
Information-Theoretic Tools for Mining Database Structure
from Large Data Sets

Periklis Andritsos
University of Toronto

periklis@cs.toronto.edu

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

Panayiotis Tsaparas
Univ. of Rome, "La Sapienza"

tsap@dis.uniroma1.it

ABSTRACT
Data design has been characterized as a process of arriving at a de-
sign that maximizes the information content of each piece of data
(or equivalently, one that minimizes redundancy). Information con-
tent (or redundancy) is measured with respect to a prescribed model
for the data, a model that is often expressed as a set of constraints.
In this work, we consider the problem of doing data redesign in
an environment where the prescribed model is unknown or incom-
plete. Specifically, we consider the problem of finding structural
clues in an instance of data, an instance which may contain er-
rors, missing values, and duplicate records. We propose a set of
information-theoretic tools for finding structural summaries that are
useful in characterizing the information content of the data, and ul-
timately useful in data design. We provide algorithms for creating
these summaries over large, categorical data sets. We study the
use of these summaries in one specific physical design task, that of
ranking functional dependencies based on their data redundancy.
We show how our ranking can be used by a physical data-design
tool to find good vertical decompositions of a relation (decompo-
sitions that improve the information content of the design). We
present an evaluation of the approach on real data sets.

1. INTRODUCTION
The growth of networked databases has led to larger and more

complex databases whose structure and semantics gets more dif-
ficult to understand. In heterogeneous applications, data may be
exchanged or integrated. This integration may introduce anoma-
lies such as duplicate records, missing values, or erroneous values.
In addition, the lack of documentation or the unavailability of the
original designers can make the task of understanding the structure
and semantics of databases a very difficult one.

No matter how carefully a database was designed in the past,
there is no guarantee that the data semantics are preserved as it
evolves over time. It is usually assumed that the schema and con-
straints are trustworthy, which means that they provide an accurate
model of the time-invariant properties of the data. However, in
both legacy databases and integrated data this may not be a valid
assumption. Hence, we may need to redesign a database to find a
model (a schema and constraints) that better fit the current data.

In this work, we consider the problem of mining a data instance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

for structural clues that can help in identifying a better data design.
Our work is in the spirit of several recent approaches that propose
tools to help an analyst in the process of understanding and cleaning
a database [21, 10]. However, while these approaches focus on
providing summaries that help in the process of integration [21]
or querying [10], we focus on summaries that reveal information
about the data design and its information content.

To approach this problem, it is important to understand what
makes a data design good. Data design has been characterized as
a process of arriving at a design that maximizes the information
content of each piece of data (or equivalently, one that minimizes
redundancy). Information content (and redundancy) is measured
with respect to a prescribed model for the data, a model that is of-
ten expressed as a set of constraints or dependencies. In their recent
work, Arenas and Libkin presented information-theoretic measures
for comparing data designs [6]. Given a schema and a set of con-
straints, the information content of a design is precisely character-
ized. Their approach has the benefit that it permits two designs for
the same database to be compared directly.

However, to characterize the information content, it was neces-
sary to have a prescribed model. Consider the following example.

Ename City Zip
t1 Pat Boston 02139
t2 Pat Boston 02138
t3 Sal Boston 02139

Figure 1: Examples of Duplication and Redundancy
Clearly, there is duplication of values in this instance. How-

ever, what we consider to be redundant will depend on the con-
straints expressed on the schema. If the functional dependency
Ename → City holds, then the value Boston in tuple t2 is re-
dundant given the presence of tuple t1. That is, if we remove this
value, it could be inferred from the information in the first tuple.
However, the value Boston in the third tuple is not redundant. If
we lose this value, we will not know the city of Sal. So while the
value Boston is duplicated in t3, it is not redundant. But if we
change the constraints and instead of Ename → City, we have
the dependency Zip→ City, then the situation is reversed. Given
t1, the value Boston is redundant in t3, but not in t2.

Understanding redundancy is at the heart of database design. Re-
dundancy occurs naturally because it reflects the intuitive thinking
process of humans. Humans are naturally associative thinkers and
naturally tend to aggregate and bring all the information they have
together in their minds since this facilitates the processing of infor-
mation. However, this is not a good way to store information in a
computer. Normalization is the systematic process, during database
design, that is used to separate information about different entities
or objects of interest into different tables. This allows us to avoid

some of the data redundancy that would occur naturally when as-
sociating different types of information together.

However, it is not obvious how to apply normalization or how
to define the information content of a database in an environment
where the given schema and constraints may be incorrect or in-
complete. In this work, we consider this problem. At their core, our
techniques find duplicate values. However, unlike techniques based
on counting (for example, frequent item-set mining [2]), we use
information-theoretic clustering techniques to identify and summa-
rize the information content of duplicate values.

In our approach, rather than viewing the data as being inconsis-
tent or incomplete with respect to a given schema, we consider the
schema to be potentially inconsistent or incomplete with respect to
a given data instance. Our contributions are the following.

• We propose a set of information-theoretic tools that use cluster-
ing to discover duplicate records, sets of correlated attribute values,
and groups of attributes that share such values.
• We provide a set of efficient algorithms that can be used to iden-
tify duplication in large, categorical data sets. Our algorithms gen-
erate compact summaries that can be used by an analyst to identify
errors or to understand the information content of a data set.
• We present several applications of our summaries to the data
quality problems of duplicate elimination and the identification of
anomalous values. We also present applications to the data design
problems of horizontally partitioning an integrated or overloaded
relation and to ranking functional dependencies based on their in-
formation content. For the latter application, we show how our
techniques can be used in combination with a dependency miner to
help understand and use discovered dependencies.

The rest of the paper is organized as follows. In Section 2, we
present related work and in Section 3, we introduce some basic con-
cepts from information theory. In Section 4, we draw the relation-
ship between the existence of duplicate information and clustering.
In Section 5, we describe LIMBO [5], the scalable information-
theoretic clustering algorithm that we use, and in Section 6 the tools
that use this algorithm to derive structural clues. In Section 7, we
introduce a novel algorithm that ranks functional dependencies that
hold in an instance. Section 8 presents the experimental evaluation
of all our methods and Section 9 concludes our work and discusses
additional applications.

2. RELATED WORK
Our work finds inspiration in two independent lines of work. The

first on data quality browsers, such as Potter’s Wheel [21] and Bell-
man [10]. The second on the information-theoretic foundation of
data design [6, 8].

Data browsers aim to help an analyst understand, query, or trans-
form data. In addition to sophisticated visualization techniques
(and adaptive query or transformation processing techniques [21]),
they employ a host of statistical summaries to permit real-time
browsing. In our work, we consider the generation of summaries
that could be used in a data browser for data (re)design. These
summaries complement the summaries used in Bellman, where
the focus is on identifying co-occurrence of values across differ-
ent relations (to identify join paths and correspondences between
attributes of different relations). Instead, we present a robust set of
techniques for identifying and summarizing various forms of du-
plication within a relation.

Arenas and Libkin provide information-theoretic measures for
comparing data designs [6]. Given a schema and a set of con-
straints, the information content of a design is precisely character-
ized. The measures used are computational infeasible and they rely

on having a clean instance that conforms to a fixed (given) set of
constraints. Our techniques are based on an efficient information-
theoretic clustering approach. Because we are using unsupervised
learning, we are able to create informative summaries even without
an accurate model (set of constraints) for the data. We show how
our techniques can be used to identify good (or more accurately,
better) designs.

Constraint or dependency mining is a related field of study where
the goal is to find all dependencies that hold on a given instance of
the data (that is, all dependencies that are not invalidated by the in-
stance). Such approaches include the discovery of functional [24,
15, 28] and multi-valued [25] dependencies. Our work comple-
ments this work by providing a means of characterizing the redun-
dancy captured by a dependency. We have found that constraint
miners reveal hundreds or thousands of potential (approximate) de-
pendencies when they are run on large, real data sets. Our work
helps a data analyst understand and quickly identify interesting de-
pendencies within these large sets.

The importance of automated data design and redesign tools has
been recognized in reports on the state of database research. Yet,
the advances that have been made in this area are largely limited
to physical design tools that help tailor a design to best meet the
performance characteristics of a workload [20, 3]. Cluster Analysis
has been used for vertical partitioning [14, 17, 18], however these
techniques partition the attributes of a relation based on their usage
in workload queries and not the data. On the other hand, fractured
mirrors [20] store different versions of the same database, which
are combined during query optimization. This technique is also
based on the usage of the attributes in queries.

