups of correlated columns,
for efficiency reasons we mine approximate groups instead. From
now on, with groups we mean approximate groups.

6. GROUP DISCOVERY
To mine groups, we have to address three questions. First, since

CORR produces real-valued correlation scores, how can we decide
if a score is large enough to signify that two columns are correlated?
Second, the search space is still potentially exponential to the total
number of columns. So how can we efficiently mine groups? Third,
the number of groups output may be too large for subsequent pro-
cessing steps, e.g., when users want to manually inspect the groups
for adjusting the query optimizer. Hence, how can we produce a
succinct set of groups that facilitates post-analysis? We answer all
questions in this section.

6.1 Thresholding Correlation Scores
CORR(X,Y) is upper-bounded by the entropy/cumulative en-

tropy ofX , which in turn is dependent on its value domain. Further,
CORR is asymmetric. Thus, we propose to threshold the correlation
scores in each individual column. In particular, letN (C) be the set
of neighboring columns of C, i.e., those that are most correlated to
C. We identifyN (C) as follows.

Let {(Ci,CORR(C,Ci))}Mi=1 be the set of correlation scores be-
tween C and each other column Ci. W.l.o.g., we assume that the
set is sorted in descending order w.r.t. CORR(C,Ci). We define

ind(C) = argmax i∈[1,M−1]

CORR(C,Ci) + 1

CORR(C,Ci+1) + 1
.

That is, if we plot the correlation score spectrum against the in-
dex i ∈ [1,M], ind(C) is where there is the biggest jump in the
correlation score ratio. We add 1 to both the numerator and the de-
nominator to remove the impact of small correlation scores, which
may cause the respective ratios of scores to be unusually large. Let
the cutoff threshold be th(C) = CORR(C,Cind(C)). We set

N (C) = {Ci : i ∈ [1,M] ∧ CORR(C,Ci) ≥ th(C)} .

Our thresholding scheme has its intuition from eigenvalue spec-
trum analysis [11], which shows that using score ratios effectively
separates small and zero scores from large ones in a score spectrum,
without introducing any additional parameter.

EXAMPLE 8. In Figure 3, we plot the correlation score spec-
trum of NATIONKEY in TPC-H. We can see that the scores form
three distinct clusters. Intuitively, a cutoff should be placed at
rank 12. Using our thresholding scheme, DECOREL correctly sets
ind(NATIONKEY) to 12.

0

2

4

6

8

10

0 5 10 15 20

Co
rr
el
at
io
n
sc
or
e

Rank

ind(NATIONKEY)

Figure 3: Correlation score spectrum of NATIONKEY in TPC-
H. According to our method, ind(NATIONKEY) = 12 .

6.2 Group Mining
We form an undirected column graph G = (V, E) where each

node C ∈ V is a database column. An edge e ∈ E exists between
two nodes Ci and Cj (i 6= j) iff Ci ∈ N (Cj) and Cj ∈ N (Ci).
The resulting G captures pairwise correlations of columns.

Given a subset of vertices S ⊆ V , we define the subgraph G(S)
induced by S as the one with vertex-set being S, and edge-set being
edges of E whose both end-points are in S. In fact, the groups in
Definition 6 correspond to quasi-cliques in G.

DEFINITION 7. (QUASI-CLIQUE) A subset S ⊆ V with at
least two vertices is a δ-quasi-clique (or quasi-clique for short)
of G iff: (a) every vertex v ∈ S has a degree in G(S) of at least
dδ · (|S| − 1)e, and (c) no proper superset of S is a δ-quasi-clique.

Considering Definition 6 of approximate groups, the requirement
of minimum vertex degree ensures that each column of the group
is correlated to most of the other columns. Also, the maximality
requirement of S addresses the maximality of the group.

Hence, we mine groups forming quasi-cliques in G. If δ = 1,
we end up with cliques, which would yield groups of columns with
stronger correlations. However, we expect G to be sparse. Search-
ing for cliques, we might end up only with groups corresponding
to two end-points of the same edges. On the other hand, we still
need to set δ high enough to ensure the compactness of the groups.
Following the proposal in [19], we set δ = 0.5. By this, we ensure
that the quasi-cliques, and hence groups, are connected tightly. In
fact, the problem of mining all quasi-cliques is NP-hard [10].

Since G tends to be sparse, we address the NP-hardness com-
plexity of the problem by practical algorithms that have good per-
formance on real-world data. In particular, we rely on several prun-
ing rules to efficiently explore the search space [19]. For instance,
when δ = 0.5, the shortest path between any two vertices of a
quasi-clique contains at most two edges. We use this observation to
reduce the vertices which can be used to extend a candidate quasi-
clique. Another pruning is based on the upper and lower bounds
of the number of vertices that can be added to a candidate quasi-
clique concurrently to form a larger quasi-clique. By these prun-
ing rules, we are able to eliminate candidate extensions of existing
quasi-cliques. Our experiments show DECOREL to achieve both
higher quality and better scalability than existing methods.

