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a b s t r a c t

The management of text data has a long-standing history in the human mankind. A particular
common task is extracting relations from text. Typically, the user performs this task with two
separate systems, a relation extraction system and an SQL-based query engine for analytical
tasks. During this iterative analytical workflow, the user must frequently ship data between
these systems. Worse, the user must learn to manage both systems. Therefore, end users often
desire a single system for both analytical and relation extraction tasks.

We propose INDREX, a system that provides a single and comprehensive view of the whole
process combining both relation extraction and later exploitationwith SQL. The system permits
a data warehouse style extract-transform-load of generic relations extracted from text
documents and can support additional text mining analysis libraries or systems. Once generic
relations are loaded, the user can define SQL queries on the extracted relations to discover
higher level semantics or to join them with other relational data.

For executing this powerful task, our system extends the SQL-based analytical capabilities
of a columnar-based massively parallel query processing engine with a broad set of user-
defined functions and a data model that supports this task. Our white-box approach permits
INDREX to benefit from built-in query optimization and indexing techniques of the under-
laying query execution engine.

Applications that support both text mining and analytical workflows leverage new analytical
platforms based on the MapReduce framework and its open source Hadoop implementation.
We compare our system against this base line. We measure execution times for common
workflows and demonstrate orders of magnitude improvement in execution time using INDREX.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

From the earliest days of computers, the analysis of textual
data has been a fundamental application that has driven
research and development. As the Internet has become amass
medium, searching text data has become a daily activity for
everyone, from children to research scientists. On the other
ilias),
hand, hundreds of millions of active users generate searchable
content in online-forums, blogs and wikis, while news stories
appear in a plethora of platforms, from traditional news
outlets (e.g. Reuters) to social media (e.g. Twitter). Consider
the following analysis demand by journalists:

While browsing historical news articles, an editor wants to
perform research with respect to the sentiment of news stories
and how it has evolved over time. She wants to initially extract
names of journalists, dates and story titles, filter them by subject
(e.g. health or economy) and associate (join) them with informa-
tion that exists in external dictionaries. A next step may involve
the grouping of the stories across time and subject. Finally, she
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may want to identify the most often discussed reason for the
sentiment of specific stories.

For executing the aforementioned query, the ideal system
needs to spot words that may represent sentiment. It needs to
verify these words with information about known sentiment
orientation, such as with values from an in-house relational
data. Next, the system extracts all sentences that contain
additional information about such a sentiment as well as the
news categories and persons involved. This information does
not exist yet in the in-house relational data. Finally, the
system loads all information into a SQL-based relational DBMS
and executes aggregations and grouping statements.

Similar queries and demands might arise from sales
departments (monitor and identify leads that soon will
buy a car), human resources (identify professionals with
capabilities in text mining), market research (monitor the
effectiveness of a campaign), product development (incor-
porate feedback from customers into the development
process) as well as from the medical domain (anamnesis).

1.1. Problem statement

Neither Web search engines nor data warehouse sys-
tems support such analytical query workflows over both
textual data and relational data. Therefore, most content
producers, mostly the ordinary end-consumers but also
other kinds of commercial knowledge workers, are not
able to drill down into that intrinsic “knowledge” yet.
Having relational information from text data available,
with low costs for extracting and organizing it, provides
knowledge workers and decision makers in an organiza-
tion with insights that have, until now, not existed.

Managing text data vs. relational data: Managing text
data differs fundamentally from managing relational data,
i.e. data stored in relational tables. The first difference is
the data model: text data is represented as bag-of-words,
sequences of lexico-syntactic expressions or as depen-
dency trees, while relational data always represents
multi-sets. This model heterogeneity evolved over many
decades and resulted in many different systems, which is
the second difference. Currently, mature systems exist for
either managing relational data or for extracting informa-
tion from text. As a result, the user must ship data between
various systems for executing necessary transformations.
Moreover, transforming textual data in a relational repre-
sentation requires glue and development time to bind these
different system landscapes seamlessly. Finally, domain
specific information extraction is an iterative task. It
requires to continuously adopt extraction rules and accom-
panying semantics by both the extraction system and the
database system. A result from the above discussion is that
many projects that combine textual data with existing
relational data may likely fail and/or be infeasible.

Query execution model for in-database relation extrac-
tion. In this work we overcome these system and model
barriers. We propose the INDREX system that enables users to
describe relation extraction tasks across documents and
relational data with SQL, for the first time. For executing this
task, INDREX users issue queries written in SQL on top of
loaded base tables. These queries transfer generic candidate
relations into semantic meaningful relations that can be used
further in OLAP or other SQL-based applications. Once generic
relations are loaded, the user can define SQL queries on the
extracted relations to extract higher level semantics or to join
them with other relational data.

Design requirements for INDREX : The evolution of INDREX
is based on four essential design requirements.

Design requirement 1: INDREX should provide a single
schema for loading relations from an Open Information
Extraction (OIE) system.

Open information extraction extracts generic relations
and their arguments from sentences in natural language
text. Ideally, INDREX should provide a schema that will
permit loading and storing such relations from any OIE-
system. Later, the user may join generic relations, for
example extracted from news stories, with domain specific
relational data, such as news categories, journalists, geo-
graphical locations or politicians.

Executing such joins in short time is extremely helpful
for adopting relations from a domain independent OIE
system to a particular domain. A particulary helpful join is
the theta-join, which covers all kinds of non-equality joins,
such as joins that use regular expression (regex) condi-
tions, joins that use LIKE predicates or other text similar-
ity joins. This leads to our second design requirement.

Design requirement 2: INDREX should provide joins and
other integration operations for adopting generic relations
from an OIE system with potentially existing domain specific
relational data.

Generic relations often do not provide key attributes.
Therefore, the user must often formulate complex and
potentially expensive theta joins. Moreover, values of join
attributes may be homonymous, synonymous or may
entail other attributes. Therefore users need to iterate
multiple times over the join statement until the result
shows a sufficient precision and recall. Next, often users
desire to learn about the variety of join predicates from
analyzing large data. However, text-based information
follows a Zipfian distribution; a large data set includes a
significant higher variance in textual expressions for the
relation extraction task that a small sample could often not
provide. For fulfilling these requirements the query pro-
cessor of INDREX must leverage query optimization and
indexing techniques, such as pipeline/task parallelism,
data parallelism or instruction level parallelism. This leads
to our third design requirement.

Design requirement 3: Text data follows a Zipfian dis-
tribution. INDREX should be able to iteratively process data
with such distributions and should provide answers to
queries over millions of documents within seconds.

The lingua franca of end users for analytical tasks on
structured data is the structured query language, namely
SQL. Millions of users have been trained to express their
query demands in this declarative language. In addition,
many applications update and retrieve data in an automated
fashion with one of the SQL dialects. In contrast, the
community of natural language processing (NLP) has not
managed to standardize a core language for writing informa-
tion extractors. Rather, this community relies on academic
initiatives, such as GATE [18], commercial languages like
AQL [14] or DIAL [28], integration frameworks like UIMA
[29], RUTA [36] or in-house extractors based on regular
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expressions, R, Python or Java. Ordinary SQL developers will
often not be willing to learn and understand the differences
and flavors of these abstraction principles. Rather, INDREX
must hide the variety of different extraction frameworks
through a single SQL based query interface. Our last design
requirement is the following:

Design requirement 4: Empower end-users with SQL
support for analytical tasks on text.

1.2. Our contributions

The INDREX system implements the data model from
our previous work in [35]. This paper extends these
preliminary findings significantly in the following areas:

Data model for relation extraction and analytical extrac-
tion workflows: We propose a data model that permits
transformation operators to store, retrieve and combine
text data with relational data. Our work extends [35] with
an implementation for column-based query engine.

Operator formalization: Finding the right abstraction for
expressing relation extraction tasks from text with SQL is a
difficult task. We asked experienced SQL users to express
their information demands in pseudo-SQL. Our user study
revealed many missing query types for processing text
data on top of a SQL-based query processor. We structure
them into local queries, joins with existing relational data
and aggregation queries. For these query types we rigor-
ously formalize our operator design. This formalization
permits the application of our abstractions to many system
architectures.

White-box design of missing operators in Hadoop and in
Cloudera IMPALA. Applications that support both text mining
and analytical workflows leverage new analytical platforms
based on the MapReduce framework [20], for example IBMs
SystemT on Hadoop [9]. As a proof of concept we implemen-
ted as a base line system the INDREX query capabilities for a
Hadoop-based infrastructure where users can formulate ana-
lytical queries with Pig Latin [44]. In addition, we extended
the SQL-based analytical capabilities of Cloudera IMPALA, a
columnar-based massively parallel query processing engine
with a broad set of user-defined functions. Our white-box
approach permits INDREX to benefit from built-in query
optimization and indexing techniques of each underlying
query execution engine.

Benchmark proposal and extensive experiments: We are
not aware of any benchmark for relation extraction and
joining tasks within the same RDBMS. Therefore another
contribution is the proposal of a suite of business-oriented
queries for typical enterprise tasks across text and rela-
tional data. The queries and the data populating the
database have been chosen to have broad industry-wide
relevance. This benchmark illustrates text-based decision
support systems that execute queries with a high degree of
complexity. We report on the feasibility of INDREX for
both implementations, the Hadoop-based implementation
and the Cloudera IMPALA based implementation.