Finally, our work complements work on duplicate elimination [4,
13, 23, 22]. We propose a technique to identify duplicates based on
the information content of tuples. Our approach does not consider
how to identify or use distance functions for measuring the error be-
tween values (which is the main focus of related work in this area).
An interesting area for future work would be on how to combine
these techniques.

3. INFORMATION THEORY BASICS
In what follows, we introduce some basic concepts from Infor-

mation Theory. We can find the following definitions in any text-
book of information theory, e.g., [7]. We denote with V a discrete
random variable and with V the set from which V takes its val-
ues.1 If p(v) denotes the probability mass function of V , then the
entropyH(V) of V is defined asH(V) = −

�
v∈V

p(v) log p(v).
Intuitively, entropy is a measure of the “uncertainty” of variable V .
When its value is high, the certainty with which we can predict the
values of the random variable is low. If variable V takes on n states,
then the maximum value of the entropy isHmax(V) = log(n) and
is realized when each of the states is equiprobable, i.e., p(v) = 1/n
for all v ∈ V.

If V and T are two discrete random variables that takes their
values from sets V and T respectively, then the conditional entropy
of T given V is defined as follows.

H(T |V) = �
v∈V

p(v) �
t∈T

p(t|v) log p(t|v)

Conditional entropy is a measure of the uncertainty with which we
can predict the values of random variable T when the values of V
are given.

1For the remainder of the paper, we use italic capital letters (e.g.
V) to denote random variables, and boldface capital letters (e.g.
V) to denote the set from which the random variable takes values.

Having defined entropy and conditional entropy, we may now
introduce mutual information, I(V ; T). This measure captures the
amount of information that the variables convey about each other. It
is symmetric, non-negative, and its relation to entropy is given via
the equation I(V ; T) = H(V) −H(V |T) = H(T) −H(T |V).

Finally, Relative Entropy, or the Kullback-Leibler (KL) diver-
gence, is an information-theoretic measure used to quantify the
distance between two probability distributions. Given two distri-
butions p and q over a set V, relative entropy is defined as follows.

DKL[p‖q] = �
v∈V

p(v) log
p(v)

q(v)

Intuitively, relative entropy DKL[p‖q] measures the error in an en-
coding that assumes distribution q, when p is the true distribution.

4. CLUSTERING AND DUPLICATION
In this section, we consider how information about tuples, and

values within tuples, can be used to build structural information,
independent of the constraints that hold on a relation.

Our techniques are designed to find duplication in large data sets.
However, because we are considering real data sets which may con-
tain errors or missing values, we will be looking for not only groups
containing exact duplicates, but rather groups containing near du-
plicates or similar values. Hence, our techniques will be based on
clustering. In clustering, we identify groups of data objects that are
similar and where objects within different groups are dissimilar.

Schemas, like structured query languages that use them, treat
data values largely as uninterpreted objects. This property has been
called genericity, [1], and is closely tied to data independence, the
concept that schemas should provide an abstraction of a data set
that is independent of the internal representation of the data. That
is, the choice of a specific data value (perhaps “Pat” or “Patricia”)
has no inherent semantics and no influence on the schema used to
structure values. The semantics captured by a schema is indepen-
dent of such choices. For query languages, genericity is usually
formalized by saying that a query must commute with all possi-
ble permutations of data values (where the permutations may be
restricted to preserve a distinguished set of constants) [1].

This property becomes important when one considers clustering
algorithms. Clustering assumes that there is some well-defined no-
tion of similarity between data objects. Many clustering method-
ologies employ similarity functions that depend on the semantics
of the data values. For example, if the values are numbers, Eu-
clidean distance may be used to define similarity. However, we do
not want to impose any application-specific semantics to the data
values within a database.

If we are seeking to identify duplication in a set of tuples, we
need a measure of similarity that reflects the duplication in these
tuples. However, even with such a measure, it is not obvious how
to define the quality of the results. On the other hand, for humans
there is an intuitive notion of the quality of a clustering. A good
clustering is one where the clusters are informative about the ob-
jects they contain. Given a cluster, we should be able to predict the
attribute values of the tuples in this cluster to the maximum possi-
ble.

We assume a model where a set T of n tuples is defined on m
attributes (A1, A2, . . . , Am). The domain of attribute Ai is the set
Vi = {Vi,1, Vi,2, . . . , Vi,di

}. Any tuple t ∈ T takes exactly one
value from the set Vi for the ith attribute. Moreover, a functional
dependency between attribute sets X ⊆ A and Y ⊆ A, denoted
by X → Y , holds if whenever the tuples in T agree on the X
values, they also agree on their corresponding Y values.

To apply information-theoretic techniques, we will treat relations
as distributions. For each tuple t ∈ T containing a value v ∈ V,
we will set the probability that v appears in tuple t as 1/m. If we
go back to the example of Figure 1, we consider a representation
of its tuples as given in Figure 2. Each row corresponds to a tuple.
There is a non-zero value in the row for each attribute value of the
tuple and the values in a row sum up to one.

Pat Sal Boston 02139 02138
t1 1/3 0 1/3 1/3 0
t2 1/3 0 1/3 0 1/3
t3 0 1/3 1/3 1/3 0

Figure 2: Example of tuple representation

The representation we consider for the values of the same data
set is given in Figure 3. Each row in the table of Figure 3 charac-

t1 t2 t3
Pat 1/2 1/2 0
Sal 0 0 1

Boston 1/3 1/3 1/3
02139 1/2 0 1/2
02138 0 1 0

Figure 3: Example of value representation

terizes the occurrence of values in tuples and for each value there
is a non-zero entry for the tuples in which it appears. Similar to the
tuple represenation, each row sums up to one. More formal defini-
tions about both representations are given in the following section.

Using such representations, we consider a number of novel clus-
tering approaches for identifying duplication in tuples, values, and
attributes. All of our techniques are founded on the IB method,
which we introduce next.

5. CLUSTERING METHODOLOGY
In this section, we describe the Information Bottleneck, (IB),

method [27] and a scalable clustering algorithm based on IB.

5.1 Information Bottleneck
The intuitive idea of producing clusters that are informative

about the objects they contain was formalized by Tishby, Pereira
and Bialek [27]. They recast clustering as the compression of one
random variable into a compact representation that preserves as
much information as possible about another random variable. Their
approach was named the Information Bottleneck, (IB), method, and
it has been applied to a variety of different areas. More formally,
given a set of objects in set V expressed over set T, we seek a clus-
tering, C, of V such that the mutual information I(C;T) remains
as large as possible, or otherwise the loss of information described
by I(V ;T) − I(C;T) is minimum. The IB method is generic,
imposing no semantics on specific data values.

Finding the optimal clustering is an NP-complete problem [12].
Slonim and Tishby [26], propose a greedy agglomerative approach,
the Agglomerative Information Bottleneck, (AIB), algorithm, for
finding an informative clustering. If set V contains q objects, the
algorithm starts with the clustering Cq , in which each object v ∈ V

is assigned to its own cluster. Due to the one-to-one mapping be-
tween Cq and V, I(Cq;T) = I(V ;T). The algorithm then pro-
ceeds iteratively, for q − k steps (k is the number of desired clus-
ters), reducing the number of clusters in the current clustering by
one in each iteration. At step q−`+1, two clusters ci and cj in the
`-clustering (the clustering of ` clusters) are merged in cluster c∗,
to produce a new (`− 1)-clustering C`−1. As the algorithm forms

clusters of smaller size, the information that the clustering contains
about T decreases, which means that I(C`−1;T) ≤ I(C`;T). The
two clusters ci and cj to be merged are chosen such that the loss of
information δI(ci, cj) = I(C`;T)−I(C`−1;T), in moving to the
(` − 1)-clustering, is minimum. After merging clusters ci and cj ,
the new cluster c∗ = ci ∪ cj has [26]:

p(c∗) = p(ci) + p(cj) (1)

p(T |c∗) =
p(ci)

p(c∗)
p(T |ci) +

p(cj)

p(c∗)
p(T |cj) (2)

Tishby et al. [27] show that

δI(ci, cj) = [p(ci) + p(cj)] ·DJS [p(T |ci), p(T |cj)] (3)

where DJS is the Jensen-Shannon (JS) divergence, defined as fol-
lows. Let pi = p(T |ci) and pj = p(T |cj) and let

p̄ =
p(ci)

p(c∗)
pi +

p(cj)

p(c∗)
pj

Then, the DJS distance is defined as follows.