After mining groups, we may achieve very many groups, which
hinder post-analysis. Our goal is to obtain a succinct set of groups
that can be inspected manually. Therefore, we propose to merge
similar groups in the subsequent step.

EXAMPLE 9. Assume that after the group mining phase, two
of the groups that we obtain are g3 = {C1, C2, C3, C4} and g4 =
{C1, C3, C4, C5}. Since they have many dimensions in common,
i.e., they bring about similar information, it would make sense to
merge them to create the larger group {C1, C2, C3, C4, C5}.

6.3 Group Merging
Let {gi}mi=1 be the set of groups found. Further, let {Cj}lj=1 be

the set of columns such that for each Cj , there exists gi that con-
tainsCj . For eachCj , we construct a binary vector u = (u1, . . . , um)
with ui = 1 if and only if Cj ∈ gi. Thereby, we obtain a binary
data set B with l records and m dimensions. We merge groups by
dividing dimensions of B into clusters such that each cluster con-
tains similar dimensions. Each such cluster constitutes one final
group. We aim at achieving the task without having to define any
distance function among the dimensions of B. Thus, we apply the
merge algorithm proposed in [20] which uses the Minimum De-
scription Length (MDL) principle.

Given a set of modelsM, MDL identifies the best model M ∈
M as the one that minimizes L(B,M) = L(M) + L(B | M), in
which L(M) is the length in bits of the description of the model
M , and L(B | M) is the length of the description of the data B
encoded by M . That is, MDL helps select a model that yields the
best balance between goodness of fit and model complexity.

In our problem, each modelM corresponds to a merge of groups,
i.e., a clustering of attributes of B. Our goal is then to discover the
clustering that minimizes the total encoding cost L(B,M). How-
ever, since the search space is O(2m) and unstructured, we utilize
a heuristic algorithm. In particular, we start with each dimension of
B forming its own cluster. Then, step-by-step we pick two clusters
whose merge leads to the largest reduction in the total encoding
cost, and merge them. This practice ensures the two most similar
clusters to be merged at each step [20]. The algorithm terminates
when either there are no more clusters to merge, or when the cur-
rent step does not reduce the total encoding cost any more.

Our merge of groups guarantees completeness and minimizes re-
dundancy. That is, our group merging guarantees that its output
groups capture all the groups produced by the graph mining step.
This is because MDL produces a lossless compression. Therefore,
the original set of groups are compressed while ensuring no in-
formation loss. In addition, our algorithm selects the clustering
of groups that minimizes the overall compression cost. Thus, if a
clustering contains two very similar groups, our algorithm would
not pick it. This is because the merge of two groups can result in
a better clustering with a lower encoding cost. Hence, redundancy
is minimized, i.e., DECOREL manages to provide a succinct out-
put that facilitates manual inspection and post-analysis. Not only
that, by group merging, DECOREL discovers correlated columns
that would go undetected otherwise, e.g., CO2 concentration and
amount of drinking water on Climate database (see Section 8.2).

We highlight that this merge step only merges groups with high
overlap. This means groups with low overlap remain separate.
Thus, DECOREL still detects overlapping groups representing dif-
ferent semantics of columns. We ensure this by detecting overlap-
ping groups of correlated columns by first mining quasi-cliques in
the column graph G, and then merging groups.

So far we have described all steps of DECOREL. Due to space
issues, we omit the detailed analysis of its overall time complexity.
A similar analysis, however, can be found in [23].

7. THEORETICAL COMPARISON
In this section, we theoretically compare DECOREL against the

state of the art method for grouping relational columns [34]. This

method, named ECLUS, uses a distribution test based on Earth
Mover’s Distance (EMD) [18] to assess relationships of columns.
Our purpose here is to show that DECOREL is more general than
ECLUS. Hence, we are able to discover column relationships that
ECLUS misses. We now review the background of ECLUS before
presenting our analysis.

7.1 Review: Distribution Test in ECLUS
ECLUS uses EMD to quantify the (dis-)similarity between the

marginal distributions of any two columns, e.g., C1 and C2. The
lower the distance, the more similar C1 and C2 are.

Let |C| be the number of distinct values of column C. To com-
pute EMD, ECLUS first forms pmfs on the sets of values of C1

and C2 by assigning a probability mass of 1/|C1| and 1/|C2| to
each value of C1 and C2, respectively. Then it sorts the union of
the values of C1 and C2 (in lexicographical order for strings, and
in numerical order for numerical values) and computes the EMD of
two distributions of the ranks. Suppose that the distribution of C1

is p = {(x1, p1), . . . , (x|C1|, p|C1|)} and the distribution of C2 is
q = {(y1, q1), . . . , (y|C2|, q|C2|)}. Here, xi and yj are ranks, and
pi and pj are their masses, respectively. ECLUS then instantiates
EMD(C1, C2) to EMD(p, q).

For efficiency purposes, the ranks may be further discretized
into quantile histograms, and the EMD is applied on two such his-
tograms accordingly. Zhang et al. [34] show that the EMD test can
discover various column relationships: (a) foreign key and primary
key constraints, (b) two foreign keys referring to the same primary
key, (c) a column in a view and its correspondence in the base ta-
ble, (d) two columns in two different views but originating from the
same column in the base table, and (e) two columns without any ex-
plicit association but semantically related through a third column.

