
Evaluating Value Weighting Schemes in the Clustering of
Categorical Data

Periklis Andritsos
University of Trento, Italy

periklis@dit.unitn.it

Vassilios Tzerpos
York University, Canada

bil@cs.yorku.ca

Abstract

The majority of the algorithms in the clustering lit-
erature utilize data sets with numerical values. Re-
cently, new and scalable algorithms have been pro-
posed to cluster data sets with categorical data, data
whose inherent ordering is not obvious. However,
these algorithms deem all data values present in the
data sets as equally important. Thus, the resulting
clusters may be influenced by values that appear al-
most exclusively and reflect non-natural groupings.

In this paper, we present a set of weighting schemes
that allow for an objective assignment of importance
on the values of a data set. We use well established
weighting schemes from information retrieval, web
search and data clustering to assess the importance of
whole attributes and individual values. To our knowl-
edge, this is the first work that considers weights in
the clustering of categorical data.

We perform clustering in the presence of impor-
tance for the values within the LIMBO framework,
a new and scalable algorithm to cluster categorical
data. Our experiments were performed in a variety
of domains, including data sets used before in clus-
tering research and three data sets from large soft-
ware systems. We report results as to which weight-
ing schemes show merit in the decomposition of data
sets.

1 Introduction

Many industrial data analysis applications involve dealing
with large and often complex data sets containing many
records and attributes. Data mining applications such as
clustering, classification and numerous others are com-
monly applied to obtain better insight on the data sets and
elicit information that can be useful to the data analysts.

In this work, we focus on the application of cluster-
ing to data sets with unlabeled tuples, i.e., tuples without
any class label associated with them. In brief, clustering is
the process of partitioning a set of tuples into meaningful
groups (called clusters), such that tuples belonging to the
same group are similar to each other and dissimilar to tu-
ples of other groups. This definition assumes that there is
some well-defined notion of similarity – or distance – be-
tween tuples. When tuples are defined by a set of numerical
attributes, there are natural definitions of distance based on

geometric analogies. These definitions rely on the seman-
tics of the data values themselves (for example, the values
$100K and $110K are more similar than $100K and $1).

The problem of clustering becomes more challenging
when the data is categorical, that is, when there is no inher-
ent distance measure between data values. This is often the
case in many domains, where data is described by a set of
descriptive attributes, many of which are neither numerical
nor inherently ordered in any way. Recently, considerable
focus has been devoted to the development of algorithms
that handle categorical data [1, 4]. These algorithms treat
all attributes and individual values equally. However, a do-
main expert clustering the same data set would invariably
assign different importance to particular attributes based on
her intuition. Similarly, she might consider certain data val-
ues as more important than others for the determination of
the clusters.

The premise for the work presented in this paper is that
by assigning different importance to attributes and/or indi-
vidual values, we can direct the clustering process towards
a more meaningful result. We do this by implementing a
number of weighting schemes that are based on existing
techniques from information retrieval and clustering of cat-
egorical values. Experiments conducted using the newly
introduced LIMBO algorithm [1] demonstrate the merit of
the various weighting schemes and suggest possible im-
provements.

In particular, we investigate weighting schemes that ap-
ply to two different types of data sets:

1. Relational Data Sets. These are data sets where tu-
ples are defined over a set of different attributes. We
employ two techniques from information retrieval and
one from spectral graph theory, in order to produce
weights for the attributes and/or individual values in
such data sets:

• Term Frequency-Inverse Document Frequency.

• Mutual Information a particular value conveys
about the rest of the values.

• Linear Dynamical Systems.

2. Graph-based data sets. These are data sets where the
objects to be clustered are in the form of a graph that
demonstrates interdependencies between them. Such
structures appear in numerous domains, such as in hy-
perlinked documents, where the objective is to group
web pages with similar content, or the reverse engi-
neering of software systems, where the objective is to

decompose them into meaningful components in order
to better understand and maintain them.

In addition to the weighting schemes applied to re-
lational data sets, we also employ the following two
weighting schemes for graph-based data sets:

• We use the well known PageRank algorithm to
assign importance to specific values.

• We utilize usage data, such as weblogs or infor-
mation obtained by profiling software systems.

Our work is different in spirit from the work presented
in the literature on Feature Selection [14]. In feature selec-
tion for clustering [21] the main focus is on the elimina-
tion of whole attributes to improve the performance of the
underlying algorithm. An initial evaluation of a weight-
ing scheme without attribute elimination is presented by
Modha and Spangler for numerical data and the k-means
algorithm [16]. On the other hand Term Weighting Schemes
have appeared in Information Retrieval to ensure better
search results [3, 7, 19]. These techniques, though, assume
a class label assigned to every tuple and evaluate attributes
according to how well they predict these labels. Finally,
Gravano et al., use the TF.IDF weighting schemes for ap-
proximate text joins within a database system [12].

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce some basic concepts from informa-
tion theory. and describe LIMBO, a scalable information-
theoretic clustering algorithm. Section 3 introduces the
data representations we consider as well as the way we in-
corporate weights in the clustering process. In Section 4,
we describe the set of weighting schemes we consider in
our approach and Section 5 presents the experimental eval-
uation of all our schemes within LIMBO. Finally, Section 6
concludes our work.

2 Background
This section introduces the main concepts from Informa-
tion Theory that will be used throughout the paper. We
also give the formulation of the Information Bottleneck
method, and present a scalable clustering algorithm based
on it called LIMBO.

Let T denote a discrete random variable that takes val-
ues over the set T1, and let p(t) denote the probability
mass function of T . The entropy H(T) of variable T is
defined by H(T) = −∑

t∈T p(t) log p(t). Intuitively, en-
tropy captures the “uncertainty” of variable T ; the higher
the entropy, the lower the certainty with which we can pre-
dict its value.

Now, let T and V be two random variables that range
over sets T and V respectively. The conditional entropy of
V given T is defined as follows

H(V |T) =
∑
t∈T

p(t)
∑
v∈V

p(v|t) log p(v|t)

1For the remainder of the paper, we use italic capital letters (e.g. T)
to denote random variables, and boldface capital letters (e.g. T) to denote
the set from which the random variable takes values.

Conditional entropy captures the uncertainty of predicting
the values of variable V given the values of variable T .

The mutual information, I(T ; V), quantifies the amount
of information that the variables convey about each other.
Mutual information is symmetric, non-negative, and it is
related to entropy via the equation

I(T ; V) = H(T) − H(T |V) = H(V) − H(V |T) = I(V ; T) (1)

Relative Entropy, or the Kullback-Leibler (KL) diver-
gence, is a standard information-theoretic measure of the
difference between two probability distributions. Given
two distributions p and q over a set T, the relative entropy
is defined as follows.

DKL[p‖q] =
∑
t∈T

p(t) log
p(t)
q(t)

Intuitively, the relative entropy DKL[p‖q] is a measure of
the inefficiency in an encoding that assumes the distribution
q, when the true distribution is p.

2.1 Information Bottleneck

The intuitive idea of producing clusters that are informative
about the objects they contain was formalized by Tishby,
Pereira and Bialek [22]. They recast clustering as the com-
pression of one random variable into a compact represen-
tation that preserves as much information as possible about
another random variable. Their approach was named the
Information Bottleneck (IB) method, and it has been ap-
plied to a variety of different areas.