DJS[pi, pj] =
p(ci)

p(c∗)
DKL[pi||p̄] +

p(cj)

p(c∗)
DKL[pj ||p̄]

The DJS distance defines a metric and it is bounded above by one.
We note that the information loss for merging clusters ci and cj ,
depends only on the clusters ci and cj , and not on other parts of the
clustering C`.

5.2 Scalable Clustering
The AIB algorithm suffers from high computational complex-

ity, namely it is quadratic in the number of objects to be clustered,
which does not make it appropriate for large sets. We therefore use
a scalable version of AIB, called LIMBO (scaLable InforMation
BOttleneck) [5]. LIMBO uses distributional summaries in order to
deal with large data sets. This algorithm is similar in spirit to the
BIRCH [29] clustering algorithm and is based on the idea that we
do not need to keep whole clusters in main memory, but instead,
just sufficient statistics to describe them.

The sufficient statistics are called Distributional Cluster Fea-
tures, (DCF)s, and they will be used to compute the distance be-
tween two clusters or between a cluster and a tuple. Let V be the
set of objects to be clustered expressed on the set T, and let V
and T be the corresponding random variables. Also let C denote a
clustering of V and C be the corresponding random variable.

For a cluster c ∈ C, the DCF of c is defined by the pair

DCF (c) = � p(c), p(T |c) �
where p(c) is the probability of cluster c ,(p(c) = |c|/|V|), and
p(T |c) is the conditional probability distribution of the values in T
given the cluster c. If c consists of a single object v ∈ V, p(v) =
1/|V | and p(T |c) is computed as described in Section 5.1.

Let c∗ denote the cluster we obtain by merging two clusters c1
and c2. The DCF of the cluster c∗ is equal to

DCF (c∗) = � p(c∗), p(T |c∗) �
where p(c∗) and p(T |c∗) are computed using Equations 1 and 2,
respectively. Finally, given two clusters c1 and c2, we define the
distance, d(c1, c2), between DCF (c1) and DCF (c2) as the in-
formation loss δI(c1, c2) incurred after merging the corresponding
clusters. d(c1, c2) is computed using Equation 3.

The importance of DCF s lies in the fact that they can be stored
and updated incrementally. The probability vectors are stored as
sparse vectors, reducing the amount of space considerably. Each

DCF provides a summary of the corresponding cluster, which is
sufficient for computing the distance between two clusters. We use
a tree data structure, termed DCF -tree. Our scalable algorithm
proceeds in three phases. In the first phase, the DCF tree is con-
structed to summarize the data. In the second phase, the DCF s of
the tree leaves are merged to produce a chosen number of clusters.
In the third phase, we associate each object (tuple, attribute value
or attribute) with the DCF to which it is closest.

Phase 1: Insertion into the DCF tree. The objects to be clustered
are read from disk one at a time and at any point in the construc-
tion of the tree, the DCF s at the leaves define a clustering of the
tuples seen so far. Each non-leaf node stores DCF s that are pro-
duced by merging the DCF s of its children. After all objects are
inserted in the tree, the DCF -tree embodies a compact representa-
tion in which the data set is summarized by the information in the
DCF s of the leaves. This summarization is based upon a parame-
ter φ which controls the accuracy of the model represented by the
tree. More precisely we use the quantity φ · I(V ;T)

|V |
as a threshold

and merge DCF s at the leaf level of the tree that do not exceed
it. Smaller values of φ result in more compact summarizations.
For instance using φ = 0.0, we only merge identical objects and
LIMBO becomes equivalent to AIB.

Phase 2: Clustering. Upon the creation of the tree, we can apply
AIB in a much smaller number of objects represented by theDCF s
in the leaves.

Phase 3: Associating object with clusters. For a chosen value
of k, Phase 2 produces k DCF s that serve as representatives of k
clusters. In the final phase, we perform a scan over the data set and
assign each object o to the cluster c such that d(o, c) is minimized.

In our approach, we shall use this more scalable clustering algo-
rithm to find duplicate groups of tuples, attribute values and groups
of attributes that can be considered similar because they contain
such groups.

6. DUPLICATION SUMMARIES
In this section, we present a suite of structure discovery tasks that

can be performed using our information-theoretic clustering. We
will see how from information about tuples, we can build structural
information about the attribute values and from this information
about the attributes of a relation.

The input to our problem here is the set of tuples T and the set
V = V1∪ . . .∪Vm, which denotes the set of all possible values. 2

Let d denote the size of set V. We shall denote with V and T the
random variables that range over sets V and T, respectively.

6.1 Tuple Clustering
In tuple clustering, we find clusters of tuples that preserve the

information about the values they contain as much as possible. We
represent our data as a n × d matrix M , where M [t, v] = 1 if
tuple t ∈ T contains attribute value v ∈ V, and zero otherwise.
Note that the vector of a tuple t contains m 1’s. For a tuple t ∈ T,
defined over exactly m attribute values, we then define:

p(t) = 1/n (4)

p(v|t) = � 1/m if v appears in t
0 otherwise

(5)

Intuitively, we consider each tuple t to be equi-probable and nor-
malize matrix M so that the tth row holds the conditional proba-
bility distribution p(V |t). Given M , we can define mutual infor-
2We will use the terms attribute values and values interchangeably.

mation I(T ;V) and cluster the tuples in T into clusters CT such
that the information loss I(CT ;V) − I(T ;V) is minimum.

6.1.1 Duplicate Tuples
Duplicate tuples can be introduced through data integration. Dif-

ferent sources may store information about the same entity. The
values stored may differ slightly so when integration is performed,
two entries may be created for the same entity. As an example, we
can imagine a situation where employee information is integrated
from different sources and employee numbers are represented dif-
ferently in the sources. After integration, it is natural to expect
tuples referring to the same employee where they may differ only
in their employee number (or perhaps some other attributes if one
database is more up-to-date than another). To identify duplicate or
almost duplicate tuples we proceed as follows.

1. Set a φT value.
2. Apply Phase 1 to construct tuple summaries.
3. Using leaf DCF s with p(c∗) > 1/n, apply Phase 3 to asso-
ciate tuples of the initial data set with their closest summary, where
proximity is measured by the information loss between the two.

Step 1 of the above procedure defines the accuracy of the rep-
resentation of groups of tuples in the summaries at the leaf level
of the DCF -tree. If φT = 0.0 we merge identical tuples and the
representation is exact. As we increase φT the summaries permit
more errors in the duplicate values. Step 2 applies Phase 1 to pro-
duce summaries for φT , while Step 3 associates tuples with sum-
maries that represent groups of tuples (more than one tuple). It is
then natural to explore the sets of tuples associated with the same
summaries to find candidate (almost) duplicate ones.

6.1.2 Horizontal Partitioning
A second application of tuple clustering is the horizontal parti-

tioning of a table. Horizontal partitioning can be useful on tables
that have been overloaded with different types of data [9]. For ex-
ample, an order table originally designed to store product orders
may have been reused to store new service orders. In horizontal
partitioning, we are seeking to separate out different types of tuples
based on the similarities in their attribute values. Specifically, we
try to identify whether there is a natural clustering that separates
out tuples having different characteristics.

For horizontal partitioning, we do a full clustering. That is, we
apply Phase 1 to obtain a small set of summary DCFs. Here, we
do not need to set, a priori, a threshold on the information loss φ,
rather we can pick a number of leaves that is sufficiently large (for
example, 100 leaves) and apply Phase 1 to obtain 100 summaries.
We then apply AIB to these 100 leaves to obtain clusterings for
all k values between 1 and 100. We use the following heuristic
to identify good k values that may correspond to natural horizon-
tal partitions. We do so by producing statistics that let us directly
compare clusterings. These statistics include the rate of change in
the mutual information of clusterings (δI(Ck;V)) and the rate of
change in the conditional entropy of clusterings (δH(Ck|V)) as k
varies from 1 to the number of leaf entries. The conditional entropy
H(Ck|V) captures the dissimilarity across clusters in the cluster-
ing Ck. By examining these derivatives, we are able to identify
good clusterings among the different k values. Finally, for each
such clustering, we may inspect the clustering to determine if the
clustering corresponds to a natural semantic distinction between
objects.

6.2 Attribute Value Clustering
As in tuple clustering, we can build clusters of attribute values

that maintain as much information about the tuples in which they

appear as possible. The parameter φ in this case will be denoted
by φV and small values of it allow for the identification of almost
perfectly co-occurring groups of attribute values.