However, their method only discovers groups of columns of the
same data type and of overlapping value domains. This is too re-
strictive for real-world databases.

7.2 Correlation Test is More General
Our claim is that two columns passing the EMD test, i.e., having

a low EMD value, are very likely correlated. On the other hand,
having have a high EMD value does not imply that they are uncor-
related. In other words, we have:

CLAIM 2. Our correlation test is more general than EMD test.

To show this, we utilize the statistical intuition of EMD. In fact,
EMD can be regarded as the Wasserstein metric [25]. Applying the
Wasserstein metric to columns C1 and C2, their EMD becomes:

min
F
{EF (|X − Y |) : X ∼ p, Y ∼ q, (X,Y) ∼ F} .

That is, EMD(C1, C2) equals to the minimum of the expected dif-
ference between their ranks (X and Y , respectively), taken over
all possible joint probability distributions F of their ranks such
that the marginal distributions of F are p and q. Assume that
|C1| = |C2| = n and {xi}ni=1 and {yi}ni=1 are sorted in ascending
order. It holds that [18]:

EMD(C1, C2) =
1

n

n∑
i=1

|xi − yi| .

Thus, EMD(C1, C2) = 0 iff xi = yi for every i ∈ [n]. This
implies a perfect 1-to-1 mapping between X and Y , and hence,
between the values of C1 and C2. Thus, both CORR(C1, C2) and
CORR(C2, C1) are likely large, i.e., C1 and C2 are correlated.

This observation also holds for general cases when |C1| 6= |C2|.
That is, the lower the EMD score, the less cost of transforming p

to q, the easier it is to define a 1-to-1 mapping between X and Y .
Thus, the more likely it is that C1 and C2 are correlated.

All in all, a low EMD score tends to correspond to a high cor-
relation score. Thus, if two columns have a low correlation score,
they tend to have a high EMD score, i.e., they are unrelated under
the EMD test. However, a high EMD does not say anything about
the correlation. This is because EMD does not assess joint distri-
butions while correlation analysis is involved in both marginal and
joint distributions (see Section 3). As a result, even if two columns
have similar marginal distributions, they may be uncorrelated [24].
For instance, consider two numerical columns whose joint distri-
bution contains uniformly distributed data, i.e., they are not cor-
related. If we project the data onto each of the two columns, we
obtain two similar marginal (uniform) distributions. On the other
hand, two columns can be correlated while having very different
marginal distributions. Thus, by performing correlation analysis,
we can detect not only the relationships that an EMD test can find
but also the relationships that such a test cannot cover.

Hence, when the basic schema information is available, ECLUS
is restrictive and misses correlations among columns with not only
different value domains, but also different data types.

EXAMPLE 10. Our experiments reveal that on TPC-H, ECLUS
cannot discover the correlation between the order date and the cor-
responding order status. This is because the two columns have very
different value domains. On Energy, ECLUS also misses the cor-
relation between the energy consumption indicators of each build-
ing (real-valued) and its location (categorical). DECOREL never-
theless handles these scenarios.

In sum, DECOREL assesses the relationships of columns based
on their joint distributions and marginal distributions. Thus, it does
not require columns to have similar values or data types. This is an
important contribution of ours to the area of schema extraction.

8. EXPERIMENTS
In this section, we report our empirical study on the performance

of DECOREL. Our objectives are to assess (a) the quality of groups
produced by DECOREL, (b) the scalability of DECOREL with the
database size as well as the number of columns, and (c) the suc-
cinctness of its output. To compute CORR(X,Y) when Y is nu-
merical, we search for the histogram of Y that maximizes the score
CORR(X,Y) (see Section 4.3.2).

We use both synthetic and real-world databases. In particular,
we generate a synthetic database SYNTH containing several rela-
tions and columns of different data types (real-valued, discrete,
and categorical). We model it according to the TPC-H bench-
mark. However, we additionally embed several correlations, rang-
ing from simple linear to complex non-linear correlations. We use
SYNTH to quantitatively assess the quality of the correlations de-
tected by DECOREL. Further, we use the synthetic TPC-H bench-
mark database itself with scale factor 1 (i.e., about 1GB data).

For real-world data, we use the Energy database, which con-
sists of several relations, e.g., Institution, Building, Consumption.
It records the energy consumption patterns of the KIT university
campus. As mentioned in Section 1, Energy contains categorical,
discrete, and real-valued columns. Thus, it is a good real-world
testbed for our evaluation. Another real-world database is Climate,
which contains indoor climate and energy consumption indicators
of a building in Frankfurt, Germany. Climate contains real-valued
columns only. In addition, we include Census, a publicly available
real-world data set from the UCI Machine Learning Repository.
Table 2 summarizes the characteristics of all databases used.