The rest of this paper is organized as follows: in Section 2,
we review the relation extraction stack, describe the iterative
relation extraction process and review existing work on
batch-based relation extraction. Section 3 briefly reviews our
data model from our work in [35] and discusses our
extensions. In Section 4, we unravel common SQL patterns
for the relation extraction task and formalize operators. In
Section 5, we define a query benchmark and report from our
extensive experiments. Finally, in Section 6, we summarize
our work. The appendix of this paper contains our benchmark
queries.

2. Related work

We abstract the task of relation extraction as an iterative
multi-label multi-class classification task. Given a set of docu-
ment-specific, surface, syntactic, deep syntactic, corpus-speci-
fic and domain-specific features the classifier determines
occurrences in text (such as sequences of consecutive and
non-consecutive characters and tokens) that likely represent
a relationship of a particular semantic type.

In this section, we present relevant work around algo-
rithms for computing required features and interactivity for
adopting these features to a domain. Finally, we present
existing RDBMS techniques for executing this task.

2.1. Understanding relation extraction

For identifying natural language features and their inter-
play (aka. conditional dependencies) the complex task of
relation extraction requires several base extraction function-
alities that depend on each other: first, the software needs to
recognize document specific structures. Here, we focus on
document structures that include natural language sentences
and paragraphs. From these common structures the software
will extract shallow syntax, deep syntax [7] and open
information extraction [25]. Given these syntactic structures
the software can determine un-typed binary [25], and higher
order [17,2], candidate relationships and arguments. Next, the
system clusters likely synonymous relationship candidates
with the help of corpus specific distributions into the so-
called synsets [3,43,33]. Finally, these synset clusters are
further adapted towards the target schema through appro-
priate human interactions. A system could implement these
domain adaptation procedures through active learning [46], or
through rule writing environments [14]. In both cases, the
human requires to overview corpus-wide distributions to
learn common signals for the target domain.

2.2. Iterative domain adaptation process

Discovering relationships is an iterative task that involves
lookup, learn and explore activities. This simple abstraction
was recognized and published first by Bloom in 1956 [10].
Later, different disciplines enriched this abstraction model.
Authors of [45] refined lookup activities into navigational,
informational and transactional ones. Furthermore, the work
in the context of service search by [42] gives example
operators for each activity. For instance, the author considers
aggregation, comparison and integration as activities for learn
and analysis, exclusion and transformation as activities for
explore. Most recently, authors of [6] apply the original ideas
of Bloom to the problem of exploratory data and text mining.
Given our stack from Fig. 1, we abstract this process into a
step of an initial sequence of document and language specific



Fig. 1. Transformation steps for relation extraction. For the task of domain dependent relation extraction, we abstract document and language adaptation
as a linear process and domain adaptation as an interactive and iterative process. This abstraction is true in most scenarios where non-NLP experts bring in
domain knowledge on a fixed corpus. In scenarios where the goal is to improve NLP techniques, these domain dependent interactions may also trigger
learning tasks on the syntactic and document specific layer; for example, authors of [41] consider human click behavior for retrieving only fact-rich
documents and authors of [30] consider human click behavior for adapting a part-of-speech tagger.
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transformations and an iterative process of domain specific
abstraction transformations.

2.3. Declarative relation extraction

Declarative relation extraction enables domain experts
to adapt existing and create new extraction rules. This way,
similar to SQL and RDBMS technology, the system takes
care of optimizing the declarative query. As a result, the
domain expert can focus on the task of domain adaptation
only. Moreover, some declarative languages have a similar
syntax as SQL, therefore these languages often do not
require an expensive training phase for most analysts.

Batch-based document-by-document extraction: Authors of
UIMA [29] describe a software architecture for Unstructured
Information Management. Similar to the staging area in a data
warehouse, they define roles, interfaces and communications
of large-grained components essential for transformation steps
in natural language processing. Authors of [37] were among
the first to recognize the power of declarative languages for
NLP domain adoption tasks. They propose an SQL-like lan-
guage called AQL that is based on the principle of a span,
which is basically an occurrence of a string in a document with
a single or multiple semantic meaningful labels. Humans can
define AQL extractors through rules. An engine called System-T
executes these rules. The AQL language provides user defined
functions and predicates for comparison and combination of
multiple spans. These functions and predicates enable the
users to combine multiple basic extractors into a combined
and complex extractor. Contrary to INDREX, System-T executes
AQL queries per document only and in a batch mode. For
joining extracted data with domain specific data the System-T
materializes its output to the HDFS. Next, the user needs to
define a join condition, such as in the data flow description
language JAQL and the JAQL compiler reads the data from the
HDFS, executes the join on top of the Apache Map/Reduce
framework and persists the result in the HDFS again. Finally,
the user may load the data from the HDFS into a RDBMS. This
approach requires from the user to manage three systems,
IBMs System-T, IBM's JAQL language and the RDBMS. More-
over, the user must wait minutes to hours until a map/reduce
job is finished and the data is loaded in the RDBMS. Another
standard system is GATE [18]. It provides a set of annotators, a
language called JAPE that is based on cascading grammars for
combining annotations and a batch-based, document oriented
processing system. GATE runs on a remote ‘cloud’ platform or
in a local java environment. Analogue to System-T, the GATE
user must learn tomanage different systems and needs to wait
minutes to hours until a result of a query is visible.

INDREX overcomes the important limitations of batch-
based implementations on top of map/reduce execution
platforms by executing the domain specific information
extraction task inside the database system while still
leveraging the power of a declarative query language.

Optimizations for text-joins: The authors of SQOUT [34]
assume existing extractors that create views where each view
represents the textual content that describes tuples of a single
relationship type in the text. The user can integrate these
views with select–project–join queries, while the SQOUT
system optimizes join processing. We consider the SQOUT
system as an orthogonal optimization for a specific join
scenario that might further speed up query processing for
NLP tasks in a RDBMS. Authors of [23] propose another join
optimization and join selection strategy, while authors of [13]
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discuss optimization strategies for main memory databases
and Hadoop clusters. Finally, authors of GRAFT [8] propose
another set of scoring-based optimization strategies in the
presence of an index.

All-in-one-system: Most similar to our work is the
system proposed by the authors of [47]. Their work is
based on the semi-structured data model and proposes a
parse tree database where they hold dependency tagged
sentences and a query language for selecting subtrees that
likely indicate a relationship. For fast retrieval of relevant
subtrees they use an additional key value index called
Lucene. Hence, they still use a separate indexing system
and a home-grown query parserm called PTQL, on top of
the index and a standard RDBMS. In contrast, the abstrac-
tion in INDREX is based on the relational data model that
allows us to leverage the full spectrum of existing RDBMS
and data warehouse technology, including main memory
and distributed databases with existing adaptors for data
integration for a large number of text data sources. More-
over, the INDREX user does not need to learn a new query
language but can continue with SQL. Finally, the INDREX
user can utilize views and can use built-in technologies to
grant rights for abstracting and protecting data inside
the RDBMS.

3. Data model

The nature of human language allows us to use a wide
vocabulary of words to express meanings. Consequently, any
RDBMS that processes these words to extract meanings and
relations needs to be open for new words, such as words from
open classes like verbs, nouns, adjectives or adverbs. Moreover,
the system should also permit the user (or an application) to
assign new meanings to these words. Such an assignment is
basically an interval query to a sequence of text. For instance,
we could denote the interval of the characters from the last
sentence with the type document:sentence. Hence, the system
must represent these intervals and assigned types. Finally, the
system must permit the user (or the application) to map
intervals and assigned types to a relation, like the relation
PersonCareerAge(Person, Position, Age).

In the remainder of this section we review our data
model from [35] that fulfils these requirements. Our model
represents plain text as well as intervals, assigned types
and relations that can be extracted from plain text, such as
intervals in text that represent a relation argument or a set
of arguments that may represent a relation. Moreover, the
model is flexible enough to hold additional important
structures for the relation extraction task, such as docu-
ment structures, shallow and deep syntactic structures,
and structures for resolving argument values across docu-
ments that may represent the same logical object.

3.1. Formalization

Our model uses the relational data model with three
data types, namely spans, annotations and relations, which
we explain below.

Character and segment spans: Each document, such as an
email or a web page, consists of one or more strings. Each
string represents textual data as a sequence of characters. We
use the term character span to mark intervals of such a string:

Definition 1. A character-based span (csp) consists of the
string ID, strIDASID, together with the positions of the first
character, b, and the last character, e. We denote a character-
span as the 3-tuple csp¼ ðstrID; b; eÞACSP, where

CSP¼ fðstrID; b; eÞJstrID; b; eAN and
0rbreo lengthðstrIDÞg

In practice, a user-defined function may split the string

into meaningful segments. One example is a tokenization
function for the English language, which will spilt the
string representing this sentence into tokens, such as
{“One”, “example”, …}. Often, applications and users pre-
fer to work on tokens, or other segments, instead of
working on characters. Moreover, commercial vendors of
text mining technology sometimes propose proprietary
tokenization schemes to enforce a vendor lock-in with
their customizers. INDREX permits such segment spans.
We define an (optional) segment span as follows:

Definition 2. A segment-span (ssp) holds a complete and
non-overlapping segmentation of the string, such as the
output of a tokenization or sentence-splitting function on a
character span. We denote a segment-span ssp¼ ðsegID;
b; eÞACSP as a 3-tuple referring to a segment within a text
with segID as the ID of the segmentation tool, b the position
of first segment, e the position of the last segment and

SSP¼ fðsegID; b; eÞjsegID; b; eAN; 0rbreg

Depending on the information extraction task, we
require either character- or segment-based spans, or both
span types. Therefore, we combine character spans and
optional segment spans into a span.