A useful connection between tuple and attribute value cluster-
ing is drawn when the number of tuples is large. We can use a
φT 6= 0.0 value to cluster the tuples and then, attribute values can
be expressed over the (much smaller) set of tuple clusters instead of
individual tuples. Attribute value clustering can then be performed
as described above. This technique is referred to as Double Clus-
tering [11].

Contrary to tuple clustering, our goal here is to cluster the values
represented in random variable V so that they retain information
about the tuples in T in which they appear. We represent our data
as a d × n matrix N , where N [v, t] = 1 if attribute value v ∈ V

appears in tuple t ∈ T, and zero otherwise. Note that the vector of
a value v contains dv ≤ di 1’s, 1 ≤ di ≤ n. For a value v ∈ V,
we define:

p(v) = 1/d (6)

p(t|v) = � 1/dv if v appears in t
0 otherwise

(7)

Intuitively, we consider each value v to be equi-probable and
normalize matrixN so that the vth row holds the conditional prob-
ability distribution p(T |v). Consider the example relation depicted
in Figure 4. Figure 6 (left) shows the normalized matrix N for
the relation in Figure 4. Together with N , we define a sec-

A B C
a 1 p
a 1 r
w 2 x
y 2 x
z 2 x

Figure 4: Duplication

A B C
a 1 p
a 1 x
w 2 x
y 2 x
z 2 x

Figure 5: No perfect correlation

N t1 t2 t3 t4 t5 p(a)
{a} 1/2 1/2 0 0 0 1/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9
{1} 1/2 1/2 0 0 0 1/9
{2} 0 0 1/3 1/3 1/3 1/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9
{x} 0 0 1/3 1/3 1/3 1/9

O A B C
{a} 2 0 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0
{1} 0 2 0
{2} 0 3 0
{p} 0 0 1
{r} 0 0 1
{x} 0 0 3

Figure 6: Matrix N (left) and O (right)
ond matrix, O, which keeps track of the frequency of the attribute
values in their corresponding attributes. O is defined as a d × m
matrix were O[v, A] = dv if value v appears dv times in attribute
V . Intuitively, each entry of matrix O[v, A] stores the support of a
value v in attribute A of the relation. For our example, matrix O is
given on the right-hand-side of Figure 6. Note that for a value v:�

j
O[v, Aj] = dv and for an attribute A:

�
l
O[vl, A] = n.

Given matrix N , we can define mutual information I(V ;T) and
cluster the attribute values in V into clusters CV such that the loss
of information I(CV ; T) − I(V ;T) is minimum. Intuitively, we
seek groups of attribute values in CV that retain the information
about the tuples in which they appear. Such groups of values may
contain duplicate values. We show how we can characterize the
sets of attribute values in the clusters of CV in the next subsection.

Set V may entail a large number of values and, thus, the AIB
algorithm is infeasible. Thus, we perform the clustering using

LIMBO where theDCF s are extended in order to include informa-
tion about matrixO. We define the Attribute Distributional Cluster
Features, (ADCF), of a cluster of values c∗ as a triplet:

ADCF (c∗) = � p(c∗), p(T |c∗), O(c∗) �
where p(c∗) and p(T |c∗) are defined as in Section 5.2 andO(c∗) =�

c∈c∗
O(c), i.e., O(c∗) is the sum of the corresponding rows of

sub-clusters c∗ represents.
In a similar fashion as in tuple clustering we use LIMBO to iden-

tify duplicate or almost duplicate values in the data set.

1. Set a φV value.
2. Apply Phase 1 to construct summaries of the attribute values.
3. Using leaf ADCF s with p(c∗) > 1/d, apply Phase 3 to asso-
ciate attribute values of the initial data set with their closest sum-
mary, where proximity is measured by the information loss be-
tween the two.

By augmenting DCF s in this way, we are able to perform value
clustering on the value matrix N together with O at the same time.
Hence, we are able to find sets of attribute values (of arbitrary
size) together with their counts (that is the number of tuples in
which they appear) using one application of our clustering algo-
rithm. Specifically, we require only three passes over the dataset.
One pass to construct the matrices N and O, one pass to perform
Phase 1 and a final pass to perform Phase 3.

In our example, performing clustering where we allow no loss
of information during merges (φV = 0.0), attribute values a and
1 are clustered as are values x and 2. These values have perfect
co-occurrence in the tuples of the original relation. The clustering
of values for φV = 0.0 is depicted on the left-hand-side of Fig-
ure 7. The resulting matrix O of our example is depicted on the

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9

{2, x} 0 0 1/3 1/3 1/3 2/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0

{2, x} 0 3 3
{p} 0 0 1
{r} 0 0 1

Figure 7: Clustered Matrix N (left) and O (right)

right-hand-side of Figure 7. For the cluster {a, 1} of values the
corresponding row of O becomes (2, 2, 0), which means that the
values of this cluster appear two times in attribute A and two times
in attributeB. In general, O stores the cumulative counts of values
inside the attributes of a relation. Both N and O contain important
information and the next sub-section describes their use in finding
duplicate and non-duplicate groups of values.

Before moving to the next sub-section, it is critical to empha-
size the role of parameter φV . As already explained, φV is used to
control the accuracy of the model represented in the leaves of the
tree. Besides this, it plays a significant role in identifying “almost”
perfect co-occurrences of values. To illustrate this consider the re-
lation in Figure 5. This relation is the same as the one in Figure 4
except for value x in the second tuple. Constructing matrices N
and O can be done as explained before. However, when trying to
cluster with φV = 0.0, our method does not place values x and 2
together since they do not exhibit perfect co-occurrence any more.
This may be a result of an erroneous placement of x in the second
tuple, or a difference in the representation among data sources that
were integrated in this table. Moreover, the functional dependency

C → B that holds in the relation of Figure 4 now becomes ap-
proximate in that it does not hold in all the tuples. To capture such
anomalies, we perform clustering with φV > 0.0, which allows
for some small loss of information when merging ADCF leaves
in the ADCF -tree. Matrices N and O for φV = 0.1 are depicted
in Figure 8. Our notion of approximation is value-based. This is in

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/8
{w} 0 0 1 0 0 1/8
{z} 0 0 0 1 0 1/8
{y} 0 0 0 0 1 1/8

{2, x} 0 1/8 7/24 7/24 7/24 2/8
{p} 1 0 0 0 0 1/8

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0

{2, x} 0 3 4
{p} 0 0 1

Figure 8: Matrix N (left) and O (right), (φV = 0.1)

contrast to other methods that characterize approximation based on
the number of tuples rather than values within tuples [15, 24]. For
the data in Figure 8, our method with φV = 0.1 determines that
value x in the second tuple affects the perfect duplication of pair
{2, x} less than any other other value.

Tuple and Attribute Value clustering can be combined when the
size of the input is large. Specifically, we can define the mutual
information I(T ;V) and cluster the tuples in T into clusters rep-
resented by CT . We define φT so that CT � T and we then use
CT to define I(V ;CT) and to scale-up the clustering of attribute
values.

6.3 Grouping Attributes
We have used information loss to define a notion of proximity

for values. Based on this, we can define proximity for attributes
based on the values they contain. We then cluster attributes using
LIMBO. In this application of LIMBO, we control the information
loss through a φ value denoted by φA. Typically, the number of
attributes m is much less than the number of tuples n, so we use
small values of φA.

The rows of the compressed matrixN represent groups of values
as conditional probability distributions on the tuples they appear in
either exactly, for φV = 0.0, or approximately, for φV > 0.0.
From these rows and the corresponding rows of the compressed
matrix O, we can infer which groups of attribute values appear as
duplicates in the set of attributes. We are looking for clusters of
values that make their appearance in more than one tuple and more
than one attribute. More precisely, we define the following.

• CD
V denotes the set of duplicate groups of attribute values. A set

of values cD belongs to CD
V if and only if there are at least two

tuples ti, tj for which both p(ti|cD) 6= 0 and p(tj |cD) 6= 0, and at
the same time there are at least two attributes Ax and Ay such that
both O[cD, Ax] 6= 0 and O[cD , Ay] 6= 0.

• CND
V denotes the set of non-duplicate groups of attribute values.

This set is comprised of all values in CV −CD
V . These are sets that

appear just once in the tuples of the data set.

In our example, it is easy to see from Figure 7 that CD
V =�

{a, 1}, {2, x} � and CND
V =

�
{w}, {z}, {y}, {p}, {r} � . Now,

from these groups, CD
V contains “interesting” information in that it

may lead to a grouping of the attributes such that attributes in the
same group contain more duplicate values than attributes in differ-
ent groups.