More formally, given a set of objects T expressed over
set V, we seek a clustering Ck of T (k is the desired num-
ber of clusters), such that the mutual information I(Ck; V)
remains as large as possible, or otherwise the loss of infor-
mation described by I(T ; V)− I(Ck; V) is minimum. The
IB method is generic, imposing no semantics on specific
data values.

Finding the optimal clustering is an NP-complete prob-
lem [9]. Slonim and Tishby [20] propose a greedy ag-
glomerative approach, the Agglomerative Information Bot-
tleneck (AIB) algorithm, for finding an informative cluster-
ing. If set T contains n objects, the algorithm starts with
the clustering Cn, in which each object t ∈ T is assigned
to its own cluster. Due to the one-to-one mapping between
Cn and T, I(Cn; V) = I(T ; V). The algorithm then pro-
ceeds iteratively for n − k steps, reducing the number of
clusters in the current clustering by one in each iteration.
At step n−�+1, two clusters ci and cj in clustering C� are
merged into cluster c∗, to produce a new clustering C�−1.
As the algorithm forms clusterings of smaller size, the in-
formation that the clustering contains about T decreases,
which means that I(C�−1; V) ≤ I(C�; V). The two clus-
ters ci and cj to be merged are chosen such that the loss of
information δI(ci, cj) = I(C�; V) − I(C�−1; V), is mini-
mum. The new cluster c∗ = ci ∪ cj has [20]:

p(c∗) = p(ci) + p(cj) (2)

p(V |c∗) =
p(ci)
p(c∗)

p(V |ci) +
p(cj)
p(c∗)

p(V |cj) (3)

Tishby et al. [22] show that

δI(ci, cj) = [p(ci) + p(cj)] ·DJS [p(V |ci), p(V |cj)] (4)

where DJS is the Jensen-Shannon (JS) divergence, defined
as follows. Let pi = p(V |ci) and pj = p(V |cj) and let

p̄ =
p(ci)
p(c∗)

pi +
p(cj)
p(c∗)

pj

Then, the DJS distance is defined as:

DJS [pi, pj] =
p(ci)
p(c∗)

DKL[pi||p̄] +
p(cj)
p(c∗)

DKL[pj ||p̄]

The DJS distance defines a metric and it is bounded above
by one. Note that the information loss for merging clusters
ci and cj , depends only on the clusters ci and cj , and not
on other parts of the clustering C�.

2.2 Scalable Clustering

The AIB algorithm suffers from high computational com-
plexity. It is quadratic in the number of objects to be clus-
tered, which is prohibitive for large sets. We now describe
the scaLable InforMation BOttleneck (LIMBO) algorithm
that uses distributional summaries in order to deal with
large data sets [1]. This algorithm is similar in spirit to the
BIRCH [28] clustering algorithm and is based on the idea
that we do not need to keep whole clusters in main mem-
ory, but instead, just sufficient statistics to describe them.
The full algorithm is described in [1].

The sufficient statistics are called Distributional Cluster
Features (DCFs). We will use them to compute the dis-
tance between two clusters or between a cluster and a tu-
ple. Let T be the set of objects to be clustered expressed
on the set V, and let T and V be the corresponding random
variables. Also let C denote a clustering of T and C be the
corresponding random variable.

For a cluster c ∈ C, the DCF of c is defined by the pair

DCF (c) =
(
p(c), p(V |c)

)

where p(c) is the probability of cluster c ,(p(c) = |c|/|T|),
and p(V |c) is the conditional probability distribution of the
values in V given the cluster c. If c consists of a single
object t ∈ T, p(t) = 1/|T | and p(V |c) is computed as
described later in Section 3.

Let c∗ denote the cluster we obtain by merging two clus-
ters c1 and c2. The DCF of the cluster c∗ is equal to

DCF (c∗) =
(
p(c∗), p(V |c∗)

)

where p(c∗) and p(V |c∗) are computed using Equations 2
and 3, respectively. Finally, given two clusters c1 and c2,
we define the distance, d(c1, c2), between DCF (c1) and
DCF (c2) as the information loss δI(c1, c2) incurred after
merging the corresponding clusters. d(c1, c2) is computed
using Equation 4.

The importance of DCF s lies in the fact that they can be
stored and updated incrementally. The probability vectors

are stored as sparse vectors, reducing the amount of space
considerably. Each DCF provides a summary of the cor-
responding cluster, which is sufficient for computing the
distance between two clusters. We use a tree data struc-
ture, termed DCF -tree. Our scalable algorithm proceeds
in three phases. In the first phase, the DCF tree is con-
structed to summarize the data. In the second phase, the
DCF s of the tree leaves are merged to produce a chosen
number of clusters. In the third phase, we associate each
tuple with the DCF to which it is closest.

Phase 1: Insertion into the DCF tree. The objects to be
clustered are read from disk one at a time and at any point in
the construction of the tree, the DCF s at the leaves define
a clustering of the tuples seen so far. Each non-leaf node
stores DCF s that are produced by merging the DCF s of
its children. More about the construction of DCF -tree can
be found in [1]. After all objects are inserted in the tree, the
DCF -tree embodies a compact representation in which the
data set is summarized by the information in the DCF s of
the leaves. This summarization is based upon a parameter
φ which controls the accuracy of the model represented by
the tree. More precisely we use the quantity φ · I(T ;V)

|T | as
a threshold and merge DCF s at the leaf level of the tree
that do not exceed it. Smaller values of φ result in more
compact summarizations. For instance, when φ = 0.0, we
only merge identical objects and our technique becomes
equivalent to AIB.

Phase 2: Clustering. Upon the creation of the tree, we can
apply AIB in a much smaller number of objects represented
by the DCF s in the leaves.

Phase 3: Associating object with clusters. For a chosen
value of k, Phase 2 produces k DCF s that serve as repre-
sentatives of k clusters. In the final phase, we perform a
scan over the data set and assign each tuple t to the cluster
c such that d(t, c) is minimized.

The next section describes in detail the representation of
our data as well as the way we apply any of the weighting
schemes presented later in Section 4.

3 Data Representation

The input to our problem is the set of n tuples T and the
set of values V = V1 ∪ . . . ∪Vm, which denotes the set
of all possible values in attributes A1, A2, . . . , Am, respec-
tively. 2 Let d denote the size of set V. We shall denote
with T and V the random variables that range over sets T
and V, respectively.

3.1 Relational Data

Relational data refers to data sets where all tuples are de-
fined over the same number of values, one from each of the
attributes. We represent our data as an n × d matrix M ,
where M [t, v] = 1 if tuple t ∈ T contains value v ∈ V,

2In the interest of brevity, we will refer to attribute values as values.

and zero otherwise. Note that the vector of a tuple t con-
tains m 1’s. For a tuple t ∈ T, defined over exactly m
attribute values, we then define:

p(t) = 1/n (5)

p(v|t) =
{

1/m if v appears in t
0 otherwise (6)

Intuitively, we consider each tuple t to be equi-probable
and normalize matrix M so that the row corresponding
to tuple t holds the conditional probability distribution
p(V |t). Given M , we can define mutual information
I(T ; V) and cluster the tuples in T into a clustering C such
that the information loss I(C; V)− I(T ; V) is minimum.