Data Tables Rows Columns Data Types
SYNTH 8 50,000 40 r, d, c
SYNTH2 8 50,000 40 r, d
TPC-H 8 8,661,245 61 r, d, c
Energy 6 1,486,718 63 r, d, c
Climate 1 35,601 251 r
Census 1 95,130 41 d, c

Table 2: Database characteristics. With data types: ‘r’ real-
valued, ‘d’ discrete, and ‘c’ categorical

We compare DECOREL to three state of the art techniques that
also group columns: First, ECLUS groups columns using EMD [34].
Second, 4S groups columns (numerical only) using a quadratic
measure of dependency [23]. Finally, CORDS groups columns
into pairs using the χ2 test [9]. Since CORDS is not designed for
combining those pairs into larger groups of columns, we apply our
group mining algorithm on its output pairs.

8.1 Quantitative Assessment of Groups
Assessment based on Precision-Recall: We only use databases
where we have prior knowledge on its correlations. In particular,
we use SYNTH with categorical and numerical (discrete and real-
valued) columns. We also generate its variant, named SYNTH2,
with only numerical (discrete and real-valued) columns. In addi-
tion, we use Climate where correlations are pre-identified by do-
main experts. Climate contains real-valued columns only. Our goal
is to assess DECOREL under different settings. Note that in all
three databases, the known correlations are involved in columns of
different data types and/or different value domains. Further, the
ground truth of each database contains overlapping groups of cor-
related columns. For instance, two overlapping groups of Climate
are: a group containing indoor temperatures of rooms located in
the same section of the building, and a group containing indoor cli-
mate and energy indicators (e.g., temperature, CO2 concentration,
heating consumption) of such a room.

The results are in Table 3. We can see that DECOREL per-
forms very well, outperforming all of its competitors. In contrast,
ECLUS has low accuracy since it clusters columns of different
data types and non-overlapping value domains into separate groups
although these columns are correlated. Moreover, ECLUS pro-
duces disjoint groups and hence, breaks overlapping groups of cor-
related columns. For example, DECOREL discovers two overlap-
ping groups of Climate mentioned above while ECLUS discovers
only the first group.

CORDS in turn uses the χ2 test which fits better to categorical
and discrete data. As a consequence, its performance deteriorates
on Climate which contains real-valued columns only.

4S is inapplicable to SYNTH since 4S is not designed to handle
categorical columns. On the other two data sets, 4S approximates
correlation scores using AMS Sketch [2]. To improve accuracy, the
number of sketches should be large. However, 4S keeps this num-
ber small for efficiency reasons and trades quality for efficiency.

Overall, compared to all of its competitors, we see that DECOREL
best detects overlapping groups of correlated columns with hetero-
geneous data types and value domains.
Assessment based on adjustment factor: Here, we use the ad-
justment factor to assess the results of DECOREL on all databases.
We define the adjustment factor of a group g = {Ci}di=1 as

af (g) =

∏d
i=1 |Ci |

|C1 , . . . ,Cd |

DECOREL ECLUS CORDS 4S
SYNTH Prec. 1.00 0.56 0.75 -

Rec. 1.00 0.66 0.72 -
SYNTH2 Prec. 1.00 0.54 0.73 1.0

Rec. 1.00 0.67 0.74 0.99
Climate Prec. 0.91 0.72 0.68 0.85

Rec. 0.93 0.74 0.67 0.87

Table 3: Precision and Recall on synthetic data and Climate.

0

0.2

0.4

0.6

0.8

1

Re
la
tiv

e
Ad

ju
st
m
en

t F
ac
to
r

DeCoRel ECLUS CORDS 4S

Figure 4: Relative adjustment factor compared to DECOREL.

where |Ci| is the number of distinct values in Ci and similarly for
|C1, . . . , Cd|. Note that if the columns belong to multiple rela-
tions, |C1, . . . , Cd| is computed by applying full outer join of the
involved relations, as done in [33].

Intuitively, the larger the adjustment factor of a group, the more
correlated its columns are. We define the adjustment factor of a

method producing groups {gj}nj=1 as
1

n

n∑
j=1

af (gj), i.e., the aver-

age of adjustment factors of its groups. Again, the larger the adjust-
ment factor of a method, the better the method is in finding groups
of correlated columns. In fact, a similar notion of adjustment fac-
tor was used in [9] to rank pairs of correlated columns. Further, it
has been suggested that the adjustment factor has an impact on the
selectivity estimates of optimizers [9, 31]. Thus, one can use the
adjustment factor as an implicit measure for query optimizers.

The relative adjustment factors of all methods in comparison to
DECOREL are in Figure 4. Recall that 4S is only applicable to
the numerical Climate database. The results show DECOREL to
achieve the best results, outperforming its competitors up to an or-
der of magnitude. This suggests that DECOREL better discovers
groups of correlated columns where the joint distributions deviate
more profoundly from the product of the marginal distributions.

As mentioned above, the adjustment factor has an impact on se-
lectivity estimates of optimizers. Thus, by being able to discover
dependable groups of correlated columns, one could use DECOREL
to reliably identify important column correlations for improving
query optimizers. This is one of several possible applications of
the groups detected by DECOREL.