If A is the set of attributes and A the random variable that takes
its values from this set, we only express the members of A over

CD
V through the information kept in matrix O. We denote these

members of A with A
D and the random variable that takes values

from this set with AD. Then, we group the attributes in A
D into

a clustering CD
A , such that the information I(CD

A ;CD
V) remains

maximum. Intuitively, we can cluster the attributes such that the
information about the duplicate groups of attribute values that exist
in them, remains as high as possible. Using CD

V instead of the
whole set CV , we focus on the set of attributes that will potentially
offer higher duplication while at the same time we reduce the size
of the input for this task.

Since set A usually includes a manageable number of attributes,
we can use LIMBO with φA = 0.0 and produce a full clustering of
the attributes, i.e., produce all clusterings up to k = 1. By perform-
ing an agglomerative clustering (in Phase 2) over the attributes, at
each step we cluster together a pair that creates a group with the
maximum possible duplication. For our example, Figure 9 depicts
the table of attributes expressed over the setCD

V as explained above
and using the information in matrix O (the rows that correspond to
the members of CD

V). Note that we have the same matrix both for
φV = 0 and φV = 0.1 and that in this example A = A

D. We
name this matrix F . Normalizing rows of F so that they sum up to
one, we can proceed with our algorithm and cluster the attributes.
All the merges performed are depicted in the dendrogram given
in Figure 10. A dendrogram is a tree structure that depicts the se-
quence of merges during clustering together with the corresponding
values of distance (or similarity). The horizontal axis of our exam-
ple shows the information loss incurred at each merging point. Ini-
tially, all attributes form singleton clusters. The first merge with the
least amount of information loss occurs between attributes B and
C and upon that, attribute A is merged with the previous cluster.

F {a, 1} {2, x}
{A} 2 0
{B} 2 3
{C} 0 4

Figure 9: Matrix F

B
C
A

0.0 0.1 0.2 0.3 0.4 0.5

Figure 10: Attr. Cluster Dendrogram

Looking back at our example of Figure 4, we can see that at-
tributes B and C contain more tuples with the duplicate group of
values {2, x} than A and B do with respect to the group of values
{a, 1}.

In the next section, we show how to use our attribute clustering
to rank a set of functional dependencies holding on an instance.
Our ranking reveals which dependencies can best be used in a de-
composition algorithm to improve the information content of the
schema.

7. RANKING DEPENDENCIES
A desirable goal of structure discovery is to derive clues with

respect to a potential decomposition of an integrated data set. To
this end, we have presented tools for finding exact or approximate
relationships among tuples, attribute values and attributes of a data
set. However, as we pointed out, duplication is not the same as
redundancy. To understand the relationship, we turn to work on
mining for constraints (dependencies). There have been several ap-
proaches towards discovery of functional [24, 15, 28] and multival-
ued [25] dependencies. However, none of the approaches presents
a characeterizaton of the resulting dependencies. In this section,
we present a novel procedure that performs a ranking of the func-
tional dependencies found to hold on an instance, based on the re-
dundancy they represent in the initial relation. We motivate why

FD-RANK

Input : Set FD, merge sequence Q, threshold 0 ≤ ψ ≤ 1
Output : Set FDranked

1. For each fd ∈ FD : X → A (A single attribute):
(1.a) rank(fd) = max(Q) (max inf. loss in Q);
(1.b) S = X ∪A;
(1.c) rank(fd) = IL(G), the inf. loss at merge G

where all attributes in S participate and
IL(G) <= ψ ·max(Q);

2. If fd1 : X → A1 and fd2 : X → A2

with rank(fd1) = rank(fd2), set fd12 : X → A1A2

3. Order the set FD in ascending order of
rank to produce FDranked

Figure 11: The FD-RANK Algorithm

decompositions over dependencies with a high rank produce better
designs than other decompositions.

A good indication of the amount of duplication of the values
in CD

V in a cluster of attributes CA is the entropy H(CD
V |CA).

The entropy captures how skewed the distribution of CD
V in CA is.

Skewed distributions are expected to have higher duplication. The
lower the entropy the more skewed the distribution. The follow-
ing proposition shows that each step in the clustering of attributes
minimizes the entropy.

PROPOSITION 1. Given sets of attributes CA1, CA2 and CA3,
if the information loss of merging CA1 and CA2 into C1 is smaller
than the information loss of merging CA1 and CA3 into C2, then
the duplication in C1 is larger than the duplication in C2.

PROOF. If the clustering before the merge is C, we have that
δI(CA1, CA2) < δI(CA1, CA3) and

I(C;CD
V) − I(C1;C

D
V) < I(C;CD

V) − I(C2;C
D
V)

I(C1;C
D
V) > I(C2;C

D
V)

H(CD
V) −H(CD

V |C1) > H(CD
V) −H(CD

V |C2)

H(CD
V |C1) < H(CD

V |C2)

The last inequality states that given C1 the duplicate groups of val-
ues appear more times than in C2, which implies that duplication
is higher in C1 than in C2.
The above result justifies the observation that if we scan the den-
drogram of a full clustering of the attributes of AD, the sub-clusters
that get merged first are the ones with the higher duplication. Upon
the creation of the dendrogram, if we have a set of functional de-
pendencies FD, we can rank them according to how much of the
duplication in the initial relation is removed after their use in the
decomposition. Given a functional dependency that contains at-
tributes with high duplication, we may then say that the duplicate
values in these attributes are redundant. The more redundancy a
functional dependency removes from the initial relation the more
interesting it becomes for our purposes. Knowing all values of
information loss across all merges (in a sequence Q) of attribute
sub-clusters, we can proceed with algorithm FD-RANK given in
Figure 11 to rank the functional dependencies in FD.

Intuitively, if we have the sequence of all merges Q of the at-
tributes in matrix F (the set CD

A) with their corresponding infor-
mation losses, we first initialize the rank of each dependency to
be the maximum information loss realized during the full cluster-
ing procedure (Step 1.a). For the set of values that participate in a
functional dependency (Step 1.b), we update its rank with the high-
est information loss of a merge where all attributes are merged and

this information loss is below a percentage, specified by ψ, of the
maximum information loss (Step 1.c). At this point we can break
ties among the functional dependencies that acquire the same rank-
ing based on the number of participating attributes; we rank the
ones with more attributes higher than others. Step 2 collapses two
functional dependencies with the same antecedent and ranks, into a
single functional dependency and, finally, Step 3 orders set FD in
ascending order of their corresponding ranks.

In our example, the maximum information loss realized in the
attribute clustering is approximately 0.52. This is the initial rank
the dependencies A→ B and C → B acquire. With a ψ = 0.5 we
only update the rank of functional dependency C → B with a in-
formation loss of the merge of attributes B and C, since this is the
only merge lower than 0.26 (ψ · 0.52). At this point, C → B is the
highest ranked functional dependency since it contains attributes
with the highest redundancy in it. Indeed, looking back at the initial
relation, if we use the dependency C → B to decompose the rela-
tion into relations S1=(B,C) and S2=(A,C), the reduction of tuples,
and thus the redundancy reduction, is higher than using A → B to
decompose into relations S1’=(A,B) and S2’=(A,C).

Finally, if f is the number of functional dependencies in FD,
finding the greatest common merge which is smaller than ψ times
the maximum information loss realized, can be done in O(f ·m ·
(m−1)) time, since we can have at mostm attributes participating
in a dependency and should traverse at most (m − 1) merges to
find the desired common merge of all of them. The final step of
ordering the dependencies according to their ranks has a worst-case
complexity of O(f · log f). Thus, the total complexity is O(f ·m ·
(m − 1) + f · log f). If f � m2, which is often the case in
practice, the previous complexity is dominated by the number of
dependencies (first term).

8. EXPERIMENTAL EVALUATION
We ran a set of experiments to determine the effectiveness of the

tools discussed in this paper in the structure discovery process. We
report on the results found in each data set we used and provide
evidence of the usefulness of our approach.

Data Sets. In our experiments we used the following data sets.