3.2 Market-Basket Data

Market-basket data describes a database of transactions for
a store, where every tuple consists of the items purchased
by a single customer. It is also used as a term that collec-
tively describes a data set where the tuples are sets of values
of a single attribute, and each tuple may contain a different
number of values.

Let V be the universe of all d values that appear in the
data set. Again, we represent our data as an n × d matrix
M , where M [t, v] = 1 if attribute value v ∈ V appears in
tuple t ∈ T, and zero otherwise. Note that the vector of a
tuple t contains dt ≤ d 1’s. For a tuple t ∈ T, we define:

p(t) = 1/n (7)

p(v|t) =
{

1/dt if v appears in t
0 otherwise (8)

Again, we consider each tuple t to be equi-probable and
normalize matrix M so that the row corresponding to tu-
ple t holds the conditional probability distribution p(V |t).
Clustering, then, proceeds as in the case of relational data.

When dealing with graph-based data sets, we first trans-
form them into market-basket data sets, and then apply
the process described above. Since the objective with a
graph-based data set is to cluster the nodes of the graph,
the transformation into market-basket data proceeds as fol-
lows: Each node ni of the graph corresponds to a tuple
while the values in the tuple is the set of nodes that are
adjacent to ni in the graph.

3.3 Incorporating Weighting Schemes

In both relational and market-basket data, we normalized
each row of matrix M in order to make it a probability dis-
tribution. This way we consider the appearance of a value
in a tuple as probable as any of the other values in the same
tuple. If we represent importance with numerical weights,
the aforementioned conceptualizations of our data sets in-
volve values with equal weights.

Our goal in this paper is to study how particular weight-
ing schemes over the data we cluster influence the result-
ing clusters. Before introducing these schemes, we de-
scribe how to apply a weighting scheme through an exam-
ple. Consider the tuples of the market-basket data set given

t1 a b c d e
t2 b c e
t3 d e
t4 a b d

Table 1: Market-Basket Data

in Table 1. According to Equation 7, we set p(t i) = 1/4,
1 ≤ ti ≤ 4, and according to Equation 8, the matrix M that
is used to represent this data set is given in Table 2

a b c d e
t1 1/5 1/5 1/5 1/5 1/5
t2 0 1/3 1/3 0 1/3
t3 0 0 0 1/2 1/2
t4 1/3 1/3 0 1/3 0

Table 2: Market-Basket Data Representation

By applying Equation 4 to the example data set, we can
compute all pairwise values of information loss (δI). These
values are given in Table 3. The value in position (i, j)
indicates the information loss we would incur, if we chose
to group the i-th and the j-th tuple together.

t1 t2 t3 t4
t1 - 0.1182 0.1979 0.1182
t2 0.1182 - 0.2977 0.3333
t3 0.1979 0.2977 - 0.2977
t4 0.1182 0.3333 0.2977 -

Table 3: Pairwise δI values for vectors of Table 2

From the information losses of Table 3, we conclude
that the algorithm is going to merge either pair (t1, t2) or
(t1, t4), which have the lowest value of 0.1182. We also
notice that pairs (t2, t3) and (t3, t4) are equidistant.

Let us now assume that a particular weighting scheme
has assigned weights to the five values in the example
(larger weights correspond to more important values). De-
noting the vector of weights with w, we may have w =
(0.01, 0.01, 0.01, 0.96, 0.01). This rather extreme weight
distribution considers value d to be the most important one.
In order to have the importance of each value reflected in
matrix M , we replace each appearance of a value in a tu-
ple with its weight, and normalize the rows of matrix M so
that they sum up to one. Using the example vector w given
above the new matrix M is given in Table 4.

a b c d e
t1 0.01 0.01 0.01 0.96 0.01
t2 0 0.3333 0.3333 0 0.3333
t3 0 0 0 0.9897 0.0103
t4 0.0102 0.0102 0 0.9796 0

Table 4: Data Representation with weights

The new pairwise distances are given in Table 5.
Our first observation is that in the presence of impor-

tance for the values, there are no ties in the information
losses among the tuples. Moreover, the closest pair is now
(t1, t4), which are almost identical since they both share
the value with highest importance. The clustering algo-

t1 t2 t3 t4
t1 - 0.4511 0.0076 0.0050
t2 0.4511 - 0.4833 0.4834
t3 0.0076 0.4833 - 0.0077
t4 0.0050 0.4834 0.0077 -

Table 5: Pairwise δI values for vectors of Table 4

rithm, as an initial step, will merge tuples t1 and t4 into
cluster t14 and the new probability distribution p(V |t14) is
given in Table 6.

a b c d e
t14 0.0101 0.0101 0.0050 0.9698 0.0050
t2 0 0.3333 0.3333 0 0.3333
t3 0 0 0 0.9897 0.0103

Table 6: New Data Representation with weights

The new pairwise distances are given in Table 7.

t14 t2 t3
t14 - 0.3820 0.3298
t2 0.3820 - 0.4833
t3 0.3298 0.4833 -

Table 7: New Pairwise δI values for vectors of Table 6

This table dictates that tuple t3 and cluster t14 will be
merged next. After this illustrative example we are now
ready to formally define the data set representation in the
presence of weights for the attribute values.

If V is the universe of all d values that appear in the data
set and w a vector of their importance, where |w| = d, we
represent our data as an n× d matrix M , where M [t, v] =
w(v) if attribute value v ∈ V appears in tuple t ∈ T, and
zero otherwise. For a tuple t ∈ T, we define:

p(t) = 1/n (9)

p(v|t) =
{

w(v)/
∑

v′∈V(w(v′)) if v appears in t
0 otherwise (10)

The only difference from the representations in equa-
tions 5 through 8 is in the definition of distribution p(V |t),
where we first substitute each entry equal to 1 with the
weight of the corresponding value v and normalize each
vector so that it sums up to one. Note that our definition is
general enough to cover both relational and market-basket
data sets. In the former case, if we only have weights for
each attribute rather than for each value, we may proceed as
above after giving each value the weight of its correspond-
ing attribute.

In the following section, we present weighting schemes
for both attributes and values.

4 Data Weighting Schemes
In this section, we present in detail the weighting schemes
we consider for our data sets.

4.1 Mutual Information

The first weighting scheme that we propose is based on mu-
tual information. Given a set of attributes A1, A2, . . . , Am,
we can define a probability distribution of the values of

each one of them. The dependence score for attribute A i

and Aj , is computed as the mutual information I(A i; Aj)
given by Equation 1. Note that mutual information is sym-
metric and the lower its value the weaker the dependence
between Ai and Aj . We suggest computing the weight
MI(Ai) for each feature Ai as the average mutual infor-
mation between Ai and the rest of the attributes:

MI(Ai) =
1

m− 1

m∑
j=1,j �=i

I(Ai; Aj)

The higher the value of MI(Ai), the more important Ai is.
Given a relational data set, we compute the weight of

each one of the attributes and label the values of the data
sets with the weights of their corresponding attributes.
More formally, if vij is the j-th value that belongs to the
set of values Vi of attribute Ai, then w(vij) = MI(Ai).

