
Kanata: Adaptation and Evolution in Data Sharing Systems∗

Periklis Andritsos Ariel Fuxman Anastasios Kementsietsidis

Renée J. Miller Yannis Velegrakis
Department of Computer Science

University of Toronto
Toronto, ON, Canada

{periklis,afuxman,tasos,miller,velgias}@cs.toronto.edu

ABSTRACT
In Toronto’s Kanata project, we are investigating the in-
tegration and exchange of data and metadata in dynamic,
autonomous environments. Our focus is on the development
and maintenance of semantic mappings that permit runtime
sharing of information.

1. INTRODUCTION
Data sharing systems permit the transformation, integra-

tion, and exchange of data that has been designed and devel-
oped independently. The often subtle and complex interde-
pendencies within data can make the creation, maintenance,
and comprehension of such systems quite challenging. We
have available a robust arsenal of tools and mechanisms for
reconciling semantic differences in how data is represented
including views, mappings, and transformation languages.
There is also a growing maturity in our knowledge of how
to create [19, 20] and use these mechanisms in such tasks
as query answering [13], data exchange [9], data integration
[17], and data sharing [15].

Given this solid foundation in the tools and modeling
structures needed for data sharing, in this project, we are
investigating the problem of maintaining such systems. We
view an integration system as a dynamic structure which
must be maintained and evolved in response to changes in
the environment. Such changes may occur in the data or
in the metadata (including in the schema and constraints
of the data). Evolution may also happen as the integration
is developed incrementally over time. Initially, light-weight
data sharing mechanisms may be put in place if data ad-
ministration resources are scarce. As the system is used or
requirements change, these mechanisms may be evolved to
provide closer data coordination.

In modern data sharing systems, participants rely on one
another for service, blurring the distinction between clients
and servers, sources and mediators, local and global. We will
use the term peer to refer to data sources since we are ag-
nostic about the role of the source as a provider or consumer
of data. In such systems, autonomy is paramount and de-
centralized coordination a necessity. As a result, there may
be no common global view of data. Rather each peer may
define its own view of shared data – a view that may be
inconsistent with the view of other peers.

While a single well-designed system may ensure that its

∗Funding provided by NSERC, CITO, and a Premier’s Re-
search Excellence Award.

own data and metadata evolve in a coordinated fashion, we
cannot make such guarantees in a data sharing system. Our
focus is on the maintenance of the metadata necessary to
achieve semantic integration and sharing of data. Because
of this emphasis, we will also be concerned with the problem
of understanding if there is a semantic mismatch between
the data and metadata.

In the Kanata project, we are developing an integration
and transformation process that supports maintainability
and adaptability. To achieve this, we are addressing the
following research challenges.

• How can integration artifacts, particularly mappings,
be adapted? An important challenge is how to main-
tain mappings in dynamic, autonomous environments
where not only the data, but also the schemas and
metadata of data sources, may change independently.

• How can automated tools enhance and support the
process of developing and evolving data sharing sys-
tems?

• How can we ensure the semantic integrity of an in-
tegration system? As part of this, we are studying
how metadata which is potentially inconsistent with
respect to the data can be used.

Our philosophy throughout the project is to provide auto-
mated solutions that help users to understand and verify the
semantics of the data sharing system. In the next section,
we describe in more detail the mappings used in Kanata. In
Sections 2.1 and 2.2, we overview our solutions for maintain-
ing two types of mappings: schema mappings and mapping
tables. In Section 3, we consider how mappings are used
to share data and to support the adaptation process. The
paper concludes in Section 4.

2. MAPPINGS IN KANATA
Before introducing our solutions for maintaining and

adapting metadata, we briefly describe some of the com-
mon types of metadata that have proven valuable in data
sharing. Our overview is meant to be exemplary, rather than
exhaustive.