Definition 3. A span is a tuple sp¼ ðcsp; sspÞASP, with
cspACSP4sspASSP.

Example “Span”: In Fig. 2 the character-span {26,0,6}
represents the observation that in document with ID 26,
keyword Torsten appears between character positions 0
and 6. At the same time the segmentation-span {1,0,0}
represents the observation that the same string is at token
position 0 for the tokenizer with the segID 1.

Annotation and meaning: An annotation assigns a single
meaning to a single span. For instance, we can assign the
meaning syntax:determiner to the span that represents the
first word, ‘The’, in this sentence. In practice, we often
require assigning a single meaning to a set of spans. This is
helpful if these spans are distributed across the same
document or are distributed across different documents.
We use such annotations for representing n-ary relations,
for assigning different string representations of the same
logical object across documents or for assigning informa-
tion from tree structures, such as dependency trees, to flat
strings. The data type annotation permits these assign-
ments and is defined as follows:

Definition 4. An annotation anAAN¼ SPþ �M is an
n-tuple of spans with a meaning mAM. SPþ is the transfer



Fig. 2. Three documents with the most common language specific annotations, such as tokens, part-of-speech (POS), phrases, dependencies, constituencies
(between the phrases), OIE-relationship candidates, entities and semantic relationships. Each horizontal bar represents an annotation with one span and
each arrow an annotation with multiple spans. The semantic relationship PersonCareerAge is an annotation with three spans. The entities “Torsten
Kilias” in document 26 and “Torsten” in document 27 are connected by a cross-document co-reference annotation. The query in the right-bottom corner
shows a join between a Human Resource relation in a CRM system with the extracted semantic relationships from text.
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of the Kleene Plus

SPþ ¼ ⋃
n

i ¼ 1
SPi ¼ SP1 [ SP2 [ SP3 [ …

Example: “Annotation: Assigning a single meaning to a
single span”. In Fig. 2 the string POS:NNP denotes the value
that a computational linguist would assign to the proper
noun “Torsten”. Another example is the character span of
an entire Web page for which we can assign an annotation
of the type Web page.

Example: “Annotation: Assigning multiple meanings to a
group of spans’. An annotation can also consist of multiple
spans. This group of spans might have different meanings.
Consider in Fig. 2, the character-span {26,0,6} that is assigned
to the annotation POS:NNP. This character-span is part of
another character-span {26,0,13} which is assigned to the
annotation Phrases:NP and both character spans are part of
the annotation Entities:Person.

N-ary relation candidates and dependency trees: In
practise, computational linguists use syntactic patterns for
connecting multiple attribute value candidates of the same
sentences into a relation candidate. One option for represent-
ing binary relation candidates are the so-called open informa-
tion extraction patterns [24,25]. For instance, in the English
language a common pattern for a binary relation is the pattern
NounPhrase follows VerbPhrase follows NounPhrase. The basic
assumption here is that in a particular sentence the first noun
phrase likely expresses the subject, the second noun phrase
expresses the object and the verb phrase expresses the
predicate of the same sentence. In practice, English sentences
follow a more complex structure. Therefore, computational
linguists often use dependency trees for identifying relation
candidates. These tree-based structures capture much more
robust subjects, predicates, objects, adverbs and other syntax
structures that likely represent arguments of a relation [2,17].

In our data model we use the following definition of a
relation. This definition and the remaining definitions for
the relational model and the relational algebra extend or
refer to the definitions defined from Grefen and de By [32].

Definition 5. A domain A is a set of atomic values. The
term atomic refers to the fact that each value in the
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domain is indivisible as far as operators of the relational
data model are concerned. We denote A as the set of all
possible domains.
Definition 6. A relation schema R consists of a relation
name and a list of attributes ðA1;…;AnÞ. Each attribute, Ai,
is defined on a domain domðAiÞAA. The type of R is
defined as domðRÞ ¼ domðA1Þ �⋯� domðAnÞ. A relation
or relation instance R of relation schema R is a multi-set of
elements in domðRÞ, i.e. a function R : domðRÞ-N, where
N denotes the domain of the natural numbers. The value of
RðxÞ is called the multiplicity of x in R.
Example “Annotation: Relation candidates and dependen-
cies”. In our model we represent a dependency between
two edges in the dependency tree as an annotation with
two spans. For example, in Fig. 2 two character spans
{26,31,37} and {26,8,13} represent start and end points of
the annotation Dependency:nsubj respectively. We can also
represent n-ary relation candidates, for example in Fig. 2
the spans {26,0,13}, {26,16,17}, {26,25,37} represent poten-
tial attribute values and the span {26,20,23} represents the
predicate for a 3-ary relation candidate for the relation
schema PersonPositionAge(Person, Position, Age).

Relation and lineage: Efficiently mapping candidate
relations manually to an existing database schema is an
active area in computational linguistics. Therefore, assign-
ing a semantic meaning to relation candidates, either
manually by inspecting the relation candidate or in an
automated fashion, is a core functionality in INDREX. The
system permits the user or a system to attach a meaning to
a span. For instance, the user can assign a meaningful type
to a span that represents a candidate relation or the user
can assign a meaningful type to the span that represents
an attribute of this relation. For representing such mean-
ings in our data model, INDREX implements the definition
of Grefen and de By [32] for representing a relation in a
RDBMS. The definition states that ‘A multi-set relation is a
multi-set of tuples’ and represents that the defacto imple-
mentation state of a modern RDBMS. INDREX also keeps
stores ‘lineage information’, i.e., our model is able to store
references to annotations and spans that the user or an
application used to create the relation. For instance, a user
or an application can use this information for selecting
spans from ‘trusted’ base extractors, or for unraveling
interesting combinations of extractors. The following defi-
nition follows these two requirements.
1 nlp.stanford.edu/software/corenlp.shtml
Definition 7. We denote a relation schema with a list of
attributes fA1;…Ang and there exists α¼ f%i1;…;%ing such
that for each %iAα holds domðA%iÞDSP as a span relation
schema RSP ½α�. In addition, we denote a relation schema
with a list of attributes fA1;…Ang and for all 1r irn holds
domðAiÞ⊈SP as a non-span relation schema.

We now give details on loading data into base tables
that represent our model.
3.2. Loading base tables

Document and language specific transformations: For
more than 50 years the NLP community designs domain
independent extractors with propriety languages. INDREX
will not attempt to replace these efforts or to repackage
these efforts to run inside the RDBMS. Rather, we designed
INDREX to execute highly optimized document and lan-
guage dependent extractors outside the RDBMS. For
example, we apply language depended taggers from the
Stanford CoreNLP pipeline1 over these documents, includ-
ing sentence taggers, shallow and deep syntax taggers and
the Stanford 7-Class NER tagger. We extract these base
annotations outside the RDBMS and load INDREX with
these annotations.

Open information extraction: These document and lan-
guage specific transformations are the base for Open Infor-
mation Extraction frameworks, such as CLAUSIE [17] or
REVERB [26]. These frameworks detect predicates, subjects
and objects of a sentence. Moreover, systems such as
CLAUSIE utilize syntax information for detecting binary, 3
or 4-ary relations, called clauses, between adverbs and
predicates, subjects or objects. These relations are likely
candidates for meaningful relations. For example, CLAUSIE
will return for the sentence from Fig. 2 Alex (37) works as
Torsten's advisor. Three clauses are (Alex) (is) (37), (Alex)
(works as) (Torsten's advisor) and (Torsten) (has) (advisor).
Note that open information extraction approaches, such as
CLAUSIE, neither determine the meaning of these rela-
tions, nor detect the synonymous ones. Similarly, open
information systems detect neither attribute types nor
attribute value ranges.

INDREX stores sentences, subjects, predicates, objects
and clauses from CLAUSIE in the model as annotations,
spans and relations. Table 1 presents an example annota-
tion after this loading phase. In the next section, we
explain how an INDREX user may add domain semantics
to these candidate relations or how a user might refine
these candidate relations in the RDBMS.
4. Queries and functions

Our study in [35] revealed three common query types for
extracting relations from text data: (1) Local queries create
and refine initial candidate relations, often within the
context of a single sentence. (2) Join queries augment text
data with domain semantics, such as semantics from
existing rules or semantics from existing relational data.
(3) Aggregation queries enable the user to explore the
distribution of corpus-wide semantics and permit her to
refine candidate relations.

