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ABSTRACT

We demonstrate how the data management techniques
known as On-Line Analytical Processing, or OLAP, can
be used to enhance the sophistication and range of soft-
ware reverse engineering tools. This is the first compre-
hensive examination of the similarities and differences
in these tasks both in how OLAP techniques meet (or
fail to meet) the needs of reverse engineering and in
how reverse engineering can be recast using data anal-
ysis. To permit the seamless integration of these tech-
nologies, we extend a multidimensional data model to
manage dynamically changing dimensions (over which
data can be aggregated). We use a case study of the
Apache web server to show how our solutions permit
an integrated view of data ranging from low level pro-
gram analysis information to abstract, aggregate infor-
mation. These high-level abstractions may be provided
either by humans (perhaps using a visualization tool) or
directly from reverse engineering tools or data mining
techniques.

1 INTRODUCTION

Reverse engineering involves the identification of the
components of a software system and their interdepen-
dencies, along with the extraction of system abstrac-
tions and design information [42]. Intuitively, reverse
engineering helps developers understand the architec-
ture of large software systems. Several tools have been
designed and built towards this goal. The majority of
legacy systems are undocumented, and even if documen-
tation exists, reverse engineering tools help engineers
compare the as-implemented with the as-documented
or the as-designed structure of the underlined system
[19]. Numerous commercial reverse engineering tools
and research prototypes provide sophisticated syntactic
and semantic analysis of programs including (to name
just a few): CIA and CTAO [12, 11], Dali [28], PBS [18],
Sapid [17], Refine [29], MediaDoc [38], Rigi [35] and the
Bridge toolkit [27].

At the heart of the reverse engineering activity, lies the
analysis of software systems and related data (documen-
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tation, facts extracted by static or dynamic program
analysis tools or parsers, annotations, etc.) This analy-
sis is designed to support software engineers who need
to understand the software and make decisions about
its maintenance, evolution, extension, or role in an en-
terprise. Parsing-based reverse engineering tools, which
will be the focus of our study, extract relevant data
(these include parsers, code analyzers and documenta-
tion analyzers), visualize this data (using graphical or
textual reports), summarize the data (using filters to se-
lect interesting subsets or using groupings to aggregate
the data into higher level abstractions), and query (or
browse) the data to find information of interest to a spe-
cific activity [19]. Detailed summaries and comparisons
of some of these tools appear in the research literature

[4, 5, 19].

The decision-support and data-analysis goals of reverse
engineering are closely akin to the goals of On-Line An-
alytic Processing (OLAP) and Data warehousing [24].
An increasing number of organizations have realized the
competitive advantage that can be gained from the ef-
ficient access to accurate information. Information is a
key component in the decision-making process of a busi-
ness or enterprise. Data warehouses came into existence
to meet the changing demands of the enterprises as On-
Line Transaction Processing (OLTP) systems could not
cover the analytical and decision-support needs of the
enterprises’ competitive environment. Data warehouses
support analytical capabilities by providing an infras-
tructure for integrated, comprehensive, historical data
supporting detailed analysis [24]. A data warehouse in-
tegrates the data of an enterprise (which is drawn from
many, often incompatible, legacy application systems
and applications) and provides sophisticated analysis,
visualization and summarization tools.

Despite this close similarity in goals, OLAP techniques
have not been widely adopted in reverse engineering
tools. In this work, we examine the reasons for this situ-
ation. We identify specific limitationsin OLAP technol-
ogy that have prevented or restricted their use in soft-
ware reverse engineering. We go on to address these lim-
itations. Our main contribution is to bring data ware-



houses and reverse engineering together. In particular,
we will examine how software engineers can benefit from
a multidimensional view of large software systems and
how software analysts can benefit from access to hidden
structures in their data, obtained by reverse engineer-
ing. The hidden structures involve graphs and aggrega-
tions over graphs. We show how these structures can
effectively be explored and browsed using OLAP tech-
niques.