The previous definition of MI holds for relational data
sets. In the case of market-basket data sets the tuples are
expressed over a single attribute. Hence, we need to define
the probability distribution in a different manner.

For each value vi ∈ Vi, we define the probability

Ppresent(vi) =
number of times vi appears

n
(11)

Equation 11 is the probability of finding value v i in one of
the tuples in the data sets. Therefore, using Ppresent and
Pabsent = 1−Ppresent we can compute the entropy H(vi)
of value vi. Similarly we can define the joint distribution
of pairs of values vi ∈ Vi and vj ∈ Vj and compute the
joint entropy H(vi, vj). The mutual information of values
vi ∈ Vi and vj ∈ Vj given by Equation 1 and the MI
value of vi can be computed by

MI(vi) =
1

d− 1

d∑
j=1,j �=i

I(vi; vj)

Using Equation 10, we can define the probability of the
values given the tuples, p(V |t), and continue with the ap-
plication of the LIMBO algorithm.

4.2 Linear Dynamical Systems

Dynamical Systems have been previously used in the clus-
tering of attribute values in a relational data set [10]. In
this case, the data set is represented as a hypergraph whose
nodes are the values in the data set and there is an undi-
rected edge between two values that appear in a tuple to-
gether. An example of a relational data set together with its
hypergraph is given in Figure 1.

Given a set of d values, the initial set of weights, which
is called the initial configuration, is a d-dimensional vec-
tor w of real numbers. The dynamical system repeatedly
applies a function f : R

n → R
n and the configuration

at which the values in the d-dimensional vector do not
change, or otherwise f(wi) = wi−1, with i representing
the current weight configuration, is called a fixed point of
the dynamical system.

A B C
t1 a w 1
t2 a x 1
t3 b y 2 y

a

b 2

1

w

x

Figure 1: Relational Data Set with its hypergraph

The dynamical system that f describes is given in Fig-
ure 2 [10]. Following the steps, we update the weight wv of
each value v. In Figure 2, the symbol

⊕
denotes the com-

Dynamical System

To update weight wv:
For each tuple τ = {v, u1, . . . , um}
containing v do:

χτ =
⊕

(u1, . . . , um)
wv ←

∑
τ χτ

Figure 2: Updating weights in a dynamical system

bination operator. Several choices for the combination op-
erator have appeared in the literature [10]. We shall use the
summation operator, hence the term Linear Dynamical Sys-
tems (LDS). Intuitively, for each value, we sum the weights
of the values with which it co-occurs in the data set. To up-
date all the values in the data set, a full pass over the data is
required. Upon that, we normalize the weight vector w so
that the weights sum to one and check if f(wi) = wi−1.If
this is the case, the dynamical system has converged and
the final set of weights is stored in wi. If not, more itera-
tions are performed until we reach a fixed point.

Little is known with respect to the theoretical justifica-
tion as to why Dynamical Systems converge [10]. Experi-
mental results, however, have shown that a Linear Dynami-
cal System usually converges in less than 10 iterations [10].

In our work, we use Linear Dynamical Systems to derive
weights for the values in both kinds of data sets. The more a
value co-occurs with other values in the data set the higher
its weight. We should note that Linear Dynamical Systems
elicit weights for individual values, as opposed to whole
attributes in the MI scheme.

4.3 TF.IDF

In this subsection we introduce the use of the well-
established Term Frequency-Inverse Document Frequency,
(TF.IDF), weighting scheme from information retrieval [3].
Given a collection of d values V and n tuples T, the
TF.IDF weight of a value v ∈ V is defined as

TF.IDF (v) = tf(v) · log
(
idf(v)

)

where tf(v) (term frequency) is the frequency of value v
in a tuple t ∈ T (for relational data sets all values have
tf(v) = 1 for obvious reasons) and idf(v) (inverse doc-
ument frequency) is the fraction n/nv, with nv being the
number of tuples containing the value v. Drawing the anal-
ogy with information retrieval, we consider our tuples as

a set of documents and our values as the set of terms over
which these documents are expressed.

Intuitively, the TF.IDF weight of a value is high if this
value appears many times within a tuple and at the same
time a smaller number of times in the collection of the tu-
ples. The latter means that this value conveys high discrim-
inatory power. For example in a data warehouse of software
artifacts, file stdio.h, which is used by a large number
of software files will have a lower TF.IDF compared to file
my vector.h, which is connected to a smaller fraction
of files.

Once vector w of the weights of all values in V is de-
fined, we normalize it so that it sums up to one. Hence, the
resulting weights correspond to the impact of the values in
the data set. Note that the TF.IDF scheme can be computed
both for relational and market-basket data.

4.4 PageRank

PageRank is a weighting scheme proposed and widely used
in search engines [6] to compute a page’s importance (or
relevance). PageRank can be used when the relationships
among different web pages are given by a graph. We shall
draw an analogy with a data set whose values are related
with each other and this relationship is realized through a
directed graph (note that in the case of Dynamical Systems
there is no direction associated with the edges of the hyper-
graph). The main idea behind PageRank is that a value v is
deemed important if it is being pointed to by good values.

More precisely, let us denote with G the graph that re-
lates the values in V. PageRank performs a random walk
over the nodes of G. The walk starts at a random node ac-
cording to some distribution, usually uniform. Intuitively,
the weight of a node n0 is the fraction of time spent at this
node, which is proportional to the number of visits to this
node. The PageRank of a node n0 with C(n0) outgoing
links is computed as [6]:

PR(n0) = (1− α) + α
(PR(n1)

C(n1)
+ . . . +

PR(ns)
C(ns)

)
(12)

where n1, . . . , ns are the nodes that point to n0. The pa-
rameter α is a damping factor, which can be set between 0
and 1. A common value for α is 0.85, the value we used in
our experiments.

The PageRank of each page depends on the PageRank of
the pages that point to it. To reach a final weight vector w of
PageRank weights, PR(v) of each value can be calculated
using a simple iterative algorithm, and corresponds to the
principal eigenvector of the normalized adjacency matrix of
G. As in the case of Dynamical Systems, the iterations stop
when there are no changes in the vector w of PR values as
given by Equation 12.

4.5 Usage Data

Edges in a graph-based data set indicate only potential re-
lationships between the objects they connect. For exam-
ple, a link on a webpage indicates a potential path that a
user might follow. A procedure call in the call graph of a

software system may or may not be executed when the sys-
tem is run. Furthermore, it is quite common that particular
edges are heavily used, while others are used only rarely.

These observations indicate that the static picture of a
graph-based data set might belie what actually happens
when the system it represents is in use. It is intuitive to
conjecture that the amount of usage of a particular object is
related to its importance.

For this reason, the fifth weighting scheme we imple-
mented for this work is based on usage data. Assuming
that each edge in the graph-based data set is associated with
a weight that represents its usage, each value in the cor-
responding market-basket data set was assigned a weight
equal to the weight of the edge that connects the node rep-
resented by the value to the node represented by the tuple
(the unweighted transformation of a graph-based data set
to a market-basket data set was described at the end of Sec-
tion 3.2). The weights of the values in the same tuple were,
of course, normalized prior to the execution of LIMBO.

It is interesting to note that, in contrast to the PageRank
weighting scheme, the same value might be given a dif-
ferent non-normalized weight when it appears in different
tuples (a particular procedure will not be called with the
same frequency by all its callers).