This section extends these findings significantly: first,
for each query type we abstract and formalize common
query patterns. Next, we list functionalities that a standard
RDBMS must support. Finally, if the RDBMS does not
support a functionality, we present our design for adding
the functionality.

nlp.stanford.edu/software/corenlp.shtml


Table 1
The table presents an example schema of our base tables after the loading phase. The table shows a string (such as a document) with ID¼26. It contains the
characters Torsten at chars 0–6 that are recognized as term Torsten with the lemma Torsten, which are a part of a named entity of the type person called
Torsten Kilias starting from char 0 to char 13. Moreover, a dependency link, nn, exists for the phrase and annotates ‘Torsten’ and ‘Kilias’ as a compound noun
phrase.

Schema Annotation

Spans Meaning

CharSpan SegmentSpan Key Value

StringID Begin End SegmenterID Begin End

Examples 26 0 6 1 0 0 Term Torsten
Lemma Torsten
POS NNP
Extractor Stanford

26 0 13 1 0 1 Entity.Type Person
Entity.Value Torsten Kilias
Extractor Stanford

26 8 13 1 1 1 Dependency nn
26 0 6 1 0 0 Extractor Stanford
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4.1. Local queries

Computational linguists frequently utilize regular expres-
sions and other string functions for extracting relation argu-
ments, values, names and types from a sentence or another
document structure (see for example [25,33]). Local queries
permit the user to execute these tasks. Thereby, local means
that the query processor executes the task on a single sequence
of characters, such as the entire document or a more fine
granular structure, such as a sentence. The INDREX database
execution engine references this sequence of characters as a
string, while the computer linguist determines in her query the
semantics (document, sentence, etc.) of the string.

Definition 8. We denote a relation expression Elocal defin-
ed on the span relation schema RSP ½α� as a local query, if
the following condition holds:

8rAElocal8%i; %jAα:
stringIDðr:%iÞ ¼ stringIDðr:%jÞ

White-box user defined functions permit optimizations by the
query execution engine: INDREX supports local queries with
predicates, scalar functions and table generating functions.
We implemented these extensions as user defined func-
tions in INDREX. Thereby, we chose the white-box model
to permit the query optimizer introspecting our code and
suggesting runtime optimizations.

4.1.1. Predicates
A common subtask for extracting relations is testing if a

string appears in a set of strings or as a substring of
another string. Most RDBMSs support this task with the IN
or LIKE predicate. A user might write a query and apply the
above-mentioned built-in or user defined predicates. Each
predicate might return a value that is either true or false.

Definition 9. Let R be a relation schema. A condition θ on
R is a mapping from domðRÞ to the Boolean domain
B¼ ftrue; falseg, in short θ:domðRÞ-B. We denote ΘðRÞ
as the set of all conditions on R.
The RDBMS builds from these predicates the WHERE
clauses; see also the example query in Fig. 3. However,
computational linguists require a much broader set of
predicates for local queries that current extraction sys-
tems, such as AQL [15] or GATE [18], provide but that are
not supported by an RDBMS. We now present detailed
definitions of these predicate functions:

Detecting span proximity: We abstract span sequences
in text data as intervals. For processing proximity queries
on top of intervals, INDREX implements predicate func-
tions from Allen's interval algebra [5]. These predicate
functions are based on the following basic functions for
retrieving the Begin or End of a character or segment span:

Definition 10. Let spanASP and span¼ ððstrID; charbegin;
charendÞ; ðsegID; segbegin; segendÞÞ. We define the following
unary span functions:
�
 stringIDðspanÞ ¼ strID

�
 charBeginðspanÞ ¼ charBegin

�
 charEndðspanÞ ¼ charEnd

�
 segmenterIDðspanÞ ¼ segID

�
 segmentBeginðspanÞ ¼ segBegin

�
 segmentEndðspanÞ ¼ segEnd

�
 charLengthðspanÞ ¼ charEnd�charBeginþ1

�
 segmentLengthðspanÞ ¼ segEnd�segBeginþ1
Given these basic functions we define functions for
testing the proximity of two spans:
Definition 11. Let span1; span2ASP. We define the fol-
lowing binary span predicates:
�
 sameStringðspan1; span2Þ
¼ stringIDðspan1Þ ¼ ¼ stringIDðspan2Þ
�
 sameSegmenterðspan1; span2Þ

¼ segmenterIDðspan1Þ ¼ ¼ segmenterIDðspan2Þ
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charSpanBefore span1; span2
� �
�
¼ sameString span1; span2
� �

4charEnd span1
� �

ocharStart span2
� �
�
 charSpanStartsBefore span1; span2
� �

¼ sameString span1; span2
� �

4charStart span1
� �

ocharStart span2
� �
charSpanEndsBefore span1; span2
� �

¼ sameString span1; span2
� �

4charEnd span1
� �

ocharEnd span2
� �

initions for segment spans are analogue.
may contain each other.
Testing overlapping spans or span containment: Following
Allens interval algebra two spans may partially overlap or
3. This query represents Q15 from our benchmark. The query reads from tab
es in INDREX (see Section 3). In addition, the query reads from a user defin
ERE clause, the query tests if the same sentence span contains a span that re
n that represents another organization. Moreover, the query tests if these spa
esents the verb is also a value in the user defined dictionary. If these cond
nization 1, the verb and organization 2 and applies a DISTINCT operator. The
ht apply additional SQL statements to validate data.
Definition 12. Let span1; span2ASP. The following pre-
dicates test if two spans overlap or contain each other:
�

les
ed
pre
ns f
itio
figu
charSpanStartsWith span1; span2
� �

¼ sameString span1; span2
� �

4charStart span1
� �¼ ¼ charStart span2

� �
�
 charSpanEndsWith span1; span2
� �

¼ sameString span1; span2
� �

4charEnd span1
� �¼ ¼ charEnd span2

� �
�
 charSpanContains span1; span2
� �

¼ charSpanStartsBefore span1; span2
� ��

3charSpanStartsWith span1; span2
� ��

4 charSpanEndsBefore span1; span2
� ��

3charSpanEndsWith span1; span2
� ��
organizations, verbs and sentence. We load these tables as base
dictionary table that contains words representing acquisitions. In its
sents an organization, another span that represents a verb and a third
ollow each other. Finally, the query tests if the value for the span that
ns are true, the query extracts the value of the span that represents
re shows the output of example results from a news corpora. The user
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charSpanLeftOverlaps span1; span2
� �
�
¼ charSpanStartsBefore span1; span2
� �

4charSpanEndsBefore span1; span2
� �

4charStart span2
� �

ocharEnd span1
� �

charSpanOverlaps span1; span2
� �
�

¼ charSpanLeftOverlaps span1; span2

� �

3charSpanLeftOverlaps span2; span1
� �

finitions for segment spans are analogue.
Fig. 3. The query uses predicate function charSpanContains for
4.1.3. User-defined table generating functions
Example: span predicates. Consider again the example query in

testing if a span for an organization o1:spans½1� is contained in
a span of a sentence s:span½1�.

Local join: Local queries with two or more predicates
require from the execution engine an additional test that
the spans, that serve as input parameter to the predicate,
are contained in the same character sequence. Such a
character sequence might represent an entire Web page or
a part of the Web page, such as a single sentence.

Definition 13. Let RSP ½α� be a span relation schema and
%i; % jAα. A local condition ξAΘðRÞ, such that

8rAdomðRÞ: stringIDðr:%iÞastringIDðr:%jÞ
) ξðrÞ ¼ false:

We denote ΞðRÞ as the set of all local conditions on R.

A special case of such a local query is the local join. This
complex function tests if a span contains two other spans.

Definition 14. Let E1 and E2 be local relational expres-
sions; E1 defined on a span relation schema E1 and E2
defined on a span relation schema E2. We denote a join
E1⋈ξE2 with ξAΞðE1 � E2Þ as a local join.

Example: local join:In Fig. 3 the query executes a local join
that selects spans representing companies, spans representing
headquarter locations and tests, if these two spans appear
inside the same span that must represent a sentence. In
addition, the query executes additional predicates to the local
join to test if the two spans appear after each other.

4.1.2. Scalar functions
The user will apply a scalar function in INDREX in the

SELECTclause of the query or as the input to a predicate. These
functions return a value of non-Boolean types, such as span,
annotation or relation. INDREX supports two common types
of scalar functions:

Returning a character sequence from a span: Consider
again the SELECT list in Fig. 3. In the query, the scalar
function extractString takes a span as input and returns
the substring for the span from the corresponding string.

Returning context for a span: Other commonly used
scalar functions are leftSpanContext, rightSpanContext,
betweenSpans and combineSpans. These functions create
spans right or left of another span or the span between
two other spans or the span that contains two other spans.
These functions are common among text mining frame-
works but not included in a RDBMS. Fig. 5 uses the
function combineSpans to combine the span of an organi-
zation with span of the following comma.