In Section 2, we begin by describing the goals and moti-
vation for reverse engineering tools. We briefly present
the state-of-the art in tool design and present a spe-
cific case study to ground our discussion. In Section 3,
we describe the goals and motivation for OLAP tools.
In Section 4, we identify a number of limitations in
OLAP technology that have prevented their adoption
in reverse engineering. We propose solutions to these
problems specifically designed to extend OLAP to meet
the needs of reverse engineering. We consider how data
analysis can be recast as a reverse engineering activ-
ity. The reverse engineering paradigm permits enhanced
data analysis by providing a foundation for integrating
newly discovered knowledge into the analysis. In Sec-
tion 5, we show how reverse engineering can be recast
as data analysis. We present the benefits of such an
approach which provides reverse engineering tools dra-
matic improvements in functionality and extensibility.
Finally, we present related work and our conclusions.

2 SOFTWARE REVERSE ENGINEERING
Many systems, when they age, become difficult to un-
derstand and maintain. Sometimes, this task also be-
comes inefficient due to its high cost. “A reverse en-
gineering environment can manage the complexities of
program understanding by helping the software engi-
neers extract high—level information from low-level ar-
tifacts” [41].

A major effort has been undertaken in the software en-
gineering community to produce tools that help pro-
gram analysts uncover the hidden structure of legacy
code. These systems are focused on performing the
central reverse engineering tasks including the follow-

ing [8, 19, 41, 43].

e Program Amnalysis. The analysis of source code
and extraction of relevant information.

e Plan Recognition. The identification of common
patterns. The patterns may be behavioral or struc-
tural, depending on the desired usage scenario.

e Concept Assignment. The discovery of human—
oriented patterns in the system. This includes the
identification of concepts in the source code and
their relationship to program components.

¢ Re-documentation. The construction of docu-
mentation for an undocumented or legacy systems.

Such documentation describes the architecture and
functionality of the system.

Reverse engineering tools aid in the extraction or dis-
covery of an already existing, but unknown, structure of
a software system. This involves the decomposition of
the system either in system—oriented or human—oriented
parts that represent natural groupings.

The system analysis and management is based on the
use of graph structures built on features of the original
code, such as function calls, or based on complex static
or dynamic analysis of the code. The manipulation and
visualization of graphs has long been a mainstay of re-
verse engineering. More recently attention has focused
on the introduction of powerful filtering, grouping and
summarization capabilities.

Recent studies of reverse engineering tools have identi-
fied the following criteria for evaluating and comparing
their capabilities [5, 4].

e Analytical capabilities are the features of the
parser or code analyzer that is used to extract
facts from the source system. Such features include
the programming languages and environments sup-
ported, the ability to do incremental parsing (on
evolving system versions), and the fault tolerance of
the analyzer. A salient feature of these capabilities
is the need for extensibility. The set of extracted
facts in any reverse engineering tool will naturally
be expanding and evolving.

e Representation capabilities enhance the tools’
user-friendliness and usability. These capabilities
vary from simple textual reports to more advanced
graphical ones. The latter, permit the representa-
tion of the subject software system in layered hi-
erarchical views. Representation capabilities may
also include functions for filtering and grouping the
data.

¢ Querying and browsing capabilities allow the
user to navigate through the numerous levels of ab-
straction of a software system. These facilities per-
mit a user to find specific information using queries
or by navigating through the complex information
representing a software system.

e User views permit a user to tailor her view of
the software system, concentrating on information
of interest. To be most useful, views should be
queriable and persistent to enable users to browse
and view previously determined information.

Current reverse engineering tools have a diverse set of
capabilities that can be classified by these criteria. Our
goal is to enhance some of these capabilities using new
data analysis strategies. Hence, we shall focus primar-



ily on the last three capabilities, ¢.e. the representation
and manipulation of the source code and related data,
including semantic abstractions of programs. We will,
however, also be concerned with ensuring these capabil-
ities accommodate extensibility in the data that is col-
lected and represented. Specifically, our enhancements
are designed to support the following.

e Integrated use and analysis of data produced possi-
bly by different tools, using different modeling as-
sumptions, and gathered at different levels of ab-
straction.

e Evolution of data and metadata modeling dynamic
semantic and syntactic program information. Our
solutions are specifically designed to support data
independence so that users may focus on the reverse
engineering task and not be effected by changes in
physical or logical structure of the data.