A fundamental requirement for all data sharing tasks is
the establishment of associations between data represented
in different ways. Since our focus is on supporting struc-
tured querying, we consider mappings that permit the trans-
lation of structured queries over heterogeneous data repre-
sentations. Such mappings depend invariably on schemas.



aid city
YYZ Toronto
LAX Los Angeles
JFK New York

pid type cap.
B747 Boeing 438
B767 Boeing 305
A320 Airbus 300

(a) AC Airports (b) AC Aircrafts

fno from to date time pid
AC401 YYZ LAX 09/09 18:00 B747
AC541 YYZ JFK 09/15 10:30 B767
AC543 YYZ JFK 09/21 12:00 A320
AC548 YYZ JFK 09/23 10:30 A320

(c) AC Flights

flight dep dest date time
UA134 JFK SFO 09/14 17:00
UA120 JFK LAX 09/15 10:30
UA203 YYZ JFK 09/15 10:30
UA208 YYZ JFK 09/21 12:15

(d) UA Flights

Figure 1: Air Canada and United instances

The presence of a schema permits the more sophisticated
structured queries that are not possible over unstructured,
schema-less data. We refer to mappings that permit the
translation of structured queries as schema mappings.1

The schema mappings we consider include traditional
views (both global-as-view and local-as-view mapping sys-
tems) along with more general mappings relating the
schemas of independent data sources. In their simplest form,
mappings are queries specifying how data from one peer
may be transformed into the structure of another. How-
ever, mappings may also specify general constraints on the
data that is to be shared between peers. Our work focuses
on maintaining schema mappings, including mappings that
have been written manually, generated with the help of au-
tomated tools, or produced as the output of an integration
or schema transformation process.

In addition, we consider the use of mapping tables which
are data-level mappings that record the association of val-
ues in different sources [15]. Even when two peers share
common schemas, they may not share common vocabular-
ies for data values. Identifiers may be drawn from different
domains, or the lexicon used for a descriptive attribute may
differ. Mapping tables are complementary to schema map-
pings. Schema mappings and mapping tables may be used
alone or in concert to translate queries and share data. How-
ever, as we show in the next sections, different techniques
may be required to maintain them.

2.1 Schema-level Mappings
When the schema of a source is modified some of the map-

pings that have been defined on them may need to be up-
dated or adapted to ensure that they meet the requirements
of the modified schema. We refer to this process as mapping
adaptation to differentiate it from view adaptation [12], view

1Note that in the literature, schema mappings are often just
called mappings [17]. We use the term schema mappings to
distinguish them from mapping tables.

maintenance [24] and view synchronization [16]. View adap-
tation and maintenance consider ways of updating the in-
stance of a materialized view when there are changes to the
base data or the view definition, respectively. On the other
hand, view synchronization, like mapping adaptation, con-
siders ways of updating the view or mapping definition when
there are changes to the schemas, but mapping adaptation
deals with a richer set of mappings and schema changes.

Despite the many interesting results that exist in data
translation, mapping adaptation still remains a mostly man-
ual task that is performed by data administrators who are
familiar with the semantics of the schemas, and the trans-
formation language. A data administrator visits the exist-
ing mappings, one at a time, and rewrites those that are
found to be affected by the schema changes. This task is
laborious, time consuming and error-prone. Alternatively,
one could drop existing mappings and generate new ones
for the modified version of the schemas, an effort that can
be aided tremendously by modern tools that suggest schema
matches (which associate schema elements) [21] and schema
mappings (which associate schema instances) [19, 20]. Or
one could generate new mappings between the original and
modified schemas, and compose these mappings with ex-
isting mappings, using newly emerging solutions for map-
ping composition [6, 18, 10]. However, with the latter ap-
proaches, the mapping generation does not consider past
user input, specifically that the affected mappings may have
been based on input from human experts. It is the seman-
tic decisions input by these experts that we would like to
preserve in order to save the most precious administrative
resource, human time.

To address this problem, we have developed a compre-
hensive framework and implemented a mapping adaptation
tool [22] in which a designer or administrator can change
and evolve schemas and mappings. The tool detects map-
pings that are made inconsistent by a schema change and
incrementally modifies the mappings in response. This ap-
proach has the advantage that we can track semantic deci-
sions made by a designer either at the time the mappings
were created, or as they are evolved. These semantic deci-
sions are needed because schemas are often ambiguous (or
semantically impoverished) and may not contain sufficient
information to make all mapping choices. We can then reuse
these decisions when appropriate.

Consider, for example, the case where we need to popu-
late a relation T(city,type) with data retrieved from the Air
Canada source (Figure 1). Relation T contains the various
cities and for each city, the type of aircrafts that land at
its airports. The query that retrieves this information and
generates data in T is the following.