8.2 Qualitative Assessment of Groups
We now explore in detail the groups discovered by DECOREL to

gain more insight into its performance. We limit our discussion to
TPC-H and real-world databases where we do not have full knowl-
edge of the hidden correlations.
TPC-H: DECOREL correctly identifies all correlations which are

involved in declared foreign key and primary key constraints, re-
gardless of column data types, and place the respective columns
into the same group. More than that, DECOREL is able to group
columns with no explicit relationships but semantically correlated.
For instance, DECOREL puts ORDERDATE and ORDERSTATUS
into the same group. In fact, [34] has pointed out that the order
date and the corresponding order status are correlated. Since these
two columns have totally different value domains, ECLUS cannot
recognize their relationship. CORDS in turn tends to place corre-
lated columns where at least one column is real-valued into sep-
arate groups. Intuitively, there is a correlation between the total
price of an order and the respective customer name. CORDS how-
ever fails to detect it. 4S in turn is inapplicable to TPC-H since it
only handles numerical columns. In contrast, DECOREL success-
fully groups correlated columns without being constrained to their
data types as well as value domains.
Climate: One of the groups identified by DECOREL reflects a cor-
relation among the air temperature supplied to the heating system,
the temperature of the heating boiler, and the amount of heating
it produces. While this relation is rather intuitive and expected,
ECLUS does not detect it. This could be because the three mea-
sures have very different ranges of values: from 10 to 45 for the
supplied air temperature, from 25 to 350 for the temperature of the
heating boiler, and from 0 to 1100 for the amount of heating pro-
duced. ECLUS, by its design, places the three columns into differ-
ent groups and hence, leaves their relationship undetected. CORDS
also does not find this correlation, partly because CORDS uses a
correlation measure that is more suited to categorical and discrete
columns. In addition, CORDS computes correlation scores using
only a sample randomly drawn from the data. We observe that the
pairwise joint distributions of the three measures are rather skewed.
Thus, a simple random sampling as employed by CORDS likely
misses the bigger picture [16]. Another correlation reflected in
the groups discovered by DECOREL but not by any other method,
is among the electricity consumed, the amount of drinking wa-
ter, and the amount of heating. ECLUS misses this correlation,
again, because the columns involved have different value ranges.
CORDS also cannot identify this correlation due to its correlation
measure. 4S in turn does not detect it because of inaccuracy caused
by sketching. Besides correlations that are known, DECOREL is
capable of discovering interesting new correlations; one of which
is among room temperature, CO2 concentration, and amount of
drinking water. Domain experts we collaborate with have not been
aware of this relationship initially. They however identify it to be
of their interest.
Energy: DECOREL groups columns of energy consumption of
buildings with columns related to time (e.g., date-time, semester
season, holiday/working day). This is expected as, e.g., more en-
ergy is consumed on working days than on holidays. DECOREL
also groups consumption columns with the characteristics of build-
ings, e.g., total area, total number of staff members, and location.
Again, this grouping is intuitively accurate: the larger area and
the more staff members a building has, the more energy it con-
sumes; buildings located in the campus section where, say, large-
scale physics experiments are usually carried out consume more
energy than buildings in other locations. However, since these
columns have different value domains and even data types, ECLUS
puts them into different groups. The quality of groups detected by
CORDS degrades greatly. This could stem from the fact that the
consumption indicators are all real-valued. Hence, the statistical
power of χ2 test, applied to these columns, becomes weak.
Census: We present some groups DECOREL produces, which are
undetected by other methods. We believe them to be interesting

0

1

2

3

4

5

0 1 2 3

lo
g(
Ti
m
e
in
 s)

log(Database Size in MB)

DeCoRel
ECLUS
CORDS

Figure 5: Scalability to database size using TPC-H.

0

1000

2000

3000

4000

40 80 120 160

Ti
m
e
in
 s

Number of columns

DeCoRel

ECLUS

CORDS

Figure 6: Scalability to the number of columns using Census.

from a data analysis point of view. Their details are as follows:
• weeks worked in year, education, reason for unemployment, his-
panic origin, member of a labor union, wage per hour
• weeks worked in year, education, citizenship, country of birth
father, country of birth mother, capital gains, income level
• marital status, age, education, dividends from stocks, detailed
occupation recode

We note that some of the correlations in the groups above intu-
itively make sense, e.g., education and wage per hour. In addition,
some of the remaining correlations, e.g., marital status, age, and
education, agree with a previous study [21].

Overall, we see DECOREL to be capable of detecting column
relationships regardless of their underlying data types as well as
value domains. The relationships covered by DECOREL range
from known ones (e.g., declared foreign key and primary key con-
straints) to novel ones. The latter can be exploited for, e.g., improv-
ing query optimizers and advanced data analysis.

8.3 Scalability
We assess scalability of DECOREL to the database size using the

TPC-H benchmark and the number of columns using Census. For
the former, we vary the scale factor and hence, effectively scale the
number of tuples. For the latter, we scale the number of columns by
appending the identical Census database for a number of times. The
results are in Figures 5 and 6. For readability, we use a logarithmic
scale on both axes for Figure 5.