To illustrate some of the data management and data
analysis capabilities of reverse engineering tools, we
present a very small portion of an analysis of the Apache
web server, consisting of about 83K lines of code. Our
example 1s not intended to be comprehensive, but only
to give a flavor for the type of data manipulation facili-
ties used in reverse engineering. Furthermore, we must,
due to space limits, focus on a single tool. For this
presentation, we use a tool with data management fa-
cilities that are representative of (though certainly far
from identical to) the facilities of other prototype and
commercial tools. Otherwise, this choice should not be
viewed as especially significant.

Ezample from Apache Case Study

Figure 1 shows the overview of a small portion of
Apache. The overview was created using the Rigi re-
verse engineering tool [35]. The different subsystems
are broken down based on the directory structure of the
source code and are depicted in a hierarchy of levels.
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Figure 1: Overview of Apache architecture.

Rigi provides sophisticated facilities for refining and ma-
nipulating these views. A user may select restricted

portions of the graph to view, select certain types of
nodes or edges to view, collapse or aggregate subgraphs,
search for nodes or edges based on their labels, and
filter or refine a specific view of the system [35]. Se-
lecting (clicking on) the “src/main” node gives all the
artifacts of this subsystem. Filtering the nodes to in-
clude only “functions” and the edges to include only
“calls”, we get a view of the function calls of this sub-
system. The Rigi view for the “src/main” sub-system
(Figure 2) is still too cluttered to be useful. So assume
a user has refined the view further by selecting the func-
tion ap_check_cmd_context(). She might then select
to see the view of Figure 3 which includes all func-
tions that call ap_check_cmd_context(). For clarity,
we have omitted the labels for many of the functions
produced by Rigi.
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Figure 2: Function calls in “src/main” subsystem.
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Figure 3: Function calls to ap_check_cmd_context ().

We can store this view, including both the view defi-
nition and its contents (the data objects). However, in
Rigi, as in many tools and research prototypes [5], views
are visual metaphors and are, in general, not first class
objects in the system. They cannot always be com-
posed and many of the actions that can be performed
on the original database, cannot be performed on re-
stricted views. As a simple example, suppose we have



stored the view of Figure 3. We then continued and cre-
ated a second view by selecting missing_endsection()
(Figure 4) and stored this view. If, now, we wish to
ask the question “what are the functions that call both
ap_check_cmd_context() and missing endsection()”
we cannot manipulate these views to see the response.
These views can only be combined manually or using
user programmed scripts.
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Figure 4: Function calls to missing_endsection().

3 ON-LINE ANALYTICAL PROCESSING
In an OLAP system, data are presented to the user in a
multidimensional model, which comprises one or more
numerical measures and a collection of dimensions used
to aggregate and summarize the measures [37]. A typ-
ical measure is the price or amount of a sale. Typical
dimensions include location of the sale, product type,
and time. An example data warehouse containing the
dimensions: location, time, product and the fact ta-
ble sales is depicted in Figure 5.

(@) location dimension (b) time dimension
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Figure 5: An example data warehouse.

Conceptually, the multidimensional model forms an n-
dimensional data cube where each dimension is a sep-
arate axis of the cube [20]. OLAP operations, such
as roll-up or drill-down, provide the means to navigate
along the dimensions of a data cube.

While OLAP systems have the ability to answer “who?”
and “what?” questions, it is their ability to answer
“what 1f?” and “why?” that sets them apart from

Database Management Systems [13]. OLAP enables
decision-making about future actions. A typical OLAP
calculation is more complex than simply summing data,
for example: “What would be the effect on suit costs if
fabric prices went down by 0.20/inch and transportation
costs went up by 0.10/mile?”

OLAP tools provide managers with the information
they need to make effective decisions about an orga-
nization’s strategic directions. The key indicator of a
successful OLAP application is its ability to provide in-
formation as needed, i.e., its ability to provide “just-
in-time” information for effective decision-making. Fur-
thermore, due to the fact that data relationships may
not be known in advance, the data model must be flex-
ible. A truly flexible data model ensures that OLAP
systems can respond to changing business requirements
as needed for effective decision making.