(1) SELECT a.city, p.type
FROM AC Airports a, AC Flights f, AC Aircrafts p
WHERE a.aid=f.from AND f.pid=p.pid

Assume now that for some reason the owner of the Air
Canada data source decides to remove the attribute pid of re-
lation AC Flights. This will make the above mapping invalid
since this attribute is used in the join between AC Flights
and AC Aircrafts. As a solution, our automatic adaptation
algorithm will detect this, and will replace the specific in-
valid mapping with the following two rewritings.

(2) SELECT null, p.type
FROM AC Aircrafts p



(3) SELECT a.city, null
FROM AC Airports a, AC Flights f
WHERE a.aid=f.from

The first mapping generates tuples from the type values in
AC Aircrafts but sets the city attribute to null, while the
second generates tuples from the values of attribute city
but sets the type attribute to null. The reason is that our
algorithm was able to detect the fact that in the modi-
fied schema, aircraft types are not semantically related to
airport cities since there is no join path between the re-
spective attributes to associate their values. On the other
hand, it can be seen that the second mapping, although
it does not retrieve any values from relation AC Flights,
it has preserved the join between relations AC Flights and
AC Airports. This is a consequence of one of the main prin-
ciples of our approach, to preserve as much as possible the
semantics of the initial mapping. Since the initial mapping
retrieved city values that were related to tuples in AC Flights
through attribute from, the rewriting preserves this join.

Another advantage of our tool is that it can detect when
mappings are affected not only by structural changes but
also by changes to the semantics of the schemas. Consider,
for example, the case where we have the Air Canada schema
of Figure 1 and the mappings (2) and (3) presented above,
and assume that a new foreign key constraint is added from
attribute pid of AC Flights to attribute pid of AC Aircrafts.
Our algorithm is able to detect that a new join path has
been created between city and type attributes and suggest
a rewritten mapping that generates more semantically com-
plete information (i.e., for each city, it also finds the associ-
ated types of aircrafts that land at the airports of that city).
In other words, Mapping (1) above is generated.

In some cases, the algorithm may generate more than one
mapping. In order to assist the user even further in dealing
with the evolving nature of the integration system, we have
developed a metric to measure the semantic similarity be-
tween two mappings [23]. The metric is based on the number
of common relations and conditions that are involved in the
mappings, compared to the relations and conditions that are
not shared by the mappings. This metric is used to rank the
candidate rewritings.

For example, Mapping (3) is considered semantically
closer to Mapping (1) than to Mapping (2), but semanti-
cally further from the following mapping.

(4) SELECT a.city, null
FROM AC Airports a, AC Flights f
WHERE a.aid=f.from AND f.to=’JFK’

The reason is that although both Mappings (4) and (3)
have the same number of common components, Mapping
(4) is less preferable since it contains an additional condi-
tion f.to=’JFK’.

Apart from adapting mappings in response to schema
changes, we have to ensure that data translation at the value
level is also consistent with the evolution of the system, and
this is the issue we deal with next.

2.2 Data-level Mappings
Mapping tables are data-level mappings that record the

association of values in different sources [15, 5]. An example
of such a table is shown in Figure 2 which lists the associa-
tions between the codes of code-share flights of the AC and

MappingTable
fno flight
AC541 UA203
AC543 UA208

Figure 2: An example mapping table

UA airlines. As the contents of the sources, and thus the
stored values, change over time, mapping tables should be
evolved to reflect these changes. In our airline example, new
flights can be constantly added to the corresponding airline
databases. If some of these new flights are code-share flights,
the corresponding mapping table must be updated to reflect
this fact. The evolution of mapping tables involves both dis-
covering new mapping tables between sources and updating
the value associations recorded in existing tables. In the fol-
lowing paragraphs, we review techniques for both types of
evolution.

2.2.1 Discovering Mapping Tables
In this section, we present a way of discovering duplicate

or associated tuples that exist in different sources. These
duplicates can be identified by different values. In our ex-
ample, the different airlines may use different identifiers for
the same flight. This information may be entered manually
into the system, but often it may be missing or incomplete.
We are studying the problem of developing automated tools
that help to discover or suggest new associations among val-
ues. These discovered associations or aliases may be used
to populate mapping tables. For example, in the case of
AC Flights and UA Flights sources of Figure 1 our task may
be to identify code-share flights from these two sources.