Definition 15. CombineSpan is a scalar function on spans
that creates a span that contains the input spans.
�
 combineCharSpansðspan1; span2Þ
¼ if sameStringðspan1; span2Þ then
CharSpanðstringIDðspan1Þ;
minðcharBeginðspan1Þ;

charBeginðspan2ÞÞ;
maxðcharEndðspan1Þ;

charEndðspan2ÞÞÞ
else null

� �
�
 combineSegmentSpans span1; span2

¼ if sameSegmenter span1; span2
� �

then

SegmentSpan segmenterID span1
� �

;
�

minðsegmentBeginðspan1Þ;
segmentBeginðspan2ÞÞ;

maxðsegmentEndðspan1Þ;
segmentEndðspan2ÞÞÞ
else null

� �
�
 combineSpans span1; span2 ¼
if sameString span1; span2

� �
then

SpanðcombineCharSpansðspan1; span2Þ;
combineSegmentSpansðspan1; span2ÞÞ

else null
Consolidation: Predicate and scalar functions already permit
computational linguists creating extractors. These users may
desire to merge potentially overlapping spans from these
extractors and output a single span or a list of best matching
spans. We call this operation consolidation. It requires from the
query processor to group the set of input spans by some
criteria, for example by the span ID of sentences or another
structure. Next, for each group the function validates user
defined criteria, such as span proximity or overlapping spans.
The following definition formalizes this function.

Definition 16. Let E be a relational expression defined on
E. We denote Ωg;f E a consolidate expression with the
grouping function g and the aggregation function f:

Ωg;f E¼ fðx;1ÞjxAGg [ fðx;0ÞjxAF4x=2Gg
where

G¼ ff ðE0ÞAF j(E0DE: gðE0; EÞg

A special case is the ContainedWithin function. It tests
if a set of spans is contained within another span, applies
on the group an aggregation function, such as ‘left longest
spans wins’, and outputs the resulting span.



2 http://geonames.usgs.gov/domestic/download_data.htm
3 https://www.freebase.com/business/job_title?instances=
4 The dictionary may contain words, such as acquired by, acquisi-

tion by, acquisition of, acquired, purchased, bought, takeover

of, agreed to buy, to acquire, sold, sold to, acquired in, to

sell, acquisition in, acquires stake in, purchased by, bid for,

bought by, sale of, buys interest in, bought out, completed

took over, corporation in, merger with, purchase of, incorpo-

rated from, bought from, announced to purchase.
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Definition 17. Let E a relational expression defined on a
RSP ½α� with %iAα. ContainedWithin is a consolidate
expression Ωg;f E with the grouping function:

gðE0; EÞ ¼ jE0j ¼ ¼ 14e0AE04 8eAE:
charSpanContainsðe0:%i; e:%iÞ ) e0:%i¼ e:%i

and the aggregation function f ðE0Þ ¼ E0

Block: Users may combine multiple potentially non-
overlapping nearby spans into a new span. We call this
operation block.

Definition 18. Let E a relational expression defined on a
RSP α½ � with %iAα and E0DE. Block is a consolidate
expression Ωg;f E with the grouping function:

gðE0; EÞ ¼ 8E″DE: E0DE″4 isBlockðE0Þ4 isBlockðE″Þ
) E0 ¼ E″

where

isBlock fe1;…; engð Þ
¼minPtsrnrmaxPts
4 81r io jrn: ðcharSpanBeforeðei:%i; ej:%iÞ
4minDistrcharSpanDistanceðei:%i; ej:%iÞ
charSpanDistanceðei:%i; ej:%iÞrmaxDistÞ

and the aggregation function

f ðE0Þ ¼ combineSpans=ðE0Þ
Example: BLOCK function. Fig. 5 shows an example. The

query takes as input sentences that include conjunctions of
companies. The query transforms these conjunctions into lists
of companies, one for each sentence. Another example, not
shown here, is a query that test if the company identification
number, the company name and the CEO may appear in the
imprint of a page.

White-box user defined table generating function: We imple-
mented these functions in INDREX based on the concept of
user defined table generating functions (UDT). A UDT takes
as input multiple spans and may outputs multiple spans
(and thus may generate a table). Analogue to standard
RDBMS, INDREX expects UDTs inside the FROM clause.

4.2. Joining text data with domain semantics

Common approaches for assigning domain semantics
to text data are built-in joins, and special join cases such as
dictionary lookups and regular expressions. In this sub-
section, we present their design in INDREX.

4.2.1. Built-in equi- or theta-joins
INDREX represents entities in textual data with the span

relation schema (see Section 3). Therefore INDREX can leverage
built-in (and often highly optimized) joins of the RDBMS for
matching equal or similar string representations of entities in
text data with entity representations from a domain specific
relation schema. The task of the user is to formalize one or
multiple join conditions between the two entity representa-
tions. The following definition formalizes this join.

Definition 19. Let E1 and E2 be relational expressions; E1
defined on a span relation schema E1 and E2 defined on a non-
span relation schema E2 . We denote a join E1⋈θE2 with
θAΘ E1 � E2ð Þ a join between the two entity representations.

Example: Complement existing structured data with infor-
mation from text. Fig. 2 shows a table ERP-HR-Position

that has a column position. For complementing this
information, the user selects from the span relation
schema extracted spans for the relationship type Person-
Career(Person, Career). Next, the user joins these spans
with the condition ERP.position¼PersonCareer.Career and
retrieves a table that contains persons mentioned in text,
their age, salary and qualifications.

Join results between a span relation schema and a domain
specific relation schema may contain potentially false or
incomplete join candidate results, caused by homonymous
or synonymous words or by word entailment. The task of the
user is to identify additional join conditions for minimizing
false positives and for maximizing result completeness. An
interesting research direction is supporting the user in these
tasks [21,31].

4.2.2. Joins with external dictionaries
Standard text mining frameworks, such as GATE [18],

provide dictionaries for assigning a meaning to words.
Dictionaries are sets of multi-words that represent domain
semantics. Common examples are pre-built Gazetteers,
such as Domestic and Antarctic Names of US places2 or
job titles,3 among many other resources. The text mining
systems load the content from a file in main memory and
match character sequences from text data to multi-words
from the dictionary. If such a match is successful the
system assigns the matched interval a particular meaning.

INDREX provides this functionality in the RDBMS. A
user defined function expects the dictionary data already
loaded in a table. INDREX supports matches between the
span relational table and the dictionary table as equi-join,
denoted as @¼ ¼ or as a theta-join with an approximate
string matching, denoted as @� � .

Example: Disambiguating relationship names. Consider a
computational linguists applying a synset dictionaries [3,43,4]
for resolving words representing acquisition.4 Fig. 3 shows a
join between these synsets and the predicate of a sentence to
test for an acquisition event.
4.2.3. Regular expressions
Another common technique of computational linguists is

the reuse of predefined pattern dictionaries for regular expres-
sions. For instance, the system REVERB uses few regular
expressions for identifying strings that likely represent the
name of a relationship, such as V ¼ verb particle?adv?, W ¼
ðnounjadjjadvjpronjdetÞ or P ¼ ðprepjp articlejinf : markerÞ.

http://geonames.usgs.gov/domestic/download_data.htm
https://www.freebase.com/business/job_title?instances=


5 opencalais.com
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Computational linguists combine these patterns into a single
regular expression, such as V jVPjVWnP.

INDREX provides the user-defined-function called
regex_lookup(span,regex_name) that takes as input the
name of a regular expression and a span, executes the
regular expression on the span and returns matches as sets
of new annotations. This functionality enables reusing
existing regular expressions and adapting existing regular
expressions to specific domains.

4.3. Aggregations

INDREX permits computational linguists executing aggre-
gations directly in the same system that permits the extrac-
tion from text. These users may learn distributions of words,
syntax, semantics or other features. They may formalize these
distributions into predicates and scalar functions and thereby
increase the recall or precision of their existing extractors.
INDREX provides built-in aggregation operators, such as MIN
(), MAX(), SUM() or AVG() or the combination of grouping and
aggregation called generalized projection. Too, INDREX sup-
ports built-in other user defined aggregates of the underlying
RDBMS, such as OLAP extensions [48] like CUBE or WINDOW
operators.

Definition 20. Let E1 be basic relational expressions; E1
defined on schema E1 with the attribute list A1;…;Anf g,
such that there exists 1r jrn with dom Aj

� �
DSID or

dom Aj
� �

DSP. We denote Γα;f ;βE1 as a local aggregation
expression, if α¼ %i1;…;%im

� �
and there exists 1rkrm,

such that %ik ¼ j.

Example: Person-Age Extractor: Consider the sentences
in Fig. 2. A user can learn from the sentence the distribu-
tion of words between a person and a position in a
sentence, for example, holds the position of (1 times), works
as (1 times), and is a (1 times). This distribution shows
likely synonym expressions for the relationship type
person-position. Analogue, the user can unreveal that the
attribute age of a person is expressed as an apposition of
the argument of the semantic type person by commas,
brackets and the keyword years. Finally, Fig. 4, which also
applies span and consolidation operators, shows a distri-
bution of age information for persons in the text.

5. Evaluation

Computationally intensive applications that support
both text mining and analytical workflows often leverage
analytical platforms based on the MapReduce framework.
In this section, we describe INDREX on a MapReduce
implementation and on a Impala implementation, our
data setup and our evaluation methodology. Finally, we
report on our experimental results.

5.1. Setup overview

Relation extraction is a computationally expensive
task. Ideally, the task is executed on massively parallel
execution system with multiple nodes and multiple cores
on each node. The distributed storage system must
support efficient access to relational data, to text data
and to data represented by our span-based data model
from Section 3. Finally, the system must support local and
global joins, local queries and aggregations (see Section 4).