Although OLAP applications are found in widely diver-
gent functional areas, they all require the following key
features [13, 2].

e Multidimensional view of data, which provides
more than the ability to “slice and dice”; it gives
the foundation for analytical processing through
flexible access to information. Database design
should not prejudice which operations can be per-
formed on a dimension or how rapidly those oper-
ations are performed. Managers must be able to
analyze data across any dimension, at any level of
aggregation, with equal functionality and ease.

e Calculation—intensive capabilities. OLAP
databases must be able to do more than simple ag-
gregation. While aggregation along a hierarchy is
important, there is more to analysis than simple
data roll-ups. Examples of more complex calcula-
tions include share calculations (percentage of to-
tal) and allocations (which use hierarchies from a
top-down perspective).

e Time intelligence. Time is an integral compo-
nent of almost any analytical application. Time is
a unique dimension because it is sequential in na-
ture (January always comes before February). True
OLAP systems understand the sequential nature
of time. Business performance is almost always
judged over time, for example, this month vs. last
month, this month vs. the same month last year.
In addition, OLAP systems are designed to rea-
son about increments of time that lie in a partial,
rather than total order. For example, years may be
divided into both months and weeks where Week 5
is not in any order relationship (<, = or >) with
Month 1.

OLAP systems offer the data analyst tools to view, nav-
igate and analyze data at different levels of abstrac-



tion. Abstraction is done using dimensions which pro-
vide ways of grouping data to hide unnecessary detail.
Aggregation of numerical measures permits information
from the more detailed data to be effectively summa-
rized. A data analyst may, for example, sum—up sales
values of all days of 1995 to see the yearly sales and,
furthermore, compare them with those of 1994. If ab-
normalities are present in the totals, she may drill-down
again, and view monthly, even individual sales again in
order to figure out the cause of the problem.

4 RECASTING OLAP

From this discussion, a number of clear similarities and
differences between OLAP and reverse engineering can
be identified. Both aim to provide powerful visualiza-
tion and summarization techniques for analysis and de-
cision support. However, reverse engineering has fo-
cussed on graphical data while OLAP has focused on
(flat) business data. In this section and the next, we
address the following dual questions.

e Can reverse engineering benefit from OLAP tech-
niques and perspective?

e Can OLAP benefit from reverse engineering tech-
niques and perspective?

We first turn our attention to the task of enhancing the
reverse engineering process using OLAP techniques. We
will show in Section 5 that such a marriage will address
some of the well-known limitations of reverse engineer-
ing tools that have been pointed out in the literature
[5] and provide new opportunities for extending reverse
engineering tools. However, before such a union is pos-
sible, we must address some important limitations in

OLAP.

Multidimensional View of Graphs

OLAP techniques are designed to work over a flat base
table of facts. The relationships between facts, that
is the potential groupings, are captured in dimensions.
These dimensions represent abstractions over the base
data. This is in contrast to software data which has
(often numerous) inherent graph structures. There may
be a graph structure in both the base facts (for example,
information about function calls) and in the dimensions
themselves (for example, directory inclusions).

To illustrate this, consider a data warehouse of mod-
ule dependency graphs [23]. The graphs may be mod-
eled by a table of nodes representing modules together
with their descriptive attributes (perhaps version num-
ber, owner, parameters, etc.) and a table or set of tables
representing edges, that is dependencies between mod-
ules. Call information may be modeled by a table with
the identifiers for the calling and called modules along
with descriptive information about the call (perhaps its
location, parameter bindings, etc.) A portion of this

information is depicted in Figure 6. This schema 1s just
a portion of a rich model of program semantics used
to structure information gleaned by reverse engineering
tools.

(a) time dimension (b) subsystem dimension

| version | |moduleid, lineno

Function calls' fact table

|m0duleidl, moduleid2, version, location, bindings |

Figure 6: Multidimensional Model for Function Calls.

In addition to standard OLAP dimensions, the graph,
which is encoded in the edge relationships of a fact ta-
ble, plays an important role in aggregating and group-
ing information. For example, an analyst may request
all modules reachable from a specific Module M, then
drill-down into this information following additional call
links. A key benefit of using a multidimensional model
is that the resulting data can be grouped by any com-
bination of dimensions.

Ezample from Case Study

Suppose that a user has drilled-down in the Apache data
and has created the view of Figure 3. Rather than sort-
ing through all this data visually, using OLAP the user
can request to see this data aggregated by the subsystem
wn which each of the called functions resides or by the
function’s owner or by any dimension of the data. Fur-
thermore, arbitrary filters can be applied to the data or
dimensions to select sub-cubes of the data.