• DB2 Sample Database: This is a data set we constructed out of
the small database that is pre-installed with IBM DB2.3 We built
a single relation after joining three of the tables in this database,
namely tables EMPLOYEE, DEPARTMENT and PROJECT. The
schema of the tables together with their key (the attributes sepa-
rated by a line at the top of each box) and foreign key (arrows)
constraints are depicted in Figure 12. The relational algebra ex-
pression we used to produce the single relation was (we use the
initials of each relation):

R = � (E ./WorkDepNo=DepNo D) ./DepNo=DepNo P �
Relation R contains 90 tuples with 19 attributes and 255 attribute

values. We used this instance to illustrate the types of ”errors” we
are able to discover using our information-theoretic methods

• DBLP Database: This data set was created from the XML doc-
ument found at http://dblp.uni-trier.de/xml/. This
document stores information about different types of computer sci-
ence publications. In order to integrate the information in a sin-
gle relation, we chose to use IBM’s schema mapping tool that per-
mits the creation of queries to transform the information stored in
XML format into relations [19]. We specified a target schema (the

3http://www-3.ibm.com/software/data/db2/udb/

EmpNo

ProjNo

DepNo

PROJECT

DEPARTMENT
EMPLOYEE

DeptNo

FirstName
LastName
PhoneNo
HireYear
Job
EduLevel
Sex
BirthYear
WorkDepNo

AdminDepNo
MgrNo
DepName

StartDate
RespEmpNo
ProjName

EndDate
MajorProjNo

Figure 12: DB2 Sample

DBLP

Editor
Pages
BookTitle
Month
Volume
JournalTitle
Number
School

Publisher
Author

Series
ISBN

Year

Figure 13: DBLP

schema over which the tuples in the relation are defined) contain-
ing the 13 attributes depicted in Figure 13. We specified correspon-
dences between the source XML schema and the attributes in Fig-
ure 13. The queries given by the mapping tool where used to create
a relation that contained 50, 000 tuples and 57187 attribute values.
Each tuple contains information about a single author and, there-
fore, if a particular publication involved more than one author, the
mapping created additional tuples for each one of them. Moreover,
the highly heterogeneous information in the source XML document
(information regarding conference, journal publications, etc.) in-
troduced a large number of NULL values in the tuples of the rela-
tion. We used this highly heterogeneous relation to demonstrate the
strength of our approaches in suggesting a better structure than the
target relation we initially specified.
Parameters. We observed experimentally that the branching factor
of the DCF -tree, B, does not significantly affect the quality of the
clustering [5]. We set B = 4, so that the Phase 1 insertion time
is manageable (smaller values of B lead to higher insertion cost
due to the increased height of the DCF tree). We explored a large
number of values for φ [5]. Generally speaking larger values for φ
(around 1.0) delay leaf-node splits and create a smaller tree with a
coarse representation of the data set. On the other hand, smaller φ
values incur more splits but preserve a more detailed summary of
the initial data set. The value φ = 0.0 makes our method equivalent
to the AIB, since only identical objects are merged together.
Functional Dependency Discovery. Our goal is not to rediscover
functional dependencies, but rather provide a ranking of any exist-
ing set of them. For the purposes of our study we used FDEP [24],
as the method to discover functional dependencies. Other methods
could also be used.

FDEP first computes all maximal invalid dependencies by pair-
wise comparison of all tuples and from this set it computes the
minimal valid dependencies. FDEP is the algorithm proposed by
Savnik and Flach [24] and performs the second step using a depth-
first search approach during which the set of maximal invalid de-
pendencies is used to test whether a functional dependency holds
and prune the search space.

After computing the functional dependencies using FDEP, we
computed the minimum cover using Maier’s algorithm [16].
Duplication Measures. In order to evaluate the amount of redun-
dancy removed from the initial data set, we used two measures to
quantify the results of our approach. These measures are the Rel-
ative Attribute Duplication (RAD) and Relative Tuple Reduction
(RT R) defined below.
• Relative Attribute Duplication: Given a set of n tuples, a set
CA = {A1, A2, . . . , Aj}, with j ≥ 1, of attributes and the restric-

tion tCA
of tuples on the attributes of CA (we assume bag seman-

tics here), we define

RAD(CA) = � 1 −
H(tCA

|CA)

log(n)
�

Intuitively, RAD captures the number of bits we save in the rep-
resentation of CA due to repetition of values. However, the above
definition does not clearly distinguish between the duplication of
differently sized relations. For example, assume two relations on a
single attribute with the first one having the same value in its three
tuples and the second one the same value in its two tuples. The
above definition will suggest that both relations have RAD equal
to one, missing the fact that the first relation contains more dupli-
cation than the second (since it contains more tuples). To overcome
this we introduce the next measure.
• Relative Tuple Reduction: Given a set of n tuples, a set CA =
{A1, A2, . . . , Aj}, with j ≥ 1, of attributes and tCA

the set of n′

tuples projected on the set CA (we assume set semantics here), we
define

RT R(CA) = � 1 −
n′

n
�

Intuitively, RT R quantifies the relative reduction in the number of
tuples that we get if we project the tuples of a relation over CA.

Overall RAD and RT R offer two different measures of the
extent to which values are repeated in the relation. A closer look
at RAD reveals that this measure is more width-sensitive. From
the definition of conditional entropy, the nominator of the fraction
in RAD can be considered as the weighted entropy of the tuples
in a particular set of attributes, where the weights are taken as the
probability of this set of attributes. On the other hand, RT R is
more size-sensitive in that it can quantify the duplication within
different set of tuples taken over the same set of attributes.

8.1 Small scale experiments
In this phase of our experiments, we performed a collection of

structure discovery tasks in the DB2 sample data set to see how
effective our tools are in finding exact or almost duplicate tuples
and values in the data. This data set was used since it is a ”clean”
one and errors can be introduced to illustrate the potential of our
methods.

8.1.1 Application of Tuple Clustering

Exact Tuple Duplicates. Our method can identify exact duplicates
introduced in the data set in any order. These duplicates are found
when φT = 0.0.
Typographic, Notational and Schema Discrepancies. Such er-
rors may be introduced when the same information is recorded dif-
ferently in several data sources and then integrated into a single
source. For example, this might be the case where the employee
numbers are stored following different schemes (typographical or
notational errors). On the other hand, this might also be the case
where unknown values during integration are filled with NULL val-
ues in order to satisfy the common integrated schema (schema dis-
crepancies). To identify this type of errors, we introduced tuples in
the data set where some of the values in their attributes differ from
the values in the corresponding attributes of their matching tuples
in the data set. First, we fixed the value of φT to 0.1 and performed
a study with various numbers of erroneous tuples and attribute val-
ues within them. Then, we fixed the number of erroneous tuples
that we inserted to 5 and performed a study where the φT and the
number of erroneous attribute values varied. We changed the same
number of attribute values in each of the inserted tuples every time.
The results of both experiments are given in Table 1. From this

table, the strength of our method in determining groups of tuples
that do not differ a lot is evident. For a small number of ”dirty”
tuples inserted, the table on the left indicates that our method fails
to discover some approximate duplicates only when the number of
attribute values on which they differ is more than half the number
of attributes in the schema. The same table, shows that as the num-
ber of these duplicates increases the performance of the method
deteriorates gracefully. The table on the right, where the number of
inserted tuples is 5, shows that as the accuracy of the chosen model
in the summaries decreases (larger φT values), the identification of
approximate duplicates becomes more difficult, since in these cases
more tuples are associated with the constructed summaries.

In general, any duplicates found using tuple clustering are pre-
sented to the user and an inspection of the suggested tuples reveals
whether these are interesting ones, i.e., duplicates corresponding
to the same physical entities represented by the tuples. We should
note again the effectiveness of Phase 3, which did not fail to iden-
tify the correct correspondences of tuples with their summaries in
the leaf entries of the tree.

8.1.2 Application of Attribute Value Clustering
In this section, we present experiments on attribute value clus-

tering. First, we found perfect correlations and then, by increasing
φV approximate ones among the attribute values in the data set.

Value correlations. Using φT = 0.0 (no clustering of tuples is
performed), and φV = 0.0 we first looked for perfect correlations
among the values, that is, groups of attributes values that appear ex-
clusively together in the tuples. Our clustering method successfully
discovered such groups of values that make up the set CD

V .
We should note here that although for φV = 0.0 we do not ex-

pect to get anything more than the perfectly correlated sets of val-
ues, we believe that this information is critical in that it aligns our
method with that of Frequent Itemset counting [2]. However, with
higher values of φV , we are able to discover potential entry errors.