We see that DECOREL scales linearly to the database size, i.e.,
the number of tuples. It has quadratic scalability to the number
of columns. Moreover, DECOREL achieves better scalability than
ECLUS in both tests. DECOREL also scales better than CORDS
even though CORDS only works on a sample of the data. This

0

2

4

6

8

10

12

Re
du

ct
io
n
ra
tio

Figure 7: Reduction ratio of our group merging.

highlights the benefits of our efficient computation of pairwise cor-
relations and our efficient mining of correlated groups. We are un-
able to display the runtimes of 4S since 4S is inapplicable to both
TPC-H and Census due to their categorical columns. However, for
numerical data such as Climate, we have observed that DECOREL
shows runtimes similar to 4S. Thus, we can perform both categori-
cal and numerical data assessment in a very scalable manner.

Overall, DECOREL is able to tackle the exponential search space
of groups in polynomial time and hence, enables correlation analy-
sis for large databases.

8.4 Succinctness of Output
We study the benefits of our MDL group merging. Our perfor-

mance metric is the reduction ratio, i.e., m
m′ where m and m′ are

the number of groups before and after merging. The results are
in Figure 7. We see that the group merging phase achieves up to
an order of magnitude reduction ratio. This verifies our claim that
DECOREL produces a succinct set of overlapping groups while still
guaranteeing their quality (see Sections 8.1 and 8.2). By providing
end users with a succinct set of groups, in practice DECOREL facil-
itates manual inspection and post-analysis which benefit advanced
applications based on the knowledge derived from the groups.

9. CONCLUSIONS
Discovering overlapping groups of correlated columns in rela-

tional databases is a very important task with wide applications in
many areas. However, it is very challenging due to (a) the lack
of a correlation measure that is applicable to different data types
(namely real-valued, discrete, and categorical), (b) the need to ad-
dress mutual/multi-way correlations, (c) the requirement to allow
for overlapping groupings of columns, (d) the search space of over-
lapping groups that is exponential in the number of columns, and
(e) the redundant output that hinders post-analysis.

In this paper, we have proposed DECOREL, our solution towards
addressing all the challenges. In particular, we show the feasibility
of estimating mutual correlations by pairwise correlations. It lets us
transform the search space into a column graph based on pairwise
correlations. We compute pairwise correlations using CORR, our
new correlation measure that works with both cumulative distribu-
tion functions and probability mass functions. This makes CORR
applicable to different data types. Subsequently, we employ an ef-
ficient search algorithm that mines the column graph to find over-
lapping groups of correlated columns. To ensure succinctness of
the groups output, we present an MDL-based method that achieves
up to an order of magnitude size reduction ratio in practice. Lastly,
we show that our method is more general than a state of the art

technique in schema extraction. Experiments on both synthetic and
real-world databases show DECOREL to discover groups of higher
quality than existing methods. Moreover, DECOREL scales better
than its competitors with both the database size and the number of
columns. This suggests that DECOREL is a very promising tool for
large-scale correlation analysis on real-world databases.

In future work, we plan to study DECOREL with enterprise-scale
databases, as well as extend it to handle databases with missing val-
ues. We also plan to apply the groups discovered by DECOREL in
specific applications, such as query optimization. Another inter-
esting direction is to exploit the asymmetric property of CORR for
directed column relationship discovery.
Acknowledgments This work is supported by the German Research
Foundation (DFG) within GRK 1194, by the Young Investigator
Group program of KIT as part of the German Excellence Initiative,
and by a Post-Doctoral Fellowship of the Research Foundation –
Flanders (FWO).

10. REFERENCES
[1] B. Ahmadi, M. Hadjieleftheriou, T. Seidl, D. Srivastava, and

S. Venkatasubramanian. Type-based categorization of
relational attributes. In EDBT, pages 84–95, 2009.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. In STOC, pages
20–29, 1996.

[3] P. Andritsos, R. J. Miller, and P. Tsaparas.
Information-theoretic tools for mining database structure
from large data sets. In SIGMOD, pages 731–742, 2004.

[4] P. Brown and P. J. Haas. BHUNT: Automatic discovery of
fuzzy algebraic constraints in relational data. In VLDB, pages
668–679, 2003.

[5] C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. In KDD,
pages 84–93, 1999.

[6] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley-Interscience New York, 2006.

[7] P. D. Grünwald. The Minimum Description Length Principle.
MIT Press, 2007.

[8] A. Heise, J.-A. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and
F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4):301–312, 2013.

[9] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic discovery of correlations and soft
functional dependencies. In SIGMOD, pages 647–658, 2004.

[10] D. Jiang and J. Pei. Mining frequent cross-graph
quasi-cliques. TKDD, 2(4), 2009.

[11] X. Jiang, B. Mandal, and A. C. Kot. Complete discriminant
evaluation and feature extraction in kernel space for face
recognition. Mach. Vis. Appl., 20(1):35–46, 2009.

[12] A. Jindal, E. Palatinus, V. Pavlov, and J. Dittrich. A
comparison of knives for bread slicing. PVLDB,
6(6):361–372, 2013.