Generally speaking, if we seek to characterize duplication
in a set of tuples, we need a way of measuring their similar-
ity. Numerous de-duplication and record linkage approaches
exist, but many of these require domain-specific similar-
ity measures. In Kanata, we use an information-theoretic
measure of similarity, that of Information Loss, used in the
LIMBO clustering algorithm [3] for categorical data and in
a set of tools for structure discovery [2]. Intuitively, this
similarity measure deems two tuples to be similar if the in-
formation in the values contained in the tuples is similar.
Using information loss, the similarity measure does not re-
quire knowledge of application specific measures or of order-
ings on values which may not be shared between different
sources.

In the current setting, we first need some way of com-
bining the information (tuples) that exists in the different
sources. In the airline example of Figure 1, we need to com-
bine the flights represented by the different sources. If the
set of values that appear in the individual sources intersect,
then we expect that the overlap, and thus the similarity of
the values in the tuples, increases. This is the case for the
flights AC541 in AC Flights and UA203 in UA Flights. We
have introduced a clustering-based approach for suggesting
possible duplicate tuples [2]. We first perform one pass over
the data and build summaries, or more precisely, represen-
tative tuples that represent similar groups of tuples. These
summaries serve as guidelines for assessing the similarity
of tuples; we build summaries and then assign tuples from
different relations to these summaries. More formally, we
identify duplicate tuples as follows.



1. Given a set of sources S1, . . . , Sk, determine a set of
related descriptive attributes.

2. Pick an accuracy threshold for the summaries.

3. Using information loss as a distance measure, discover
the summaries that best reflect the original data.

4. Assign tuples from the original data set to summaries.

5. Identify potential duplicates by inspecting the tuples
assigned to the same summaries.

Our technique identifies whole tuples as duplicates, sug-
gesting that their identifiers may be aliases. For example,
our technique identifies the following pairs of flight num-
bers as identifying duplicate tuples: (AC541,UA203) and
(AC543,UA208). These identifiers can populate a new or
an already existing mapping table such as the one in Fig-
ure 2. Our goal is to help a curator to find duplicates across
sources or to find duplicates within a single dirty (or perhaps
integrated) source.

Some interesting points that must be made are the follow-
ing.

• In the aforementioned technique, we assumed that the
domains of the individual sources must overlap in or-
der to discover duplicates. This assumption may be re-
laxed by having q-grams of values instead of the whole
values. A q-gram is the set of all q-sized subsets of
consecutive characters in a string.

• In order to represent the tuples of individual sources
more accurately in our representation, we may make
use of already existing mapping tables. For example,
if a mapping between the values AC541 and UA203
exists, then we can use either one of the values in the
new representation instead of both values.

2.2.2 Reasoning on Mapping Tables
In the previous section, we use the contents of the sources

in order to drive the discovery of new tables or augment the
recorded associations in existing tables. That is, we use data
to discover new meta-data. In the following paragraphs, we
perform similar operations by relying solely on mapping ta-
bles. That is, we use existing meta-data to produce new
meta-data. In turn, this new meta-data might lead to the
production of new data. This feedback loop between data
and meta-data is one of the main characteristics of our ap-
proach and is a recurrent theme which we encounter during
the process of query answering in Section 3.

As mentioned, the techniques presented in this section
rely on existing mapping tables either to discover new map-
ping tables or to augment the associations recorded in them.
Furthermore, we present here a technique that can be used
to check the validity of both the newly created tables and
the additionally inferred associations. The key idea, under-
lying all techniques, is the treatment of mapping tables as
constraints on the association of tuples between sources. Al-
though we do not introduce formally the notion of mapping
constraints (see [15] for a formal introduction), we present an
example of how mapping tables can be used as constraints.
For this, consider the mapping table for code-share flights
shown in Figure 2. Given this table, from the three AC
flights from YYZ to JFK, in Figure 1, only the first two AC

flights are associated with the two corresponding UA flights
between the same origin and destination. Any other associ-
ation of tuples, from the two relations, does not satisfy the
mapping table m.

Research in database constraints focuses on addressing
two main problems, namely, the inference and consistency
problems [1]. In the context of mapping constraints, a solu-
tion to the inference problem can be used either to discover
new mapping tables from a network of existing ones or to
augment the associations that are recorded in existing ta-
bles. As an example, suppose that there is a mapping table
for code-share flights between the UA and Lufthansa air-
lines. Our techniques can use this mapping table, plus the
one in Figure 2, to discover if there are any code-share flights
between the AC and Lufthansa airlines.