Value Errors. In this part of the experiments, we introduced er-
rors similar to the ones in tuple clustering, however our goal here
is to locate the values that are ”responsible” for the errors in the
tuple proximity. For better results, we may combine the results of
tuple and attribute value clustering. We performed experiments for
the same set of tuples that were artificially inserted when we per-
formed tuple clustering, where we counted the number of correct
placements of ”dirty” values in the clusters of attribute values that
appear almost exclusively together in the tuples. That is, we wanted
to see if a dirty value was correctly clustered with the values it re-
placed. Results of these experiments are given in Table 2. Similar
to tuple clustering, our method performs well even if the number of
inserted tuples is quite large (relative to the size of the initial data
set). The correct placement into the attribute value clusters, takes
place when the number of altered values covers more than half of
the attributes in this data set.

8.1.3 Attribute Grouping
Having information about duplicate values in CD

V we built ma-
trix F . The dendrogram that was produced for φV = 0.0 and
φA = 0.0 is depicted in Figure 14. We remind the reader that
the horizontal axis represents information loss. In this data set,
the maximum information loss realized was 0.922. As indicated
by the boxes, our attribute grouping has separated the attributes
of the initial schemas to a large extent, with the only exception
being attributes EduLevel and StartDate. From the den-
drogram, we could also identify that pairs (EmpNo, First-
Name), (LastName, PhoneNo), (ProjNo, ProjName) and

#Err. Tuples=5 #Err. Tuples=20
Value Errors Found Value Errors Found

1 5 1 20
2 5 2 20
4 5 4 19
6 4 6 17

10 4 10 15

φ = 0.2 φ = 0.3
Value Errors Found Value Errors Found

1 5 1 4
2 5 2 3
4 4 4 3
6 3 6 2

10 3 10 2

Table 1: DB2 Sample results of erroneous tuples, for φT = 0.1 (left) and #Err. Tuples=5 (right)

#Err. Tuples=5 #Err. Tuples=20
Value Errors Found Value Errors Found

1 1 1 1
2 2 2 2
4 4 4 4
6 5 6 5

10 9 10 7

φ = 0.2 φ = 0.3
Value Errors Found Value Errors Found

1 1 1 1
2 2 2 1
4 2 4 2
6 4 6 2

10 7 10 6

Table 2: DB2 Sample results of erroneous values, for φT = 0.1 (left) and #Err. Tuples=10 (right)

EmpNo
FirstName
LastName
PhoneNo
BirthYear
HireYear
EduLevel
StrtDate

ProjNo
ProjName

RespEmpNo
MajorProjNo

DeptNo
MgrNo

DeptName

0.0 0.2 0.4 0.6 0.8

50% of Max Information Loss

Figure 14: DB2 Sample Attribute Clusters

(DeptNo, MgrNo) exhibit the highest redundancy in the data set,
a result that agrees with the data instance as well as our intuition.

In addition to the previous experiment, we increased the value
of φV to 0.1 and 0.2 respectively. The set of attributes in CD

A re-
mained the same for φV = 0.1, while attribute ProjEndDate
was included when φV = 0.2. However, there was large informa-
tion loss when this attribute was merged with other attributes. In
both experiments, the relative sequence of the merges remained the
same, indicating that our attribute grouping is stable in the presence
of errors (higher φV values).

8.1.4 Ranking of Functional Dependencies
Having the sequence of merged attributes, we used FD-RANK

to identify which functional dependencies, if used in a decompo-
sition, would help in the removal of high amounts of redundancy
in the initial data set. FDEP initially discovered 106 functional de-
pendencies, and the minimum cover consisted of 14 dependencies.
The highest ranked dependencies, with ψ = 0.5 are given, in order
of increasing rank, in the following list:

1. [DeptNo]→[DeptName,MgrNo]

2. [DeptName]→[MgrNo]

3. [EmpNo]→[BirthYear,FirstName,LastName,PhoneNo,HireYear]

4. [ProjNo]→[ProjName,RespEmpNo,StartDate,MajorProjNo]

FD RAD RT R
1. 0.947 0.922
2. 0.965 0.922
3. 0.924 0.878
4. 0.872 0.800

Table 3: RAD and RT R values for DB2 Sample

Finally, Table 3 shows the RAD and RT R values for the pre-
vious functional dependencies, if their attributes are used to project
the tuples in the the initial relation. Table 3 shows that decompo-
sitions of the initial relation according to the ordered list of depen-
dencies would favor the removal of considerable amounts of redun-
dancy. Our ranking identifies dependencies with high redundancy
(high RAD and RT R values). This is attributed to the fact that
correlations of the corresponding attributes are high, however the
attribute value clusters in CD

V have lower support in the initial data
set. This fact is also visible in the dendrogram, where the attributes
of Department have a lower information loss than those of Em-
ployee and Project and according to Proposition 1, they are
going to remove more redundancy.

8.2 Large scale experiments
For these experiments, we used the larger DBLP data set. We

performed a different series of experiments, which in large inte-
grated relations, could be part of a structure discovery task.

The DBLP data set contains integrated information. The rela-
tion contains tuples of computer science publications that appeared
as part of conference proceedings, journals, theses, etc. As we al-
ready argued, this type of information added anomalies due to the
discrepancies between the source and the target. More specifically,
most conference publications have their Journal attributes filled
with NULL values. Some conference publications, though, appear
as part of a Series publication, (like SIGMOD publications in the
SIGMOD Record journal), and thus a direct projection on attributes
that are known in conference (or journal) publications might lead in
errors. A better approach would be to first horizontally partition the
data set into a small number of groups with similar characteristics.

Before performing horizontal partitioning, we performed at-
tribute grouping in order to identify which attributes would be most
useful in such a partitioning. We used φT = 0.5, which reduced the
number of tuples to 1361 and then performed the attribute group-
ing with φA = 0.0. The result of this grouping is depicted in
Figure 15. From the dendrogram, we observe that a number of at-
tributes demonstrate an almost perfect correlation. These are the

Author
Pages

BookTitle
Publisher

ISBN
Editor
Series
School
Month

Year
Volume
Journal
Number

0.0 0.2 0.4 0.6

Figure 15: DBLP Attribute Clusters

attributes (dashed box) with zero or almost zero information loss,
indicating an almost one-to-one correspondence among their val-
ues. This is true since the value that prevails in this set of at-
tributes is the NULL value. A manual inspection of the data set
revealed that the set of attributes {Publisher, ISBN, Editor,
Series , School, Month} contains over 98% of NULL values,
an anomaly introduced during the transformation of XML data into
the integrated schema.

Having a set of attributes with limited non-missing information,
the horizontal partitioning produced unexpected results. More pre-
cisely, we performed all three Phases of our algorithm to cluster the
tuples into 3 groups. The result contained a huge cluster of 49, 998
tuples and two clusters of one tuple in each. However, this result
was very informative. All the tuples in the relation are almost du-
plicates on many attributes and NULL values forced them into the
same summaries. Hence, our first observation here is that the six
attributes with NULL values can be set aside in the analsysis with-
out considerable loss of information about the tuples. At the same
time, if our goal is the definition of a possible schema for the rela-
tion, the existence of a huge percentage of NULL values suggests
that these attributes contain very large amounts of duplication and
should be stored separately, before any horizontal partitioning.

After the previous observation, we projected the initial relation
onto the attribute set {Author, Pages, BookTitle, Year,
Volume, Journal, Number}. Then we performed a horizon-
tal partitioning of the tuples. Using our heuristic for choosing k as
described in Section 6.1.2, we determined that k = 3 was a natural
grouping for this data. The loss of initial information after Phase 3
was 9.45%, indicating that the clusters are highly informative. The
characteristics of the three clusters are given in Table 4. We now
consider each cluster separately and due to lack of space we only
report results of our attribute grouping and dependency ranking.

Cluster Tuples AttributeV alues

c1 35892 43478
c2 13979 21167
c3 129 326

Table 4: Horizontal Partitions
Cluster 1: This horizontal partition contains all Conference pub-
lications where the BookTitle attribute was a non-NULL value
in every tuple. Using φT = 0.5 and φV = 1.0 (given the number
of attribute values), we performed the grouping of attributes and
the result is given in Figure 16. This dendrogram of the attributes
in CD

A reveals that there is zero distance among the Volume,
Journal and Number attributes. Indeed, these are attributes

that exclusively contained NULL values in this cluster. In addi-
tion, we found almost zero distance between attributes Author
and Pages, which happens due to an almost one-to-one mapping
between their values (author tuples had unique Pages values in
this cluster). Finally, BookTitle is closer to the previous at-
tributes as conference titles are correlated with the authors. Having
the sequence of attribute merges, we used FDEP to find functional
dependencies that hold in c1 and FD-RANK with ψ = 0.5 to rank
them. There were 12 dependencies and the minimum cover con-
tained 11. It should be noted that there was no functional depen-
dency among Author, Pages and BookTitle. The top-two
dependencies along with the RAD and RT R values of their at-
tributes are given in Table 5. These numbers indicate the signif-
icant redundancy reduction we achieve when these dependencies
are used in a decomposition. Although the dependencies that were
ranked higher did not contain conference attributes, they are highly
informative in that the NULL values in the attributes they cover in-
dicate removal of more redundancy. On the other hand Author,
Pages and BookTitle have large domains, which makes them
less significant for redundancy reduction here.