[13] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In SIGMOD, pages
205–216, 2003.

[14] F. Keller, E. Müller, and K. Böhm. HiCS: High contrast
subspaces for density-based outlier ranking. In ICDE, pages
1037–1048, 2012.

[15] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik.
CORADD: Correlation aware database designer for
materialized views and indexes. PVLDB, 3(1):1103–1113,
2010.

[16] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold.
Efficient biased sampling for approximate clustering and
outlier detection in large data sets. IEEE Trans. Knowl. Data
Eng., 15(5):1170–1187, 2003.

[17] J. Lee and M. Verleysen. Nonlinear Dimensionality
Reduction. Springer, New York, 2007.

[18] E. Levina and P. J. Bickel. The earth mover’s distance is the
mallows distance: Some insights from statistics. In ICCV,
pages 251–256, 2001.

[19] G. Liu and L. Wong. Effective pruning techniques for mining
quasi-cliques. In ECML/PKDD (2), pages 33–49, 2008.

[20] M. Mampaey and J. Vreeken. Summarizing categorical data
by clustering attributes. Data Min. Knowl. Discov.,
26(1):130–173, 2013.

[21] S. Mehta, S. Parthasarathy, and H. Yang. Toward
unsupervised correlation preserving discretization. IEEE
Transactions on Knowledge and Data Engineering,
17(9):1174–1185, 2005.

[22] E. Müller, I. Assent, R. Krieger, S. Günnemann, and T. Seidl.
DensEst: density estimation for data mining in high
dimensional spaces. In SDM, pages 173–184, 2009.

[23] H. V. Nguyen, E. Müller, and K. Böhm. 4S: Scalable
subspace search scheme overcoming traditional apriori
processing. In BigData Conference, pages 359–367, 2013.

[24] H. V. Nguyen, E. Müller, J. Vreeken, F. Keller, and K. Böhm.
CMI: An information-theoretic contrast measure for
enhancing subspace cluster and outlier detection. In SDM,
pages 198–206, 2013.

[25] S. T. Rachev. The monge-kantorovich mass transference
problem and its stochastic applications. Theory Probab.
Appl., 29(4):647–676, 1984.

[26] M. Rao, Y. Chen, B. C. Vemuri, and F. Wang. Cumulative
residual entropy: A new measure of information. IEEE
Trans. on Information Theory, 50(6):1220–1228, 2004.

[27] M. Rao, S. Seth, J.-W. Xu, Y. Chen, H. Tagare, and J. C.
Príncipe. A test of independence based on a generalized
correlation function. Signal Processing, 91(1):15–27, 2011.

[28] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher,
and P. C. Sabeti. Detecting novel associations in large data
sets. Science, 334(6062):1518–1524, 2011.

[29] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of OLAP data cubes. In EDBT, pages 168–182,
1998.

[30] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald.
GORDIAN: Efficient and scalable discovery of composite
keys. In VLDB, pages 691–702, 2006.

[31] K. Tzoumas, A. Deshpande, and C. S. Jensen. Lightweight
graphical models for selectivity estimation without
independence assumptions. PVLDB, 4(11):852–863, 2011.

[32] J. Whittaker. Graphical Models in Applied Multivariate
Statistics. John Wiley & Sons, 1990.

[33] X. Yang, C. M. Procopiuc, and D. Srivastava. Summary
graphs for relational database schemas. PVLDB,
4(11):899–910, 2011.

[34] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc,
and D. Srivastava. Automatic discovery of attributes in
relational databases. In SIGMOD, pages 109–120, 2011.

[35] X. Zhang, F. Pan, W. Wang, and A. B. Nobel. Mining
non-redundant high order correlations in binary data.
PVLDB, 1(1):1178–1188, 2008.

APPENDIX
A. PROOFS

PROOF OF THEOREM 1, FIRST PROPERTY. We consider the case
when Y is real-valued. The proof for when Y is either discrete or
categorical follows similarly.

We have h(X|y) ≥ 0. Thus, its expectation is also non-negative.
Consequently, h(X|y) is zero if and only if h(X|y) = 0 for all
y ∈ dom(Y). This implies: ∀y ∈ dom(y), ∀x ∈ dom(X),

P (X ≤ x|y) logP (X ≤ x|y) = 0 .

From x log x = 0 if and only if x = 0 or x = 1, we arrive at
∀y ∈ dom(Y), ∀x ∈ dom(X),

P (X ≤ x|y) = 0 ∨ P (X ≤ x|y) = 1 .

LetAy = {x : P (X ≤ x|y) = 1} thenAy 6= ∅ and minAy exists
since limx→+∞ P (X ≤ x|y) = 1 and limx→−∞ P (X ≤ x|y) =
0. Hence, for every y, there exists a unique xy = minAy such that
pX|Y (X = xy|y) = 1, i.e., X is a function of Y .

PROOF OF THEOREM 1, SECOND PROPERTY. Again, we con-
sider the case when Y is real-valued. The proof for when Y is
either discrete or categorical follows similarly.