A solution to the consistency problem of mapping con-
straints offers a way to validate or verify the associations of
values that are discovered either through our inference tech-
niques or through the techniques described in the previous
section. As an example, we assume that through one of the
techniques, we are given the following additional informa-
tion.

fno flight
AC401 UA120
AC541 UA203
AC543 UA208

Suppose we have a mapping indicating that if a fno X
is associated with a flight Y, then these two flights must
originate from the same city.2 Using our solutions for the
consistency problem, we are able to detect that the first tu-
ple above is inconsistent. The user can be notified of the
inconsistency and she can provide a strategy to resolve it.
Our system allows the user to specify a strategy so that
future inconsistencies between the two tables are automati-
cally resolved.

In addition to providing solutions for the aforementioned
problems, our work has to deal with the technical difficulty
of addressing these problems in a setting where the available
constraints are not physically located in one place, that is,
in one source, but they are distributed over a networked of
sources. As such, our solutions are customized in order to
work in a dynamic, networked environment.

3. DATA SHARING IN KANATA
In this section, we show how mappings are used to support

data sharing between different sources. Since data sharing
is performed by means of querying, we present here tech-
niques to query the data using the mappings and to query
the mappings themselves. In Kanata, both the data and
metadata evolve and thus both types of queries are useful.

3.1 Querying Mappings
Data coming from the integration of independent, physi-

cally distributed, heterogeneous sources that may have been
developed with different requirements in mind, are not al-
ways well-understood and accepted. Some of the original
data semantics may be lost during the integration and, as a
consequence of the transparent access provided by the inte-
gration, the notion of distinct sources and their parts often

2A similar mapping is illustrated more explicitly in the next
section.



disappears from queries and results. Hence, searching in an
integrated manner for data that is not only relevant but also
best suited to a task at hand, is a difficult process. In ad-
dition, there are numerous applications where users need to
know the origin of the data and reason about it in order to
evaluate the quality of the retrieved results. Knowing how
and from where each particular data element was derived
allows users to apply their own judgment to the credibil-
ity of that information and decide whether some particular
data is a semantically correct answer to their query. In sys-
tems where information from multiple sources is used, such
knowledge may assist in interpreting the data semantics and
resolving potential conflicts among data retrieved from dif-
ferent sources. In several emerging applications the ability
to analyze “what-if” scenarios in order to reason about the
impact of the data coming from specific sources (or specific
parts of them) is of paramount importance.

Furthermore, in dynamic environments where mappings
and schemas may change frequently, the semantics of the in-
tegrated data may also be changing. In such cases, it would
be helful to be able to query not only the data, but also
the meta-data information, that is, schemas and transfor-
mations (i.e., mappings). For that reason, we have elevated
schemas and mappings to first class citizens.

As a first step towards this direction we have developed
and implemented a representation model for schemas and
mappings. This meta-data information can then be queried
the same way regular data is queried.

As an example, consider the case where a user does not un-
derstand the exact semantics of the data of a specific schema
attribute. She can pose a query that requests the mappings
populating the particular attribute, as well as the parts of
the remote schemas that contribute data to this attribute.
The returned result may provide the user with the required
information to better understand the semantics of the indi-
vidual element. For example, attribute ts in a table Person
may not be well-understood. A query on what mappings
are using this attribute may return a mapping that specifies
that a value in ts is generated by multiplying the values of
attribute monthlySalary by 12. Viewing this, a user may
come to understand the meaning of ts to be the yearly in-
come.

In many cases, it is also important to determine for a
specific data element in an integration where it originates
and through what mapping. To keep track of this informa-
tion we have introduced annotations on data values in order
to associate them with their meta-data information. Anno-
tations are not simply super-imposed information but can
be queried along with data. We have also developed an ex-
tended query language that offers the capability of uniformly
manipulating data and meta-data by utilizing the proposed
representation model and data annotations.

3.2 Querying using Mapping Tables
Our framework for query answering, through mapping ta-

bles, assumes that a user poses queries only with respect to
its local source. The motivation for this assumption is to
free the user from the requirement to be fully knowledgable,
or even aware, of the schemas of other sources. Given a user
query Q, it is the responsibility of the system to translate
this query to one that can be executed over the schemas of
the sources that are integrated with the current user source.
For this, we provide a rewriting mechanism that uses map-

ping tables to translate query Q to a set of queries that can
be executed over the integrated sources. Although the idea
of query translation is not novel, the context in which it is
applied is. Traditionally, query translation relies on the use
of schema mappings that specify how the schemas of the
sources are related. During the query translation, these rel-
atively small expressions are used. Mapping tables however
contain data and may be very large. Query translation in
our environment involves manipulating these large tables.