Dynamic Dimensions

A number of dimensions may be provided over soft-
ware data. The dimensions may include tables encoding
the total or partial order among versions, the hierarchy
of file inclusions (encoding the directory structure), or
architectural abstractions encoding the actual or dis-
covered system architecture. Many of these dimensions
may be encoded in fixed sets of tables as done in stan-
dard multidimensional models. However, some dimen-
sions may not have a fixed depth. For example, the
version information may not have a fixed (or bounded)
number of levels. As a result, it may not be possible to
encode this information in a fixed set of tables where
each table represents one level of the dimension. How-
ever, such a representation is required in standard mul-
tidimensional models [37]. These models assume that
while facts may change dynamically, the structure of
dimensions are relatively static (both in dimension val-
ues and their relative orderings). Clearly, this is not the



case in software data where new dimension values and
new levels within dimensions may be discovered as part
of the reverse engineering process.

Current multidimensional models view dimensions as
first class objects in the query language [25]. This per-
mits flexible, data independent querying of dimensions.
However, they require that dimensions be modeled as
separate tables with each level in a dimension repre-
sented by a single table. To permit the use of arbitrary
graphs as dimensions and to permit the use of graph
structures within fact tables, we have made two exten-
sions to the multidimensional model [1].

e We permit a single dimension table to represent
multiple levels of a dimension. For example, in Fig-
ure 6, the subsystem table can represent an arbi-
trary number of levels of a subsystem hierarchy (or
general graph). The dimension is encoded as a set
of edges.

e We permit references between or within fact tables
(in object-oriented terms, object identifiers and in
relational terms, foreign keys) to be used to model
dimensions. For example, the edges of the calls
fact table can used as a dimension for grouping
data.

Note that these changes represent a pivotal change in
the way data is viewed in OLAP, a change required by
and indeed inspired by reverse engineering. In OLAP,
the goal of analysis is the understanding of business data
represented in the fact table(s) and dimensions are rela-
tively static tools for arriving at this understanding. In
reverse engineering, the goal is to discover (or help the
user create) new abstractions for organizing the data.
Hence, these abstractions by their very nature must be
dynamic and evolving.

Summarizing Data Without Measures

The computation and visualization of aggregations over
numerical values or measures lies at the heart of OLAP
systems. Queries are posed to find out totals, aver-
ages or numerical trends in data. Browsing is a means
of arriving at the numerical summaries of interest. In
contrast, in reverse engineering aggregations are used
to help in browsing, locating information, and in un-
derstanding the data and underlying software system
[22]. Measures may be missing or simple counts (lines
of codes or number of qualifying functions) over which
OLAP style statistical computations are not meaning-
ful. Measures may also be textual and aggregation op-
erations may be simple set operators. For example, in-
stead of finding the average number of data types used
by a set of functions, the measure may be the union (as
a set) of all data types used. In either case, the group-
ings themselves, not the aggregates, are the focus. This
difference was also noted in Web-based applications and

in multimedia applications where aggregations are used
as the “navigational vehicle” for finding and organiz-
ing relevant data [34]. Although the OLAP operators
(drill-down, roll-up, slicing and dicing) can be used for
both styles of applications, the use of these operators
for interactive data browsing requires new query rewrit-
ing and evaluation techniques. Our previous work on
IBM’s Data-Web project has addressed these issues [34]
and the query rewriting strategies have made their way
into the marketplace [10]. The key insight in this work
is that data abstractions (for example architectural ab-
stractions of a software system) are made interactive.
The interactive hierarchical visualizations of Data-Web
are similar in spirit to the point and click interface of
reverse engineering tools. However, the former permit
the expression of arbitrary data cube style selections
and operations [34].

Ezxample from Case Study

Suppose a user is overwhelmed by the number of objects
n a selected view, for example the view of Figure 3. She
selects a dimension over which to perform the grouping.
The system automatically writes a query to aggregate
this data over the selected dimension. Suppose the sub-
system dimension s selected, the query result, contain-
g a set of subsystems, is displayed. By clicking on
one of these subsystems, say S, the user can see all the
functions in S that call ap_check_cmd_context(). So
the interactive style of reverse engineering tools is re-
tained. The benefit is that this query rewriting is done
automatically by the system. Any OLAP query can be
specified in this way.