Given a fixed x0 ∈ dom(X), P (X ≤ x0|y) is a number de-
pending on y. So if we let Z = P (X ≤ x0|Y), Z is then a
random variable. According to the Jensen’s inequality, it holds that

EZ [Z logZ] ≥ EZ(Z) logEZ(Z) .

Thus:
EY [P (X ≤ x0|Y) logP (X ≤ x0|Y)]

≥ EY [P (X ≤ x0|Y)] logEY [P (X ≤ x0|Y)]

From P (X ≤ x0|y) =
∫ x0
−∞ pX|Y (x|y)dx, we arrive at

EY [P (X ≤ x0|Y)] =

∫
dom(Y)

∫ x0

−∞
pX,Y (x, y)dxdy

which leads to: EY [P (X ≤ x0|Y)] = P (X ≤ x0). Hence:

EY [P (X ≤ x0|Y) logP (X ≤ x0|Y)]

≥ P (X ≤ x0) logP (X ≤ x0)

Replacing x0 by x, integrating and negating both sides w.r.t. x,
we obtain:

h(X|Y) = EY [h(X|Y)] ≤ h(X) .

Since g(w) = w logw is strictly convex, equality holds if and only
if Z = EZ [Z]. This implies P (X ≤ x|Y) = P (X ≤ x), i.e., X
is independent of Y .

B. SEARCHING FOR THE OPTIMAL HIS-
TOGRAM

We show our solution for when X is categorical. The solution
for when X is numerical follows similarly.

Let g be a histogram of Y . We denote the number of bins of g as
|g|. We write Y g as Y discretized by g. Following [28], we restrict
that |g| < N ε where N is the number of tuples in the joint distri-
bution of X and Y , and ε ∈ (0, 1). We formulate the following
problem: Find the histogram g of Y with |g| < N ε that minimizes
H(X|Y g).

We prove that our optimization problem can be solved by dy-
namic programming. In particular, w.l.o.g., let Y (1) ≤ . . . ≤
Y (N) be realizations of Y . Further, let

Y (j,m) = {Y (j), Y (j + 1), . . . , Y (m)}

where j ≤ m. Slightly abusing notation, we write Y (1, N) as
Y . We use H(X|〈Y (j,m)〉) to denote H(X) computed using the
(m− j + 1) tuples of the joint distribution corresponding to Y (j)
to Y (m), projected onto X . For 1 ≤ l ≤ m ≤ N , we write

f(m, l) = min
g:|g|=l

H(X|Y g(1,m))

where g is a histogram of Y (1,m) with l bins, and Y g(1,m) is the
discretized version of Y (1,m) by g. For 1 < l ≤ m ≤ N , we
have

THEOREM 5. f(m, l) = min
j∈[l−1,m)

Aj where

Aj =
j
m
f(j, l − 1) + m−j

m
H(X|〈Y (j + 1,m)〉).

PROOF. Let g∗ = arg min
g:|g|=l

H(X|Y g(1,m)). We denote l

bins that g∗ generates on Y as b1, . . . , bl. We write |bt| as the

number of values of Y in bt. Further, let cz =

z∑
i=1

|bt|. Note that

each bin of Y is non-empty, i.e., cz ≥ z. We use H(X|bt) to
denote H(X) computed using the tuples of the joint distribution
corresponding to the realizations of Y in bt, projected onto X . We
have: f(m, l)

=

l∑
t=1

|bt|
m
H(X|bt)

=

l−1∑
t=1

|bt|
m
H(X|bt) +

|bl|
m
H(X|bl)

=
cl−1

m

l−1∑
t=1

|bt|
cl−1

H(X|bt) +
|bl|
m
H(X|bl)

=
cl−1

m
f(cl−1, l − 1)

+
m− cl−1

m
H(X|〈Y (cl−1 + 1,m)〉) .

In the last line,
l−1∑
t=1

|bt|
cl−1

H(X|bt) is equal to f(cl−1, l − 1) be-

cause otherwise, we could decrease f(m, l) by choosing a different
histogram of Y (1, cl−1) into l−1 bins. This in turn contradicts our
definition of f(m, l). Since cl−1 ∈ [l − 1,m) and f(m, l) is min-
imal over all j ∈ [l − 1,m), we arrive at the final result.

Theorem 5 shows that the optimal histogram of Y (1,m) can be
derived from that of Y (1, j) with j < m. This allows us to design
a dynamic programming algorithm to find the optimal histogram g
of Y with |g| < N ε. To further boost efficiency, following [28],
we limit the number of cut points of Y to c × N ε with c > 1.
We do this using equal-frequency binning on Y with the number of
bins equal to (c×N ε + 1). More elaborate pre-processing can be
considered, yet is beyond the scope of this work. Regarding ε and c,
the larger they are, the more candidate histograms we consider, and
hence, the better the result. However, setting them too high causes
computational issues. Our preliminary empirical analysis shows
that ε = 0.333 and c = 2 offer a good balance between quality and
efficiency. Hence, we will use these values in our experiments. The
total time complexity of our histogram search isO(N3ε) = O(N).