In more detail, our work shows how mapping tables can
be used to translate select-project-join queries, where the se-
lection formula is positive, i.e., it has no negation and it con-
sists of conjunctions and disjunctions of atoms of the form
(A = B) and (A = a), where A and B are attribute names
and a is a constant. We consider both sound translations
(which only retrieve correct answers) and complete trans-
lations (which retrieve all correct answers, and no incorrect
answers). In this setting, the complexity of testing for sound
translations is Πp

2-complete, in the size of the query. Since
large queries rarely occur in practice, the high complexity
is not an obstacle. Our experimental evaluation of the al-
gorithm indicates that it works efficiently in practice [14].
We also propose and implement algorithms for computing
sound and complete translations, and we offer experimental
results that show the efficiency of these algorithms.

3.3 Querying Inconsistent Information
In static environments, data sources are populated only

after the schemas and mappings have already been designed.
Therefore, it is possible to ensure, at every point in time,
that data remains consistent. In contrast, in a dynamic
environment, data sources may be populated at the moment
that the schemas or mappings change. Then, the question
that arises is: what shall we do with a source if, as a result
of a change, it becomes inconsistent?

As a simple example, suppose that a design decision has
been made that the flight time information between Air
Canada and United Airlines should be synchronized. This
can be specified with the following schema mapping:

MappingTable(fno, flight) ∧ AC Flights(fno, date, time)∧
UA Flights(flight, date′, time′) →

(date = date′ ∧ time = time′)

Notice that the mapping is not a GLAV mapping [11],
since it involves relations from two different sources on its
left-hand side. Also, the mapping table plays an important
role here in order to relate the flights of the two companies.

It is easy to see that AC Flights and UA Flights are in-
consistent with respect to the new mapping. For instance,
codes UA208 and AC543 stand for the same flight, which
departs at 12:00 according to Air Canada, and at 12:15 ac-
cording to United. If a query asks for the departure time of
the flight, what should be the answer?

The traditional approach to deal with these situations is
data cleaning [7]. In our example, this amounts to deciding
whether United or Air Canada has the correct departure
time for the flight. Data cleaning techniques are often not
applicable in our context. First, because they are semi-
automatic, and the cost in terms of human involvement may
become prohibitive when the cleaning has to be done every
time the metadata changes. Second, because sources are
autonomous, and may therefore refuse to be “cleaned” just
because of changes in the mappings.



Our approach resorts to run-time reconciliation of incon-
sistencies, drawing upon the notion of repairs originally de-
veloped in the area of consistent query answering [4]. A
repair is an instance that minimally differs from the incon-
sistent database under set inclusion. Repairs need not be
unique; each repair corresponds to a possible ”cleaned” in-
stance. A consistent answer is an answer that appears in
every repair of the database. A possible answer is an answer
that appear in at least one repair of the database.

The potentially large number of repairs leads us to ask
whether we can compute the consistent answers of q effi-
ciently. The answer to this question is known to be negative
in general [8]. However, this does not preclude the fact that
there may exist large classes of queries for which the con-
sistent answers can be retrieved efficiently. In particular,
we have identified a large and practical class of conjunc-
tive queries (i.e., queries that use selection, projection, and
join) that enjoy this property. For this class, we have given
query rewriting algorithms that, given a query q, produce a
query q′ that retrieves the consistent answers directly from
the inconsistent database.

The consistent query answering module of Kanata will use
schema mappings and mapping tables in order to retrieve
the possible and consistent answers to data sources. Notice
that the approach of providing consistent answers is very
conservative, in the sense that a tuple is not in the answer
unless it appears in every repair. If a user is not satisfied
with the consistent answer to a query, our tool would provide
her with the possible answers, and an explanation of what
mappings make specific answers inconsistent.

4. CONCLUSION
In this paper, we presented a system, called Kanata, that

manages the evolution of data sharing systems. A distinc-
tive feature of Kanata is that it introduces techniques that
exploit the interplay between the data and metadata lev-
els of the system. In order to manage system evolution,
metadata-level techniques are used to automatically update
mappings in response to schema changes; data-level tech-
niques are used to allow query answering even when some
constraints of the system are violated. In order to discover
associations between data sources, data mining techniques
are used at the data level, and inference techniques are used
at the metadata level. Also, metadata information can be
queried in the same way as any other data in the system.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. Andritsos, R. J. Miller, and P. Tsaparas.