Furthermore, the warehouse wuses 1its knowledge of
the query answer to choose the best rewriting.
In this example, if dozens of functions that call
ap_check_cmd_context() are contained in S, the ware-
house will not choose to return a cluttered view of all of
these functions. Rather, the rewritten query will include
an aggregation on the next level of the chosen dimen-
ston (in this case subsystem). So the response will have
a list of subsystems of S each of which contains one
or more functions that call ap_check_cmd_context().
Before drilling-down further, the user can view any ag-
gregates available on these collections (perhaps number
of functions, data types used, etc.)

From Hierarchies to Graphs

Note that we permit general graphs as dimensions.
Hence, the OLAP operators may be applied to the
graph structures (such as dependency graphs) of soft-
ware data. In standard OLAP, dimensions must be hi-
erarchies (or in some proposals lattices). To ensure the
OLAP operators retain a meaningful (and intuitive) se-
mantics, we do not permit the application of some nu-
merical aggregates over dimensions that contain cycles.
However, many aggregates of interest in reverse engi-



neering (such as taking the union of textual attributes)
remain meaningful over such dimensions. The full se-
mantics of our extended model are presented in [1].

5 RECASTING REVERSE ENGINEERING
We now examine an integrated scenario where reverse
engineering tools are coupled with a data warehouse.
The data extracted and managed by the reverse en-
gineering tool is modeled using the multidimensional
model of Section 4 and the warehouse’s OLAP facilities
are used to support the data analysis required within
reverse engineering tasks. We have built a prototype
warehouse that manages data extracted by reverse anal-
ysis tools [1]. Our prototype uses IBM’s solutions based
on DB2, but it relies only on warehouse functionality
that is common to most major vendors [7]. The model
extensions proposed in Section 4 can be implemented
by query and dimension rewrite facilities on top of the
warehouse. This architecture addresses the following
major shortcomings of current reverse engineering tech-
nology that have been cited in the literature [5].

View Management

Views are used in reverse engineering to permit a user to
select a subset of data of interest to her and a specific or-
ganization for that information. Views may help in un-
derstanding and conceptualizing the system. Views also
provide for flexible data independence permitting differ-
ent users to customize their own view of the data and
hiding physical and logical changes in the data struc-
ture.

Ezxample from Case Study

Returning to Figure 6, a user may select modules that
call a specific function ap_check_cmd_context() and
request that only the function id’s and their file be re-
turned (that is, other attributes should not be displayed
as they are not of interest).

Such a query can be formed using the Query-by-
Example forms interface of the warehouse so the user
need not know SQL or the underlying query language
of the warchouse. This query, and optionally its re-
sults, can be saved as a view. Other views, including
for example a second view containing all modules that
call the function missing_endsection() can also be
stored in the system. There are clear advantages to us-
ing the view facilities of the warehouse rather than a
scripting language such as Tcl (used in Rigi) or a pat-
tern matching language like Grok (used in PBS). Ware-
house view languages are relationally complete permit-
ting the expression of any subset or reorganization of
the data. Furthermore, these languages have been ex-
tended to support the pattern matching (regular expres-
sion) style predicates that are often required in software
engineering. This addresses a major shortcoming of cur-
rent reverse engineering tools that support only a fixed

set of commonly used views. Using declarative views,
rather than procedural scripts, the underlying DBMS
can optimize and efficiently evaluate views and compo-
sitions of views. This is particularly important for large
complex views. Declarative views are composable and
reusable. Any view can be queried and used in future
queries 1n a transparent way. Furthermore, the results
of a view can be used to more efficiently evaluate sub-
sequent queries using the materialized view facilities of
the warehouse [37].

Classifications

Classifications are groupings of low-level information
into more abstract architectural objects [4]. Numerous
proposals exist for developing classifications including
(semi-)automated techniques based on concept analy-
sis [32, 39, 40], clustering [3], or graph algorithms [26].
An important common trait of all these approaches is
that the groupings they produced, whether flat group-
ings of functions into modules or hierarchically related
groupings, can all be represented as dimensions in our
multidimensional model [1]. These dimensions can then
be compared and browsed using OLAP operators.