4.6 Weight smoothing

An interesting observation that was confirmed by early ex-
periments is that the weights assigned by the weighting
schemes presented so far may not always be beneficial to
the clustering process. For example, nodes deemed highly
relevant by PageRank may not be as important for clus-
tering purposes. In software clustering there is the well-
established notion of “omnipresent” nodes [17], i.e. nodes
with large in- or out-degree. It is often beneficial to mini-
mize the effect such nodes have to the clustering process.

For this reason, we investigated several variations to
the five weighting schemes (we call this process weight
smoothing). More precisely, for each weighting scheme,
we also applied the following variations:

• The values with the largest weights were identified, and
their weight was modified to the minimum weight in the
data set. We performed experiments where the values af-
fected were in the top 5, 10, or 20 percentile.

• All values were sorted according to their weight. If v1 is
the value with the smallest weight, and vd is the value with
the largest weight, this variation assigns a new weight to vi

equal to the old weight of vd−i+1.

In the following section, we present experiments with
all weighting schemes and their variations on six different
data sets.

5 Experimental Evaluation

In this section, we perform a comparative evaluation of the
different weighting schemes using the LIMBO clustering
algorithm on both relational and market-basket data sets.

We should note again that our intention is not to test
the scalability or the performance of LIMBO under differ-
ent parameter settings. We observed experimentally that
the branching factor B of the DCF -tree does not signifi-
cantly affect the quality of the clustering. We set B = 4, so
that the Phase 1 insertion time is manageable (smaller val-
ues of B lead to higher insertion cost due to the increased
height of the DCF tree). At the same time we have ex-
plored a large range of values for φ (results are given in
[1]). Generally speaking, larger values for φ (around 1.0)
delay leaf-node splits and create a smaller tree with a coarse
representation of the data set. On the other hand, smaller φ
values incur more splits but preserve a more detailed sum-
mary of the initial data set. The value φ = 0.0 makes our
method equivalent to the AIB, since only identical objects
are merged together. The φ value used in the experiments
described below was chosen to ensure timely results, i.e.,
larger φ values were used for the larger data sets.

We experimented with the following six data sets.

5.1 Relational Data Sets

The first two data sets have been previously used for the
evaluation of clustering algorithms [4, 10, 13, 1]. We also
compiled a third data set of research publications as de-
scribed below.

Congressional Votes. This relational data set was taken
from the UCI Machine Learning Repository [24]. It con-
tains 435 tuples of votes from the U.S. Congressional Vot-
ing Record of 1984. Each tuple is a congress-person’s vote
on 16 issues and each vote is either YES or NO (there were
also 288 UNKNOWN values). The total number of val-
ues in the data set is, therefore, 48. We ran LIMBO with
φ = 0.0 and use this data set to test the performance of
the weighting schemes on data sets with small attribute do-
mains.

Mushroom. The Mushroom relational data set also comes
from the UCI Repository. It contains 8,124 tuples, each
representing a mushroom characterized by 22 attributes,
such as color, shape, odour, etc. The total number of dis-
tinct attribute values is 117. There are 2,480 missing val-
ues. This data set contains attributes with variable domains.
We used φ = 0.5 for this data set.

DBLP Bibliography. This relational data set
was created from the XML document found at
http://dblp.uni-trier.de/xml/. This
document stores information about different types of
computer science publications. In order to integrate
the information in a single relation, we chose to use
IBM’s schema mapping tool that permits the creation
of queries to transform the information stored in XML
format into a relational data set [18]. We specified
a target schema (the schema over which the tuples
in the relation are defined) containing 13 attributes
(Author, Publisher, Year, Editor, Pages, BookTitle,
Month, Volume, JournalTitle, Number, School, Series,
ISBN). We specified correspondences between the source
XML schema and the 13 attributes. The queries given

by the mapping tool where used to create a relation that
contained 50, 000 tuples and 57, 187 attribute values. Each
tuple contains information about a single author. There-
fore, if a particular publication involved more than one
author, the mapping created additional tuples for each one
of them. Moreover, the highly heterogeneous information
in the source XML document (information regarding
conference, journal publications, etc.) introduced a large
number of NULL values in the tuples of the relation. We
used this highly heterogeneous relation containing a large
number of values (including missing ones) to demonstrate
the strength of our approaches in suggesting a clustering.
The φ value used was 1.2.

5.2 Market-basket data sets

The three market-basket data sets we used for our exper-
iments came from large software systems. Such systems
commonly yield large dependency graphs that can be used
in order to cluster the system’s resources (source files, pro-
cedures, classes) into meaningful subsystems. By trans-
forming these dependency graphs into market-basket data
sets, as explained in section 3.2, we were able to assess the
merit of the applicable weighting schemes. A description
of all three software systems follows:
TOBEY. This is a proprietary industrial system that is un-
der continuous development. It serves as the optimizing
back end for a number of IBM compiler products. The ver-
sion we worked with was comprised of 939 source files
and approximately 250,000 lines of code. An authoritative
decomposition for TOBEY was obtained over a series of
interviews with its developers. We used φ = 0.0 for this
data set.
Linux. We experimented with version 2.0.27a of this free
operating system that is probably the most famous open-
source system. This version had 955 source files and ap-
proximately 750,000 lines of code. An authoritative de-
composition for Linux was presented in [5]. Due to the rel-
atively small size of this data set, we used φ = 0.0 again.

Mozilla. The third market-basket data set we used for
our experiments was derived from Mozilla, an open-source
web browser. We experimented with version 1.3 that was
released in March 2003. It contains approximately 4 mil-
lion lines of C and C++ source code.

We built Mozilla under Linux and extracted its static de-
pendency graph using CPPX, and a dynamic dependency
graph using jprof. A decomposition of the Mozilla source
files for version M9 was presented in [11]. For the evalu-
ation portion of our work, we used an updated decomposi-
tion for version 1.3 [27].

It is interesting to note that Mozilla was the only soft-
ware system that was used to evaluate the usage data
weighting scheme. The main reason for this was the fact
that in order to extract meaningful usage data from a soft-
ware system, one needs a comprehensive test suite that en-
sures good coverage of as many execution paths as pos-
sible. Such a test suite was not available for TOBEY
or Linux. However, we were able to use the Mozilla

“smoketests” for this purpose. The dynamic dependency
graph we obtained contained information about 1202 of the
2432 source files that are compiled under Linux. The re-
sults presented in this section are based on the classification
of these 1202 files. The φ value used was 0.2.