Table 2 compares these characteristics for systems GATE,
SystemT, IMPALA and PTQL (see also Section 2 for details
about these systems). PTQL, a commercial system, uses a
centralized broker architecture. It stores sentences in a IR-
engine and retrieves promising sentences matching lexical
predicates for a query. A broker node ‘joins’ these sentences
with domain data from a RDBMS. Authors show results on
13.000medical abstracts. Because of the central broker design,
PTQL does suffer from similar problems of broker based
distributed database systems. Contrary to PTQL and analogue
to INDREX, SystemT and GATE support local queries on text
data. These systems can be executed as user defined functions
in MapReduce environments that support massive parallel
query execution of aggregations and joins.

We decided to re-implement the functionality of INDREX in
a Hadoop-basedMapReduce environment. Fig. 6 overviews our
experimental setup. In the initial ETL (steps 1–3) we read
textual data and perform extraction operations that return
generic relations and an annotated corpus. Next, we load this
data into the highly optimized distributed Parquet.io filesystem.
We consider this implementation as baseline (steps 4.1, 5.1 and
6). Very recently, Cloudera proposed the Impala query proces-
sing engine for analytical query workloads in a data warehouse
setting which is our second test system (steps 4.2, 5.2 and 6).

Both systems, Hadoop and Impala, are distributed data
processing systems, but differ in implementation lan-
guages, query execution techniques and built-in optimiza-
tions. INDREX is designed to leverage and benefit from
these features and optimizations. An interesting question
is which built-in optimizations support most iterative
relation extraction query workflows. We now describe
our setup for analyzing this question.
5.2. Preparing and loading data

Data set: We chose the Reuters Corpus Volume 1
(RCV1) [39], which is a standard evaluation corpus in the
information retrieval community. It contains information
about news from 1997 and shows characteristic distribu-
tions for textual data.

We briefly summarize the main characteristics of this
corpus from our previous work [11]: we inspected the
distribution of 39 entity types and 70 relationship types
across the documents in the corpus. We used a commercial
extractor5 and extracted roughly 860,000 entities and
1,800,000 relations. We observed a power law distribution:
more than 65 relationship types are rare and only appear in a
few hundred documents while only relations of the types
PersonCareer, PersonCommunication, Acquisitions and Compa-
nyAffiliates are distributed across 10,000 documents or more.
Querying such typical distributions for text data requires
optimizations for selective queries, such as index structures,
parallel query execution or data partitioning schemes.

opencalais.com


Fig. 4. The query shows a person-age extractor. In addition, the query provides a distribution for age information in our corpus. The outer SELECT
statement computes the aggregation for each age observation, grouped and ordered by age. The nested SELECT statement projects two strings: the person

and the age from conditions in the WHERE clause that implement the heuristic of a syntactic apposition, in this case represented by the pattern
〈person〉〈comma〉〈number〉〈comma〉. For this corpus, we observe that seven persons are either 32 or 52 years old, six persons are either 37, 38 or 46 years old
and eight persons share an age between 29 and 54.

Fig. 5. This query represents Q17 from the benchmark and extracts conjunctions of organizations. The figure shows the first three conjunctions.
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Base extractors and tables: In this work, we used the
Stanford CoreNLP pipeline as base extractor. This complex
extraction pipeline emulates language specific extractors
from Fig. 1, including sentence recognition, tokenization,
part-of-speech tagging, lemmatization, 7-class named-
entity tagging, dependency tagging and co-reference reso-
lution. Moreover, we used the Open-Information Extrac-
tion system CLAUSIE [17] that takes these annotations as
input and outputs n-ary candidate arguments and candi-
date relations per sentence, but without attaching a mean-
ingful relationship type (see also Section 3.2). Commercial
relation extractors, such as the Open Calais extractor from
above, use similar base extractors.

ETL on 800K annotated documents. Overall, the raw
corpus has a size of ca. 2.5 GB. After annotating the corpus
with the Stanford CoreNLP pipeline and CLAUSIE, the
annotated corpus achieved a size of ca. 107 GB. Our
relation extraction stack (see also Fig. 2) created more
than 2500 annotations per document on average or
roughly 2 billion annotations for our 800K documents.
Overall, we could observe that linguistic base annotations
increase the raw data by more than an order of magnitude.
We store this data on the Parquet.io file format [1].
This columnar file format stores data files in the Hadoop
Distributed File System (HDFS) as its primary data storage
medium and benefits from the built-in redundancy of the
HDFS. Parquet allows compression schemes to be specified
on a per-column level and uses various compression form-
ats for files. For our scenario we observe a compression
ratio of a nearly 10x factor: The data size in the Parquet.io
file format is reduced from 107 GB to roughly 10 GB.

Overall, for base NLP transformations, compressing/encod-
ing and loading data into Parquet.io, the ETL took on average
6 s per document or overall 7 h for the complete corpus of
800,000 documents on our cluster with 200 AMD cores with
2.4 GHz and 8 GB RAM per core.

5.3. Evaluated systems

Hadoop and Impala read annotations and text data
from the Parquet.io storage layer (steps 3 and 4), execute
queries and forward results to the user. The user might
refine the queries or may adds additional views and rerun
queries (iteration in step 6 to step 4 and 5).
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Fig. 6. This figure shows the initial ETL (steps 1–3) and two implementations that create iterative query workflows on loaded data. Both setups read their
input from HDFS sequence files (step 1) and the same base linguistic operations (step 2). The result of preprocessing is written in highly compressed HDFS
Parquet files (step 3). Our baseline creates iterative query workflows with MapReduce on Hadoop (step 4.1) and writes results into HDFS sequence files
(step 5.1). The user analyses the result from the HDFS (step 6) and may refine the query. Our second system creates iterative query workflows in Impala
(Step 4.2). The system supports ad-hoc queries and optimizes expensive disc accesses. The user inspects results (step 5.2) and may refine the query again.
IMPALA uses caching and other techniques for optimizing such iterative query workflows (see also Section 5.3).

6 llvm.org
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INDREX on Hadoop þ Pig. We run Hadoop 2.3.0 and Pig
0.12 on a cluster with nine nodes. Each node consist of 24
AMD cores, each with 2.4 GHz, 256 GB RAM and 24 disks.
Overall we had 9�24 cores available. The cluster runs the
Ubuntu 12.0 operating system on all nodes as well as Clou-
dera's CDH5.1. Hadoop can leverage multiple cores, such as for
processing local queries per core or for distributing the
workload for global queries among multiple cores. We
assigned Hadoop up to 200 cores for Map and 100 cores for
Reduce tasks. Each task consumes up to 8 GB RAM. Reduce
tasks start if 90 percent of the map tasks are complete.

For global queries, our INDREX implementation on Hadoop
uses built-in statements and optimizations from the data flow
description language Pig [44]. Pig was originally developed by
Yahoo for analytical workflows and is now part of many
MapReduce distributions and is made up of two components:
The first is the language itself, which is called PigLatin.
The language permits users to create data flows (similar to
query execution plans in a RDBMS), including joins, group-by
statements, projections, selections etc. However, PigLatin
misses the text mining functions from Section 4. We imple-
mented the INDREX functionality as user-defined functions
that a PigLatin data flow can call. The second component is
the runtime environment that parses, optimizes and compiles
these data flows into sequences of MapReduce statements. For
example, the language uses combiners for global aggregations
and provides distributive and algebraic aggregation functions
to reduce the size of intermediate results.

INDREX on Impala: We tested Cloudera's Impala version
1.2.3 on the same machine setup and can leverage up to
200 multiple cores too. Impala uses a streaming based
query processing approach and retrieves main memory
only on demand, such as for building in-memory hash
tables to store intermediate results from an aggregation
query. Profiling Impala revealed that the system did not
retrieve more than 10 GB during query execution. The
Impala query processor leverages various built-in optimi-
zations, such as parallel scans, parallel pre-aggregations,
rule-based or statistical join order optimizations, join
distribution optimization techniques (broadcast vs. parti-
tioning join) as well as code optimizations at query
compile time with LLVM6. For example, Impala supports
equi-joins with a hash-join implementation and theta
joins with a cross-join implementation. We implemented
our INDREX extensions as so-called macros, which are
basically white box UDF implementations.

5.4. Methodology

Overview: We conduct experiments on the feasibility to
show (1) if the built-in functionalities of the system plus
our white box extensions permit the user to execute
common query scenarios, and, (2) for which query type
our INDREX implementation might leverage built-in opti-
mizations from the system underneath.

27 queries simulate common tasks during the iterative
relation extraction process: Our queries include typical
operations, such as point and range selections at various
attribute selectivities, local joins within the same sentence
or document, joins with external domain data, queries
using UDTs and UDAs as well as global aggregation queries
across individual documents. A detailed list of all 27
queries is given in the Appendix.

Measurements. We ran each query ten times on each
system, measured the execution time in milliseconds and
selected the largest measurement (slowest query execu-
tion) per query. The next subsection reports on our results.
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5.5. Quantitative observations

Both systems support a wide variety of queries: We could
formalize the required UDFs, UDAs and UDTs to support all
of our queries in PigLatin. Impala cannot yet execute two
of the queries that require UDTs, namely Q16 and Q17.
These queries consolidate spans and require support for
user-defined table generating functions (UDT).