FD RAD RT R

[Volume]→[Journal] 1.0 1.0
[Number]→[Journal] 1.0 1.0

Table 5: Ranked Dependencies for c1.

Cluster 2: The second horizontal partition contains Journal pub-
lications where the Journal, Volume and Number attributes
had non-NULL values. Again, using φT = 0.5 and φV = 1.0
(given the size of the attribute values) the dendrogram produced is
depicted in Figure 17. The first observation is that all attributes
in CD

A are generally characteristics of journal publications. Upon
that, we see that correlations appear among Journal, Volume,
Number and Year, which is something natural to assume in such
publications. For example, the SIGMOD Record journal appears
once every quarter and the values of the Number attribute are 1
through 4. Finally, using the sequence of merges of the attributes
in CD

A we ranked the functional dependencies holding in this parti-
tion. FDEP discovered a set of 12 functional dependencies whose
minimum cover contained 11 dependencies. Using FD-RANK with
ψ = 0.5, the top-two ranked dependencies are given in Table 6
together with the RAD and RT R values of the attributes they
contain. Note that both dependencies had the same rank. However,
the first dependency has more attributes and is ranked at the top.

FD RAD RT R

[Author,Volume,Journal,Number]→[Year] 0.754 0.881
[Author,Year,Volume]→[Journal] 0.858 0.982

Table 6: Ranked Dependencies for c2.

Cluster 3: The last horizontal partition was very small in size,
compared to the previous two, and contained miscellaneous pub-
lications, such as Technical Reports, Theses, etc. It also contained
a very small number of Conference and Journal publications that
were written by a single author. The dendrogram produced based
on the CD

A set is given in Figure 18. Given the nature and the size
of the cluster, the attribute associations are rather random and we
did not find any functional dependencies in the partition, a fact sug-
gesting that this relation does not have internal structure.

Finally, we should point out that the initial horizontal partition-
ing we used adds an additional benefit to our approach; although
the initial relation defined on all 13 attributes contained hundreds

Author
Pages

BookTitle
Year

Volume
Journal
Number

0.0 0.1 0.2 0.3 0.4

Figure 16: Cluster 1

Author
Pages

Year
Number
Volume
Journal

0.0 0.1 0.2 0.3

Figure 17: Cluster 2

Author
Journal

Year
BookTitle

0.0 0.2 0.4 0.6 0.8 1.0

Figure 18: Cluster 3

of functional dependencies, mainly due to the attributes containing
NULL values, the clusters we produced had a small number of de-
pendencies (or none) defined on their attributes. This makes the
understanding of their schema an easier task.

9. CONCLUSIONS
We have presented a novel approach to discover structure. Our

approach defines schema discovery as a problem where the schema
of a relation is inconsistent with respect to the data, rather than the
opposite. We presented a set of information-theoretic tools based
on clustering that discover duplicate, or almost duplicate, tuples
and attribute values in a relational instance. From the informa-
tion collected about the values, we then presented an approach that
groups attributes based on the duplication of values. The groups
of attributes with large duplication provide important clues for the
redefinition of the schema of a relation. Using these clues, we intro-
duced a novel approach to rank the set of functional dependencies
that are valid in an instance. Our case studies demonstrated the
effectiveness of our methods in discovering integration anomalies
and alternative structural properties.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.
[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Asso-

ciation Rules between Sets of Items in Large Databases. In
SIGMOD, pages 207–216, Washington, D.C., USA, 1993.

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Material-
ized View and Index Selection Tool for Microsoft SQL Server
2000. In SIGMOD, page 608, 2001.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
Fuzzy Duplicates in Data Warehouses. In VLDB, pages 586–
597, Hong Kong, China, 2002.

[5] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.
LIMBO: Scalable Clustering of Categorical Data. In EDBT,
pages 123–146, Heraklion, Greece, 2004.

[6] M. Arenas and L. Libkin. An Information-Theoretic Ap-
proach to Normal Forms for Relational and XML Data. In
PODS, pages 15–26, San Diego, CA, USA, 2003.

[7] T. M. Cover and J. A. Thomas. Elements of Information The-
ory. Wiley & Sons, New York, NY, USA, 1991.

[8] M. M. Dalkilic and E. Robertson. Information Dependencies.
In PODS, pages 245–253, Dallas, TX, USA, 2000.

[9] T. Dasu and T. Johnson. Exploratory Data Mining and Data
Cleaning. John Wiley & Sons, Inc., 2003.

[10] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining Database Structure; or, How to Build a Data Quality
Browser. In SIGMOD, pages 240–251, Madison, WI, USA,
2002.

[11] R. El-Yaniv and O. Souroujon. Iterative Double Clustering
for Unsupervised and Semi-supervised Learning. In ECML,
pages 121–132, Freiburg, Germany, 2001.

[12] M. R. Garey and D. S. Johnson. Computers and intractability;
a guide to the theory of NP-completeness. W.H. Freeman,
1979.

[13] M. A. Hernández and S. J. Stolfo. The Merge/Purge Problem
for Large Databases. In SIGMOD, pages 127–138, San Jose,
California, 1995.

[14] J. A. Hoffer and D. G. Severance. The Use of Cluster Anal-
ysis in Physical Data Base Design. In VLDB, pages 69–86,
Framingham, MA, USA, 1975.

[15] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies. The Computer Journal,
42(2):100–111, 1999.

[16] D. Maier. Minimum Covers in Relational Database Model.
Journal of the ACM, 27(4):664–674, Oct. 1980.

[17] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Ver-
tical Partitioning Algorithms for Database Design. TODS,
9(4):680–710, 1984.

[18] S. B. Navathe and M. Ra. Vertical Partitioning for Database
Design: A Graphical Algorithm. In SIGMOD, pages 440–
450, Portland, OR, USA, 1989.

[19] L. Popa, Y. Velegrakis, M. Hernandez, R. J. Miller, and R. Fa-
gin. Translating web data. In VLDB, pages 598–609, Hong
Kong, China, Aug. 2002.

[20] R. Ramamurthy and D. J. DeWitt. A case for fractured mir-
rors. In VLDB, pages 430–441, Hong Kong, China, Aug.
2002.

[21] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interac-
tive Data Cleaning System. In VLDB, pages 381–390, Roma,
Italy, 2001.

[22] S. Sarawagi and A. Bhamidipaty. Interactive Deduplication
using Active Learning. In KDD, pages 269–278, Edmonton,
Canada, 2002.

[23] S. Sarawagi-(Editor). Special Issue on Data Cleaning. Bul-
letin of the Technical Committee on Data Engineering, Vol-
ume 23(4), December 2000.

[24] I. Savnik and P. A. Flach. Bottom-up induction of functional
dependencies from relations. In AAAI-93 Workshop: Knowl-
edge Discovery in Databases, pages 174–185, Washington,
DC, USA, 1993.

[25] I. Savnik and P. A. Flach. Disocvery of Mutlivalued Depen-
dencies from Relations. Intelligent Data Analysis Journal,
4(3):195–211, 2000.

[26] N. Slonim and N. Tishby. Agglomerative Information Bottle-
neck. In NIPS-12, pages 617–623, Breckenridge, CO, 1999.

[27] N. Tishby, F. C. Pereira, and W. Bialek. The Information Bot-
tleneck Method. In 37th Annual Allerton Conference on Com-
munication, Control and Computing, Urban-Champaign, IL,
1999.

[28] C. Wyss, C. Giannella, and E. Robertson. FastFDs: A
Heuristic-Driven, Depth-First Algorithm for Mining Func-
tional Dependencies from Relation Instances. In DaWaK,
pages 101–110, Munich, Germany, 2001.

[29] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An ef-
ficient Data Clustering Method for Very Large Databases. In
SIGMOD, pages 103–114, Montreal, QB, 1996.