5.3 Quality Measures for Clustering

Clustering quality lies in the eye of the beholder; deter-
mining the best clustering usually depends on subjective
criteria. For this reason, we will use a variety of evalua-
tion measures in order to assess the merit of the obtained
clusterings.
Category Utility (CU): Category utility [15] is defined
as the difference between the expected number of attribute
values that can be correctly guessed given a clustering,
and the expected number of correct guesses with no such
knowledge. CU depends only on the partitioning of the
attribute values by the corresponding clustering algorithm
and, thus, is a more objective measure. Let C be a cluster-
ing. If Ai is an attribute with values vij , then CU is given
by the following expression:

CU =
X

c∈C

|c|
n

X

i

X

j

[P (Ai = vij |c)2 − P (Ai = vij)
2]

In order to compare clusterings with different number
of clusters, Fisher’s COBWEB clustering system [8] intro-
duced the average CU value per cluster. This value is de-
fined as CUavg = CU

k , where k is the number of clusters.
We use this measure in order to evaluate the clusterings ob-
tained from the relational data sets.
MoJo: Many data sets commonly used in testing clustering
algorithms include a variable that is hidden from the algo-
rithm, and specifies the class with which each tuple is asso-
ciated. As mentioned above, the market-basket data sets we
experimented with include such a variable, since an author-
itative decomposition is available for all of them. This vari-
able is not used by the clustering algorithms. While there
is no guarantee that any given classification corresponds to
an optimal clustering, it is nonetheless enlightening to com-
pare clusterings with pre-specified classifications of tuples.

To do this, we used the MoJo distance measure [23, 26].
MoJo distance between two different partitions A and B
of the same data set is defined as the minimum number
of Move or Join operations one needs to perform in order
to transform either A to B or vice versa (Move refers to
assigning a tuple to a different cluster, while Join refers to
merging two clusters into one). Intuitively, the smaller the
MoJo distance between an automatically created clustering
A and the pre-specified classification B, the more effective
the algorithm that created A.

The MoJo distance measure has been used to evaluate
the effectiveness of software clustering algorithms [2, 25].
Since our market-basket data sets contain software data,
it seems appropriate to use MoJo distance to evaluate the
merit of the weighting schemes we will apply to them.
Information Loss, (IL): We also use the information loss
I(A; T)− I(A; Ck) to compare clusterings. The lower the
information loss, the better the clustering. For a clustering

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

W
ei

g
h

ts
votes_mi
votes_tfidf
votes_dynsys

Figure 3: Votes Weights

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

W
e

ig
h

ts

mushroom_mi
mushroom_tfidf
mushroom_dynsys

Figure 4: Mushroom Weights

0 1 2 3 4 5 6

x 10
4

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

W
ei

g
h

ts

dblp_mi
dblp_tfidf
dblp_dynsys

Figure 5: DBLP Weights

Votes (φ = 0.0)
Scheme k CUavg IL(%)
None 2 1.4017 73.25
MI 2 1.4349 63.38
LDS 2 1.4397 71.67
IDF 2 1.3850 77.47

Mushroom (φ = 0.5)
Scheme k CUavg IL(%)
None 3 1.6070 79.24
MI 3 1.6070 72.71
LDS 4 1.0399 59.44
IDF 4 1.0399 58.11

DBLP (φ = 1.2)
Scheme k CUavg IL(%)
None 3 0.4089 90.72
MI 2 0.6002 92.75
LDS 3 0.6172 90.00
IDF 3 0.6174 89.04

Table 8: Results for relational data sets
with low information loss, given a cluster, we can predict
the attribute values of the tuples in the cluster with rela-
tively high accuracy. We present IL as a percentage of the
initial mutual information lost after producing the desired
number of clusters using each algorithm. However, spe-
cial attention must be paid since clusterings with smaller k
values tend to incur larger values of information loss. We
report the value of IL as an indication of the information
content of the resulting clusters.

5.4 Relational Data: Results and Observations

For the relational data sets we ran LIMBO without any
weights as well as in the presence of weights given by the
MI, LDS, and TF.IDF weighting schemes. Figures 3, 4
and 5 depict the weight distributions of the three weight-
ing schemes on the Votes, Mushroom and DBLP data sets,
respectively (the weight values were sorted in ascending
order to facilitate visualization).

For the Votes data set, Figure 3 indicates that MI and
LDS assign weights in a similar fashion, although LDS does
assign significantly smaller weight to 20% of the values.
On the other hand, TF.IDF assigns smaller weight to about
half of the values, while the weights increase for the rest of
them. The latter ones correspond to YES or NO values that
do not appear many times in the data set.

The Mushroom data set contains values that are almost
equally distributed in the data set. Hence, as Figure 4
depicts, the TF.IDF scheme does not assign the highest
weights as in Votes. A similar trend with respect to the
weights produced by LDS is observed here as well. The
weights for approximately 20% of the values are signifi-
cantly lower than the rest. Finally, MI demonstrates be-
haviour similar to the one in the Votes data set, which
can be characterized as more conservative than the other
weighting schemes.

The main lesson learned from the distribution of the
weights in the DBLP data set (the y-axis is in logarithmic

scale) is that MI and TF.IDF produce similar distributions
of weights. On the other hand, the large number of missing
values in different attributes and the large number of values
in the tuples related to the same publication forced LDS to
elicit two significantly different categories of weights.

The results of clustering the three relational data sets
(without any weight smoothing) are given in Table 8. In
order to choose an appropriate number of clusters, we start
by creating decompositions for all values of k between 2
and a large value. For the experiments performed for these
data sets, the chosen value was 50. For these clusterings
we compute the value of CUavg and choose the cluster-
ing that had the maximum CUavg value, i.e. a clustering
where values can be predicted with the highest accuracy in
their corresponding clusters. The weighting schemes that
performed best are shown in bold.

From these results we observe that in the Votes data set
there is hardly any difference among the three schemes. In
all cases, the number of clusters with the lowest CUavg

is the same. MI and LDS produce slightly better quality
results both with respect to the CUavg and IL. A possible
explanation for the similarity between the results could be
the fact that the domain of all attributes is the same (YES,
NO, UNKNOWN).

In the Mushroom data set the MI weighting scheme gave
the best results. The value of CUavg is the same as in the
case where no weights were introduced. However, and for
the same number of clusters for both cases, MI resulted in
clusters with small IL value.

Finally, in the DBLP data set, all weighting schemes
showed merit. This result is intuitive since weighting
schemes balanced abnormalities, such as the high number
of NULL values. For example, the TF.IDF scheme assigned
a very small weight to the NULL values that appear almost
exclusively in some attributes, driving the result of the clus-
tering to more meaningful and informative clusters.

We also applied the same weighting schemes but with
smoothed weights, as explained in section 4.6. The ob-

Votes (φ = 0.0)
Scheme k CUavg IL(%)
MI-5% 2 1.4031 69.91
MI-10% 2 1.1889 73.34
MI-20% 3 0.9266 65.52
LDS-5% 2 1.4321 68.97
LDS-10% 2 1.4393 68.89
LDS-20% 2 1.4206 71.26
IDF-5% 2 1.4386 76.73
IDF-10% 2 1.4426 75.82
IDF-20% 2 1.4433 73.29

Mushroom (φ = 0.5)
Scheme k CUavg IL(%)
MI-5% 4 1.0399 60.68%
MI-10% 3 1.0666 69.09%
MI-20% 3 1.0670 69.24%
LDS-5% 3 0.9719 68.71%
LDS-10% 3 0.9718 65.68%
LDS-20% 3 0.9717 65.50%
IDF-5% 4 1.0399 59.14%
IDF-10% 4 1.0401 58.56%
IDF-20% 3 1.0666 69.17%