Ezample from Case Study

Concept analysis has been used in reverse engineering
to group modules that are marimally stmilar based on a
selected set of attributes [32, 39, 40]. More precisely,
a concept 1s a set of objects O that share a specific
set of attributes A, such that there are no other ob-
jects possessing all the attributes of A. This analy-
sis produces a hierarchical grouping of modules. Ap-
plying concept analysis using attributes that describe
a function’s use of user-defined data types, we might
discover a concept that includes all functions that use
the data type hlink front. This concept may con-
tain hundreds of functions. Selecting this concept,
then drilling-down, the user would see a set of sub-
concepts. For example, there may be three sub-concepts:
the first representing all functions that use both the
hlink front and hlink end data types; the second
representing all functions that use hlink front along
with slink front; and the third representing all func-
tions that use hlink front, file front, file_end,
dir front and dir_end.

The result of this analysis can be stored as a new di-
mension over modules. Hence, our proposed extended
multidimensional model provides a consistent way to
integrate the results of different analyses and classifi-
cations, including classifications developed manually by
software engineers. Furthermore, users can explore and
compare these classifications using powerful OLAP op-
erators. All of these automated techniques are making
use of syntactic information to deduce classifications.
As a result, they all require semantic validation by a
software engineer. The interactive modeling framework



we have presented provides a natural way for introduc-
ing and validating semantics and introducing domain
knowledge.

In current tools, it is difficult to relate automatically
generated classifications with those provided manually
[5]. As a result, these tools do not offer the ability to
produce a comprehensive picture of the whole system.
Views that aggregate (group) previously discovered ag-
gregations or classifications have to be generated manu-
ally in most cases [4]. In our proposal, all classifications
are modeled and queried in an integrated way permit-
ting the seamless integration of new classifications and
abstractions.

Version Management

In their survey of reverse engineering tools, Bellay and
Gall criticize all the tools for not providing the ability to
reason about different versions of a system [5]. A soft-
ware engineer is unable to view and compare different
versions of the same program using these tools. Using
our proposed architecture, version information is mod-
eled as a natural dimension of the data. This permits
any analysis to be done on a single version or across
different versions of a system.

Ezxample from Case Study

The original or intended structure of a system may
be revealed by analyzing how classifications change
through different versions of a system. Simple exam-
ples of time analysis include asking which functions call
missing endsection() in version x of Apache but not
in version y. More complexr examples include aggregat-
ing data across multiple dimensions, including the ver-
sion dimension. Continuing our example using concept
analysis, suppose we have performed concept analysis
on a version of the system. The concept lattice forms a
classification or abstraction of the system. To judge the
validity of the concepts, software metrics can be applied
to the sets of functions within each group to measure
the cohesion or complexity of the resulting group [32].
For example, suppose we have discovered there is an in-
teresting concept representing all functions that access
the data structures hlink front and hlink end. 7o
further test the validity of this concept, we can use the
concept dimension together with the version dimension
and apply these same metrics to the different versions
of these functions.

From “What?” to “What If?”

So far we have been considering using filters and views
to answer specific questions about the properties of the
data. However, OLAP systems also have the ability to
answer speculative questions. In particular, a user can
perform an analysis on arbitrary subsets of the data or
export these subsets for analysis by an external reverse
engineering or mining tool.

Ezxample from Case Study

Researchers have reported some success in using concept
analysis to reverse engineer a modular (object-oriented)
class structure from legacy code. However, studies on
large systems have shown that this technique, by itself,
will generally not reveal a tidy architectural abstraction
for a large, legacy system [30]. Nevertheless, concept
analysis can reveal structure where it exists and identify
tangled piece of legacy code that require more manual
analysis [32]. An example of a tangled concept is one
containing hundreds of functions which cannot be de-
composed into sub-concepts. Upon identifying such a
concept, a user can use the OLAP operators to view the
functions along different dimensions. This analysis may
reveal that by ignoring one data type (perhaps a ubig-
uttous data type or a data type that has been used by
different developers for different purposes), there may
be a more natural classification or abstraction of the
system. To confirm this hypothesis, the user can re-
quest all data about these functions (or the system as a
whole) excluding the suspect data type. Concept analysis
(or any reverse engineering analysis) can be performed
on the resulting data. The new concept hierarchy can
be imported as a new dimension and compared to other
classifications.

Although our examples have focused on concept anal-
ysis, similar results hold for classifications deduced by
other automated techniques including hierarchical clus-
tering [3].