Impala outperforms Hadoop/Pig by nearly two orders of
magnitude for text mining query workflows: Fig. 7 shows
query execution times for both systems over all queries.
We observe a similar runtime for PigLatin across all
queries. Each query in Pig reads tuples from disc, where
here are tuples from the HDFS/Parquet file. Next, Pig
always executes a full table scan over these tuples and,
by design, always stores query results back to the dis-
tributed file system. Contrarily, for Impala we observe
nearly two orders of magnitude faster query execution
times since Impala conducts various optimizations that
also benefit our iterative text mining workflows.

For understanding this impressive performance, we
report details for each individual operation. Fig. 8 com-
pares the aggregated runtime for individual operations,
such as complex and local queries (including local joins),
joins with external data, aggregations and selections.

Fig. 9 shows query execution runtime per document for
each of our benchmark queries. We group queries by type,
such as queries that just execute selection predicates,
queries with aggregations, queries joining data from the
same sentence or document and queries joining text with
external resources. We will now give details for each
operator category.

5.5.1. Selections
Low selectivity queries: Queries Q2, Q3 and Q4 select

specific annotations. These queries are often the base for
more advanced queries, such as joins or group-bys. Both
systems, Pig and Impala, do not have a built-in index and fall
back to a parallelized full table scan for selection queries.
Impala uses a highly optimized Cþþ implementation for the
scan of the Parquet.io files. Pig, instead, uses a slower Java
implementation. Furthermore, while reading each tuple from
the Parquet.io storage, Pig creates a tuple, which is a tree of
Java objects. In our implementation Pig reads for each query
the entire document and all of its annotations into the java
virtual machine memory, analogue to systems like System-T or
GATE. A document contains on average 2500 annotations, such
that Pig creates a huge set of objects, a well-known problem of
Java. For example, the slow-down of the garbage collector for
many objects is such a performance issue. Fig. 6 shows that Pig
needs an additional step, as it keeps the results into the HDFS,
before the user could inspect it. The replication of the HDFS
adds an additional overhead to the query runtime.

High selectivity queries: Query Q1 returns a very large result
set. Although Impala can leverage its parallel running pipe-
lines, it needs to ship results from parallel pipelines to a single
query client. Hence, the time this client needs for printing/
storing the result becomes the bottleneck here.

Data intensive point or lookup queries: Query Q5 retrieves
all annotations for a particular sentence. In our corpus, we
observe that the ‘average sentence’ contains between 40
and 100 tokens. For each token we assign the lexical
information, the lemma and the part of speech annotation
as well as dependency structures between tokens. Open
information extraction approaches, such as CLAUSIE, often
return tens of candidate relations, each with multiple
arguments, for such a sentence. Because of the nature of
open information extraction, many of these candidate
relations may overlap or can be wrong. Therefore the
number of annotations for an average English sentence
may likely exceed 100 or more annotations.

For this type of point queries (also called lookup queries)
Impala executes a scan over span tables that store lexical,
syntactic, deep syntactic and relation candidate annotations
for locating the specific stringID. Q5 also enforces Impala to
combine values from all 134 columns of our span table into
a tuple. This operation is expensive because Impala must
construct the tuple from separately stored columns.



Fig. 9. This figure compares query execution time for each query in our benchmark. Impala does not provide UDTs (Q16 and Q17).
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5.5.2. Joins
Local joins: At first, Impala selects the required annota-

tions for the local join and redistributes them by a hash key
to the join nodes. Afterwards, it evaluates the non-equi-join
predicates for each bucket. Currently, Impala only supports
one join thread per cluster node, which, for our cluster,
creates 9 parallel join threads (since we are running on 9
cluster nodes). However, this redistribution brings some
benefits to the query runtime: during the evaluation of the
non-equi join predicates, Impala only needs to iterate over
the tuples in the current bucket. The disadvantage of the
redistribution, on the other hand, is a possible data transfer
through network to another cluster node.

In contrast, Pig does not need a redistribution of the
data, because it has already read the entire document. The
disadvantage of our Pig Implementation is that it only
supports simple nested loop joins. The nested loop joins
compare, for each tuple of the right side, the complete left
side. Currently, it does not support materialization for the
right side of the join, such that it must iterate over all
annotations and evaluate the selection.

Joins with external domain specific data: Queries Q14 and
Q15 in our query set join external data with text data. Impala
executes this join fully parallel as a broadcast join since the
table that holds the user-defined dictionary is relatively small.

Pig reads the dictionary at the beginning of the Pig script
into the memory and adds the containing tuples into a Bag.
Next, it passes the Bag to eachMap-Task that executes the UDF
for the local part of the query. This enables Pig to evaluate the
join between the annotations and the content of the diction-
ary for multiple documents in parallel.
5.5.3. Aggregations
Queries, Q18.1, Q18.2, Q19.1, Q19.2, Q20.1, Q20.2, Q21.1,

Q21.2, Q22.1 and Q22.2, benefit from parallel pre-agg-
regations in Impala. Moreover, we observe that corpus-
wide aggregations, such as Q18.2, Q19.2 or Q20.2, are
executed faster than per-document or per-string aggrega-
tions, such as Q18.1, Q19.1 or Q20.1, in Impala.

A closer inspection revealed that again the size of the
result set for per-document or per-string aggregations is
often drastically larger than the size for a result set of a
corpus-wide aggregation. Shipping and printing the result
set to the client consumes most of the execution time in
the Impala system.

Pig executes the per-document aggregations in the UDF for
the local part of the query. We use a hash-based Group By
implementation with accumulator-based aggregations. The
global aggregations in Pig use the Reduce phase of the Map-
Reduce framework. The Map phase executes for distributive
aggregation functions, such as SUM, COUNT, MAX and MIN,
the same UDF as for the per-document aggregation. Then, Pig
applies a combiner to the already pre-aggregated documents.
The combiner aggregates this pre-aggregated documents once
more and reduces the size of the intermediate results. The
framework then redistributes these intermediate results to the
Reduce-Tasks, which apply the final aggregation. Additionally,
the redistribution of the intermediate results begins when 90
percent of the Map-Task are complete. This reduces the time
that the Reduce-Task adds on the total runtime of the query.
Because of the reduction of the intermediate results and the
early start of the Reduce-Tasks, the queries with global
aggregations are only slightly slower than the queries with
only per-document aggregations.

5.6. Qualitative results

After the presentation of results in the previous subsec-
tions, we turn to discuss INDREX's qualitative assessment.

Relation extraction and analytics in a single system: First
and foremost we can see by now that our solution empowers
users to query textual and non-textual data under the same
framework due to the span model we presented. Our int-
uitive model allows querying on individual characters, tok-
ens, sequences of tokens or characters, dependency tree
structures and relational data. For example, a user (1) can
seek sequences from a tree-based structure, such as the
subject of a sentence, and (2) can match these sequences to
shallow token sequences, such as named entity phrases.
Additionally INDREX is able to load extracted annotation into
a small number of base tables.

Declarative query processing: A recent study in [16]
surveyed the landscape of information extraction (IE) tech-
nologies and identified that rule-based IE dominates the
commercial world. The commercial world greatly values
rule-based IE for its interpretability, which makes IE pro-
grams easier to adopt, understand, debug, and maintain in



7 IMPALA uses sentry, a role-based, fine-grained authorization system.

T. Kilias et al. / Information Systems 53 (2015) 124–144140
the face of changing requirements. The user can express
these rules in INDREX with declarative queries. One exam-
ple is a wide range of local joins for executing proximity
queries on the same sentence and other alternative docu-
ment structures. Moreover, INDREX allows one to easily
incorporate domain knowledge, which is essential for
targeting specific business problems. One example is joins
for integrating text data with existing relational data from
the same system. INDREX also supports joins on external
resources, such as dictionaries, joins using a regular expres-
sion, joins using built-in predicates, such as LIKE, or joins
using a UDF as predicate function.

INDREX returns results within 10 s of seconds: In a
business setting, the most significant costs of using informa-
tion extraction are (a) the labor cost of developing or adapting
extractors for a particular business problem, and (b) the
throughput required by the system. INDREX executes declara-
tive queries with fast built-in optimizations. Our extensive
evaluations show that INDREX can return results for most
queries in 10 s of seconds in a columnar database, such as
IMPALA. Only a few queries run for more than a few minutes.
Most operations on text data are executed embarrassingly
parallel, such as local and join operations on a single sentence
or operations on a single document. INDREX benefits from
built-in optimizations of the columnar database for these
operations, such as multi-core support for executing expensive
operations on a single sentence, built-in partitioning schemas
for fast data-locality aware execution and at-query-time-code-
generation for optimizing built-in and user-defined functions.
We could also observe that INDREX benefits from built-in data
compression techniques of the Parquet.io file format, such as
dictionary encoding, zigzag encoding, and RLE encoding of
data. However, Impala cannot yet execute queries that require
user-defined table generating functions, such as queries for
consolidating overlapping spans or queries that split results.