DBLP (φ = 1.2)
Scheme k CUavg IL(%)
MI-5% 3 0.6001 90.68%
MI-10% 3 0.6001 92.09%
MI-20% 3 0.6201 89.24%
LDS-5% 3 0.6174 89.97%
LDS-10% 3 0.6171 90.20%
LDS-20% 3 0.6089 91.04%
IDF-5% 4 0.6171 89.45%
IDF-10% 3 0.6072 90.56%
IDF-20% 3 0.6233 89.18%

Table 9: Results for relational data sets with smoothed weights

0 100 200 300 400 500 600 700 800 900 1000
10

−15

10
−10

10
−5

10
0

W
e

ig
h

ts

tobey_mi
tobey_tfidf
tobey_dynsys
tobey_pr

Figure 6: TOBEY Weights

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

10
0

W
ei

g
h

ts

linux_mi
linux_tfidf
linux_pr

Figure 7: LINUX Weights

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

W
ei

g
h

ts

mozilla_usage

Figure 8: MOZILLA Weights

tained results are shown in Table 9.
Our first observation in the Votes data set is that cluster-

ing results are deteriorating as MI and LDS weight values
are smoothed. On the contrary, the results of TF.IDF have
improved. TF.IDF is a scheme that gives higher weights to
values that appear less often in the tuples. The smoothing
results prove that in the case of this data set, such values are
less important than the scheme considers and by decreasing
their value the results are better.

The same observation holds for the other two data sets.
In the case of DBLP, where single authors or conference
names appear with high weights in the case of TF.IDF, we
see that smoothing out the weights of these values to the
weights that correspond to NULL values, the clusters are
more informative and the publications better separated.

5.5 Market-Basket Data: Results and Observations

LIMBO was also applied to the three market-basket data
sets using all weighting schemes and their variations. In the
same way as in the relational data sets, in order to choose an
appropriate number of clusters, we start by creating decom-
positions for all values of k between 2 and a large value.
For the experiments performed in market-basket data sets,
the chosen value was 150, a value that turned out to be suf-
ficient for our purposes.

Let Ck be a clustering of k clusters and Ck+1 a cluster-
ing of k + 1 clusters. If the cluster representatives created
in Phase 2 reflect inherent groupings in the data, then these
neighbouring clusterings must differ in only one cluster.
More precisely, if two of the clusters in Ck+1 get merged,
this should result in Ck. Using MoJo [26], we can detect
these clusterings by computing the distance between Ck+1

and Ck, i.e. the value of MoJo(Ck+1, Ck). If this value is

equal to one, the difference between the two clusterings is
a single join of two clusters of Ck+1, to produce the k clus-
ters of Ck. As a result, k is chosen as the smallest value,
for which MoJo(Ck+1, Ck) = 1.

Figures 6, 7, and 8 present the weight distribution for the
three market-basket data sets and the applicable weighting
schemes. In all figures, the y-axis is in logarithmic scale.

In Figure 6 we present the weight distribution of all
four schemes. We observe that MI, TF.IDF and PageRank
produce weights in the same range. In the case of LDS,
the weights produced are rather smaller and with a larger
range. Larger weights correspond to nodes with large in-
and out- degrees.

The weight distribution in the LINUX data set for all
schemes follows the same pattern as in the TOBEY data
set. To illustrate the differences among the weights of MI,
TF.IDF and PageRank schemes we chose not to draw the
distribution of LDS in Figure 7. This figure shows that MI
and TF.IDF elicit similar and more conservative weights
compared to PageRank, which gives a high weight to a
number of values. These values correspond to nodes that
are pointed to by other important nodes in the graph of the
LINUX system.

Finally, Figure 8 depicts the weight distribution pro-
duced in the presence of usage data. The distributions of
the other four schemes are similar to the previous two data
sets described above. The main observation from the dis-
tribution of usage weights is that there is a wide range of
weights (the smallest weights are 5 orders of magnitude
smaller than the largest ones).

The clustering results we obtained are shown in Table 10
(weighting schemes performing best are shown in bold).

An immediate observation is that the TF.IDF weighting

TOBEY (φ = 0.0)
Scheme k MoJo IL(%)
None 80 311 30.59
MI 33 341 42.94
LDS 59 476 20.61
IDF 102 292 27.17
PageRank 24 571 41.33

LINUX (φ = 0.0)
Scheme k MoJo IL(%)
None 56 237 36.03
MI 70 237 30.95
LDS 41 286 31.31
IDF 81 225 20.09
PageRank 24 340 39.66

MOZILLA (φ = 0.2)
Scheme k MoJo IL(%)
None 10 600 63.25
MI 125 428 23.64
LDS 32 528 36.31
IDF 68 406 33.19
PageRank 48 478 33.14
Usage 61 440 47.21

Table 10: Results for market-basket data sets

TOBEY (φ = 0.0)
Scheme k MoJo IL(%)
MI-5% 97 323 28.51
MI-10% 16 383 53.75
MI-20% 38 328 41.69
LDS-5% 42 486 20.61
LDS-10% 28 540 30.15
LDS-20% 37 447 34.27
IDF-5% 67 369 33.87
IDF-10% 27 333 46.41
IDF-20% 27 333 46.41
PageRank-5% 82 310 29.08
PageRank-10% 61 312 34.33
PageRank-20% 53 321 37.02
InvPageRank 86 297 29.90

LINUX (φ = 0.0)
Scheme k MoJo IL(%)
MI-5% 94 245 27.15
MI-10% 68 240 32.12
MI-20% 90 256 27.79
LDS-5% 52 281 28.29
LDS-10% 45 315 31.11
LDS-20% 31 305 37.02
IDF-5% 97 248 26.42
IDF-10% 47 257 37.60
IDF-20% 46 257 37.95
PageRank-5% 56 244 29.08
PageRank-10% 62 235 32.96
PageRank-20% 36 230 28.00
InvPageRank 79 226 29.26

MOZILLA (φ = 0.2)
Scheme k MoJo IL(%)
MI-5% 97 425 27.33
MI-10% 70 423 32.42
MI-20% 100 411 26.96
LDS-5% 100 423 26.90
LDS-10% 89 435 34.02
LDS-20% 69 452 32.84
IDF-5% 28 482 47.01
IDF-10% 132 419 23.19
IDF-20% 132 419 23.23
PageRank-5% 80 436 27.18
PageRank-10% 55 435 34.23
PageRank-20% 98 407 27.12
InvPageRank 91 416 28.34
Usage-5% 68 665 46.79
Usage-10% 73 673 46.80
Usage-20% 80 673 46.74
InvUsage 89 678 49.01

Table 11: Results for market-basket data sets with smooth weights

scheme outperforms all others, including the scheme that
uses no weights. This can be attributed to the fact that the
way TF.IDF assigns weights corresponds well to the way
software architects would assign importance to artifacts of
their system. Artifacts used by the majority of the system
are probably library functions that are not very important
(low idf), while artifacts rarely used are unlikely to be cen-
tral to the system’s structure (low tf).

A further observation is that the LDS weighting scheme
performs quite poorly. Its weight distribution forecasted
a deviant behaviour, but the most likely explanation is the
fact that it assigns large importance to nodes of large in-
and out-degree. This property is shared by the PageRank
weighting scheme. Our results corroborate that this is not
a desirable property for software data.