Additional Features
There are a number of other properties of our integrated
architecture that, we outline briefly.

e Extensibility and Data Exchange We have al-
ready discussed the extensibility of the view archi-
tecture. In addition, our proposal supports the easy
exporting or exchange of data between tools. This
issue has received a great deal of attention recently
including an ICSE 2000 Workshop on Standard Ex-
change Format. Warehouses typically support a
number of features to permit the exchange of both
relational and XML data. In particular, export fa-
cilities of our warehouse permit the software anal-
ysis data to be exported in XML. To support true
tool integration however, this is not sufficient. Each
tool requires data in a specified format or schema.
The warehouse schema and data must be mapped
and transformed into the required tool format. We
have experimented with the use IBM’s Clio schema
integration tool to perform this integration [33].
The promising results of this study are reported

elsewhere [33].

e Scalability Reverse Engineering tools use plain
files or database management systems (DBMS) to
store the artifacts and data generated by the parser



[5, 4]. Even tools that store low level compo-
nent data within a DBMS, often represent views
and view definitions in data structures or files and
scripting languages (respectively) external to the
DBMS. These structures are large and cumbersome
to manipulate and compose. By storing views as
first class objects within the DBMS, we are able to
store and manipulate these views efficiently.

e Data Visualization Software reverse engineering
tools provide sophisticated graph visualization fa-
cilities. However they have been criticized for the
paucity of other styles of reports supported. Our
integrated architecture permits the combination of
graph-based visualizations with the spreadsheet-
like visualizations of the warehouse. Our expe-
rience comparing the often cluttered graphs pro-
duced by tools (for example Figure 2), is that for
views with large numbers of objects, flat textual
representations may, for some tasks, be easier to
manipulate than their richer graph-based counter-
parts. On the other hand, graph representations
are indispensable for abstract views of the data and
for views of smaller, more manageable components.

6 RELATED WORK

Reverse engineering and program comprehension tasks
are often accomplished using direct manipulations of
graph structures and graphical representations of source
code [15, 9]. Properties of these graphs are used to break
the source code into modules and subsystems leading to
natural groupings of the initial system. The benefits
of using data management systems in support of these
tasks are well-known [6, 31, 36, 27]. The work done on
the BRIDGE Project [27] demonstrated how database
management systems can help in the consolidation of
diverse metadata information related to a legacy sys-
tem in order to support the migration of such a sys-
tem. However, apart from a visual, Excel-like, inter-
face there is no definition of a full query language that
helps maintainers and developers to navigate through
the meta-data. Furthermore, the BRIDGE work did
not present a model for dynamically evolving the seman-
tic model as new knowledge and program abstractions
are created. We have provided such a model and have
shown how an evolving semantic model of the program
can efficiently and effectively be queried and managed.
Our own work on the Assay Project [21] also uses data
warehousing but this work did not explore the use of
OLAP specifically. The use of abstraction and aggre-
gation in reverse engineering have been proposed based
on the Tarski Relational Algebra [22]. The operators
of this algebra can be expressed by the OLAP opera-
tors we proposed. Our work and others have explored
both the value and in some cases limitations of incor-
porating data mining techniques in reverse engineering

[32, 14, 39, 30, 16]. However, this is the first systematic
study of where data warehousing and OLAP techniques
meet the challenging data management requirements of
reverse engineering and where they fail.

7 CONCLUSIONS

We have identified limitationsin the data modeling tools
of OLAP that must be addressed to meet the data man-
agement requirements of reverse engineering. Specifi-
cally, multidimensional models assume that while facts
may change dynamically, the structure of dimensions
are relatively static. We showed both why this is re-
quired in current OLAP solutions and provided new
solutions that effectively manage dynamic dimensions,
including dimensions that involve general graph struc-
tures. We demonstrated how OLAP techniques can ben-
efit from viewing these abstractions of data as dynamic,
important components of the analysis process.

We also identified limitations in reverse engineering
paradigms that can be addressed by using the flexible
data modeling techniques of OLAP. We showed how
these limitations could be overcome and the ensuing
benefits from building reverse engineering tools on a
solid data analysis foundation. Our approach comple-
ments reverse engineering tools by providing a powerful
mechanism for integrating, manipulated and managing
their results.
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