Information-Theoretic Tools for Mining Database
Structure from Large Data Sets. In ACM SIGMOD
Int’l Conf. on the Management of Data, pages 731–742,
2004.

[3] P. Andritsos, P. Tsaparas, R. J. Miller, and K. Sevcik.
LIMBO: Scalable Clustering of Categorical Data. In
Advances in Database Technology - Int’l Conf. on Ex-
tending Database Technology (EDBT), pages 123–146,
2004.

[4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In Proc. of
the ACM Symp. on Principles of Database Systems
(PODS), pages 68–79, 1999.

[5] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R. J. Miller, and J. Mylopoulos. The Hyperion Project:

From Data Integration To Data Coordination. ACM
SIGMOD Record, 32(3):53–58, 2003.

[6] P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A
Vision of Management of Complex Models. ACM SIG-
MOD Record, 29(4):55–63, 2000.

[7] M. Bouzeghoub and M. Lenzerini. Introduction to the
special issue on data extraction, cleaning and reconcil-
iation. Information Systems, 26(8):535–536, 2001.

[8] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidabil-
ity and complexity of query answering over inconsistent
and incomplete databases. In Proc. of the ACM Symp.
on Principles of Database Systems (PODS), pages 260–
271, 2003.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. In Proc.
of the Int’l Conf. on Database Theory (ICDT), pages
207–224, 2003.

[10] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Com-
posing Schema Mappings: Second-Order Dependencies
to the Rescue. In Proc. of the ACM Symp. on Principles
of Database Systems (PODS), pages 83–94, 2004.

[11] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In Proc. of the National
Conf. on Artificial Intelligence (AAAI), pages 67–73,
1999.

[12] A. Gupta, I. Mumick, and K. Ross. Adapting Mate-
rialized Views After Redefinition. In ACM SIGMOD
Int’l Conf. on the Management of Data, pages 211–222,
1995.

[13] A. Y. Halevy. Answering Queries Using Views: A
Survey. The Int’l Journal on Very Large Data Bases,
10(4):270–294, 2001.

[14] A. Kementsietsidis and M. Arenas. Data sharing
through query translation in autonomous systems. To
Appear in VLDB, 2004.

[15] A. Kementsietsidis, M. Arenas, and R. J. Miller. Map-
ping Data in Peer-to-Peer Systems: Semantics and Al-
gorithmic Issues. In ACM SIGMOD Int’l Conf. on the
Management of Data, pages 325–336, 2003.

[16] A. J. Lee, A. Nica, and E. A. Rundensteiner. The
EVE Approach: View Synchronization in Dynamic Dis-
tributed Environments. IEEE Transactions on Knowl-
edge and Data Engineering, 14(5):931–954, 2002.

[17] M. Lenzerini. Data Integration: A Theoretical Per-
spective. In Proc. of the ACM Symp. on Principles of
Database Systems (PODS), pages 233–246, 2002.

[18] J. Madhavan and A. Halevy. Composing Mappings
Among Data Sources. In Proc. of the Int’l Conf. on
Very Large Data Bases (VLDB), pages 572–583, 2003.

[19] R. J. Miller, L. M. Haas, and M. Hernández. Schema
Mapping as Query Discovery. In Proc. of the Int’l Conf.
on Very Large Data Bases (VLDB), pages 77–88, Cairo,
Egypt, September 2000.

[20] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
and R. Fagin. Translating Web Data. In Proc. of the
Int’l Conf. on Very Large Data Bases (VLDB), pages
598–609, August 2002.

[21] E. Rahm and P. A. Bernstein. A Survey of Approaches
to Automatic Schema Matching. The Int’l Journal on
Very Large Data Bases, 10(4):334–350, 2001.

[22] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adap-
tation under evolving schemas. In Proc. of the Int’l
Conf. on Very Large Data Bases (VLDB), pages 584–
595, 2003.

[23] Y. Velegrakis, R. J. Miller, and L. Popa. On Preserving
Mapping Consistency under Schema Changes. The Int’l
Journal on Very Large Data Bases, 2004. Submitted.

[24] J. Widom. Research Problems in Data Warehousing.
In International Conf. on Information and Knowledge
Management, pages 25–30, Baltimore, Maryland, 1995.