Another interesting observation is that the usage data
weighting scheme performs rather well with the Mozilla
data set. Even though it is outperformed by TF.IDF,
it still improves significantly on using the static depen-
dency graph (represented by the None weighting scheme).
Further experiments with more software systems are, of
course, required to determine whether this is generally true.

Finally, it is interesting to note that the MI weighting
scheme performs well consistently. With the exception of
TOBEY, it is only slightly edged by TF.IDF. This might
indicate that it is a weighting scheme that is not influenced
from the type of data set used, a quite desirable property.

We also performed experiments with the smoothed vari-
ations of the weighting schemes. The results are shown in
Table 11.

It is interesting to note that, in agreement with our ob-
servations above, the performance of the LDS weighting
scheme improves in certain cases. This phenomenon is
even more dramatic with the PageRank weighting scheme.
In many cases, the obtained clustering is only slightly
worse than the one produced by TF.IDF.

It was quite intriguing to observe that the inverse PageR-
ank weighting scheme produced results that were among
the best. This indicates that importance for web search en-
gines does not imply importance for clustering algorithms.
In fact, quite the opposite seems to be the case.

As expected, the performance of TF.IDF dropped when
its weight structure was modified. A similar behaviour was
observed for the usage data weighting scheme. This indi-
cates that these weighting schemes in their pure form en-
capsulate well the properties of software decompositions.

Finally, the performance of MI does not fluctuate signifi-
cantly, confirming our belief that it is a conservative, stable,
and effective weighting scheme.

6 Conclusions

This paper presented an evaluation of certain weighting
schemes within a clustering algorithm for categorical data.
We implemented and experimentally assessed the useful-
ness of such schemes on a variety of relational and market-
basket data sets, the latter ones from the field of software
reverse engineering.

Our approach has the added benefit that no changes need
to be performed on the clustering algorithm per se. Rather,

the only necessary step to be taken is the analysis of the data
set and elicitation of value weights. From our experiments,
we can reach the following general conclusions:
• When the number of clusters in a data set is small the

weighting schemes do not offer considerable merit.
This is shown through our initial experiments on re-
lational data sets.
• The MI weighting scheme performs consistently well

in a variety of domains.
• When graph-based data sets are clustered, the TF.IDF

weighting scheme seems to perform best. Especially
in software systems, this scheme decreases the effect
of “omnipresent” nodes appropriately in order for the
clusters to reflect natural groupings of the data.
• The PageRank weighting scheme seems to be inap-

propriate for clustering purposes. Interestingly, the
inverse PageRank weighting scheme performs well in
the software clustering domain.
• The performance of the LDS weighting scheme is

overall lower than the rest of the schemes. However, it
was interesting to discover that it assigns weights in a
more dramatic fashion than other weighting schemes.
Such a property might be desirable in domains other
than the ones examined in this paper.

Certain avenues for further research present themselves.
For example, we should experiment with different combi-
nation operators for Dynamical Systems before assessing
their overall performance. We would also like to collect us-
age data from more software systems in order to assess the
usefulness of the usage data weighting scheme better. We
are definitely excited to investigate other types of weight-
ing schemes that are potentially useful to the clustering pro-
cess. Finally, applying LIMBO on both numerical and cat-
egorical data with relative weights to the various types of
data used as input, is also a possibility for future work.

References
[1] P. Andritsos, P. Tsaparas, and R. J. M. K. C. Sevcik.

LIMBO: Scalable Clustering of Categorical Data. In EDBT,
Mar. 2004.

[2] P. Andritsos and V. Tzerpos. Software Clustering based on
Information Loss Minimization. In WCRE, 2003.

[3] R. B.-Yates and B. R.-Neto. Modern Information Retrieval.
Addison-Wesley-Longman, 1999.

[4] D. Barbará, J. Couto, and Y. Li. COOLCAT: An entropy-
based algorithm for categorical clustering. In CIKM,
McLean, VA, 2002.

[5] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as
a case study: Its extracted software architecture. In ICSE,
1999.

[6] S. Brin and L. Page. The Anatomy of a Large-scale Hy-
pertextual Web Search Engine. Computer Networks, 30(1–
7):107–117, 1998.

[7] F. Debole and F. Sebastiani. Supervised Term Weighting for
Automated Text Categorization. In SAC-03, Melbourne, FL,
USA, 2003.

[8] D. H. Fisher. Knowledge acquisition via incremental con-
ceptual clustering. Machine Learning, 2:139–172, 1987.

[9] M. R. Garey and D. S. Johnson. Computers and intractabil-
ity; a guide to the theory of NP-completeness. W.H. Free-
man, 1979.

[10] D. Gibson, J. M. Kleinberg, and P. Raghavan. Clustering
Categorical Data: An Approach Based on Dynamical Sys-
tems. In VLDB, New York, NY, 1998.

[11] M. W. Godfrey and E. H. S. Lee. Secrets from the monster:
Extracting mozilla’s software architecture. In CoSET, 2000.

[12] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava. Text
Joins in an RDBMS for Web Data Integration. In WWW,
Budapest, Hungary, 2003.

[13] S. Guha, R. Rastogi, and K. Shim. ROCK: A Robust Clus-
tering Algorithm for Categorical Atributes. In ICDE, Syd-
ney, Australia, 1999.

[14] H. Liu and H. Motoda. Feature Selection for Knowledge
Discovery and Data Mining. Kluwer Academic Pubs, 1998.

[15] M. Gluck and J. Corter. Information, Uncertainty, and the
Utility of Categories. In COGSCI, Irvine, CA, USA, 1985.

[16] D. S. Modha and W. S. Spangler. Feature Weighting in k-
Means Clustering. Machine Learning, 52(3), 2003.

[17] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl. A
reverse engineering approach to subsystem structure identi-
fication. Journal of Software Maintenance: Research and
Practice, 5:181–204, Dec. 1993.

[18] L. Popa, Y. Velegrakis, M. Hernandez, R. J. Miller, and
R. Fagin. Translating web data. In VLDB, Hong Kong,
China, Aug. 2002.

[19] G. Salton and C. Buckley. Term-weighting Approaches in
Automatic Text Retrieval. Information Processing and Man-
agement, 24(5):513–523, 1988.

[20] N. Slonim and N. Tishby. Agglomerative Information Bot-
tleneck. In Neural Information Processing Systems, (NIPS-
12), pages 617–623, 1999.

[21] L. Talavera. Feature Selection as a Preprocessing Step for
Hierarchical Clustering. In ICML, 1999.

[22] N. Tishby, F. C. Pereira, and W. Bialek. The Informa-
tion Bottleneck Method. In 37th Annual Allerton Confer-
ence on Communication, Control and Computing, Urban-
Champaign, IL, 1999.

[23] V. Tzerpos and R. C. Holt. MoJo: A distance metric for
software clusterings. In WCRE, 1999.

[24] UCI. ML Repository. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

[25] Z. Wen and V. Tzerpos. An effectiveness measure for soft-
ware clustering algorithms. In In Submission.

[26] Z. Wen and V. Tzerpos. An optimal algorithm for MoJo
distance. In IWPC, May.

[27] C. Xiao. Software clustering using static and dynamic data.
Master’s thesis, Department of Computer Science, York Uni-
versity, in preparation.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An
efficient Data Clustering Method for Very Large Databases.
In SIGMOD, 1996.