Overall, we can recommend running INDREX on a
columnar database with multi-core support and compres-
sion, such as Impala. Contrarily, state-of-the-art approaches
execute text mining workloads in Hadoop-based environ-
ments nearly two orders of magnitude slower.

Additional observations: Similar to the Extract-Transform-
Load paradigm of a data warehouse, we recommend execut-
ing common language and document specific transformations
before loading. Often, existing implementations of these tasks
are already optimized towards result quality and execution
speed. However, we recommend executing domain specific
transformations in INDREX. These transformations often
require the user to integrate annotations from base tables
with domain specific data in an iterative fashion. The design of
our INDREX system follows these guidelines and explicitly
supports the often practiced trial-and-error process of many
users during relation extraction.

Optionally, the loader could pre-compute document
specific aggregations, such as term or annotation frequencies,
or local joins when loading a document ‘on-the-fly’ and
before query time. As a result, the database system can focus
its resources on other computations during query time.

Sharing or protecting data or rules: INDREX leverages
built-in capabilities of the underlying system for sharing data
about the extraction process among different users. Example
resources are views that incorporate base tables, tables that
contain domain specific data, such as from a customer
resource management system, or tables that contain data
from external resources, like Gazetteers. INDREX users can
protect these ‘assets’ with the built-in security system of a
RDBMS and can grant rights to other users.7 Hence, INDREX
users execute these tasks with the standard workbench of
the underlying system and do not need specific clients for
accessing or managing these resources.

5.7. Future work

This work contributes to the vision of a single integrated
query system over textual and relational data representations.
We consider our future work in the following two areas:

5.7.1. Learning hints for rewriting queries
Resolving homonyms, synonyms and entailment: Working

with natural language means managing the never-ending
variance in language, in particular when dealing with homo-
nyms, synonyms or entailment. Often the user needs help
from the system when formulating complex queries for
resolving these cases. One example is the disambiguation of
relation names. In [3] we actively proposed synonymous
expressions for words that likely represent names of relations
or attributes. Moreover, in [4] we proposed selectional restric-
tions for attribute types of a relation learned from large
corpora of text data. Another direction is learning to join,
which requires from the system to identify predicates for
joining text data with relational data.

Repairing spans: Another interesting direction is repair
operations on span data. Such an operation would inspect
results from candidate extractors and automatically cor-
rect overlapping or incorrect span boundaries.

Learning hints: For learning such hints, computational
linguists frequently apply classifiers based on features from
sentences [38]. These data mining functions execute iterative
algorithms and require global states. Another source for hints
is click stream-based approaches. For example, Google's
knowledge graph leverages click stream data for refining rule
based and pre-computed extractors. In the case of INDREX, an
OLAP-[19], search- or CRM-application might trigger a query
refinement. In [40] we defined a preliminary set of such
interactions. In our future work, we will explore how these
interactions may improve the quality (in terms of precision
and recall) of extractors in INDREX.

5.7.2. Hints-as-you-type
We could observe interaction times in 10 s of seconds with

our setup and nearly two orders of magnitude speedup in
contrast to a Hadoop-based baseline. Ideally, the user would
receive instant query refinements and results as-she-types.
This scenario again requires answering times in hundreds of
milliseconds, or another speedup from the system of nearly
two orders of magnitude.

In-memory databases: In-memory databases leverage
multi-core technologies and a hybrid row-based and col-
umnar-based layout on main memory hierarchies. Exam-
ples are SAP HANA [27] or MonetDB [12]. This database
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technology might permit the necessary performance gains
for our scenario. Extending these databases not only
requires transforming the principles of INDREX to this
new hardware layer. It also requires extending these data-
bases with powerful classifiers for computing suggestions
and hints. One option is ensemble classifiers that may
leverage multi-core and shared memory architectures.

Columnar storage improvements: Main memory data-
bases may hold large samples of compressed relational data
and data from our span table. However, main memory
databases are too costly for analyzing billions of pages.
Distributed columnar databases are a young phenomenon
and currently various storage layouts on top of the HDFS exist
[22]. An interesting topic is extending INDREX towards a
query optimizer that incorporates various columnar layout
techniques and clustered index structures for achieving sub-
second response times. This includes support for query
predicates with a low selectivity, such as the dictionary lookup
predicate in Fig. 3, or lookup queries on primary keys, such as
the ID of a span, document, sentence or annotation, or local
queries that often execute self-joins. Other extensions include
support for queries that exploit the proximity of span contain-
ment in textual data. Extending distributed columnar data-
bases with the ability to execute iterative algorithms,
including managing effectively global states across multiple
nodes, is another relevant topic.
6. Conclusion

We described INDREX, a single system for managing both
textual and relational data. The system supports a data ware-
house style extract-transform-load of generic relations
extracted from text documents and supports additional text
analysis libraries. The user can query these generic relations to
extract higher level semantics and can join them with other
relational data. We formalized extensions supporting these
queries and presented our intuitive span data model. Our
white-box-functions extend a Hadoop-based and an Impala-
based execution engine and benefit from built-in optimiza-
tions. Our results demonstrate the effectiveness of INDREX on
Impala on a wide set of queries. We report nearly two orders
of magnitude faster execution times for the Impala-based
system over the Hadoop-based system and could receive
results in 10 s of seconds.

There is an enormous opportunity for researchers to make
this base system even more principled, effective, and efficient.
For example, one vision is instant hints for supporting the
user when writing queries. In our future work, we will extend
the INDREX languagewith new primitives (and corresponding
optimizations), and will explore modern hardware.
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Appendix A. Benchmark queries

We propose the following set of queries for typical opera-
tions during an iterative relation extraction task. We used
these queries for evaluating the feasibility of a system for
executing them and for measuring the efficiency of the system.

Selections: These queries scan and select annotations
with various comparison predicates.
Q1.
 Select all tokens (high cardinality).

Q2.
 Select all tokens acquire (low cardinality).

Q3.
 Select all tokens that match the regular expression

acquir.n.

Q4.
 Select all tokens LIKE %acquir%.

Q5.
 Select all annotations with stringId¼1000.
Joining data from the same document or sentence:These
queries execute joins, such as self-joins, on the same
document or sentence. For instance, a query that falls into
this category tests if two spans appear directly after each
other. Another example is queries that test if two nodes in
the dependency path are connected by a common edge.
Q6.
 Return all occurrences of the 3-token phrase Presi-
dent Bill Clinton.
Q7.
 Return all token 3-grams, such as wor, ord for word.

Q8.
 Return all occurrences of a verb between two noun

phrases within a sentence.

Q9.
 Return all documents with their sentences and tokens.
Q10.
 Return all sentences that contain an organization and
a person.
Q11.
 Return all paths with length of three in dependency
graphs.
Q12.
 Return all occurrences of the dependency path
cop〈�nsubj�〉nn.
Q13.
 Return all organizations that contain the source or
target of a dependency with the label nsubj.
Joins with external domain specific data:These queries
execute a join against text data and an external resource,
such as a dictionary.
Q14.
 Join noun phrases, such as Hurricane Katrina, with a
dictionary for weather phenomena.
Q15.
 Join the predicate verb phrase, such as acquire or
purchased or took over, between two organizations
with a dictionary for business acquisitions.
UDT/UDAs:These queries execute user defined table gen-
erating functions, such as testing and consolidating the
containment of multiple phrases.
Q16.
 Return all noun phrases that do not contain any other
noun phrases. This query emulates a ContainedWithin
() function.
Q17.
 Extract all enumerations of organizations, such as …
IBM, SAP and Software AG.
Corpus wide aggregations:These queries conduct aggrega-
tions, such as counting annotations, or grouping and coun-
ting annotations by type or text.
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Appendix B. Runtime details

Figs. 10–14 show details for each query category
and ’drill down into’ the measured aggregated runtime
of Fig. 7 from Section 5.5. The figures compare the
runtime share (shown in percent) and for each query
category between a HadoopþPig system and an Impala
System on 800K documents.
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Fig. 12. Comparison of runtime percentages for different queries that
process joins with external sources.
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Table 2
This table shows a comparison of the available features for different relation extr
INDREX on Impala and INDREX on Pig, such as SystemT [37], GATE [18] and PT

Features IMPALA IMPALA/INDREX

Supported annotations
Token No Yes
POS No Yes
Lemma No Yes
Named entity No Yes
Phrases No Yes
Constituency parse No Yes

Dependency parse No Yes

Relations No Yes
Across-document annotations No Yes

Use existing base annotations during
query

No Yes

Generate base annotations during
query

No No, because of the lack of
UDTs

Store new created annotations No Yes

Local queries (per document)
Regular expressions

Char Yes Yes
Token No Only simple, without

Kleene star
Predicates and scalar functions on spans, e.g. before, contains or CombineSp

On char No Yes
On token No Yes
On segment No Yes
Consolidate No No

Joining with existing semantics
Dictionary lookup No File, table or column

based
Global queries

Group by
Local Yes Yes
Global Yes Yes

Aggregations (SUM, COUNT, AVG, MIN, MAX)
Local Yes Yes
Global Yes Yes

Across-document queries, e.g. follow
web links

No Yes
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Fig. 14. Comparison of runtime percentages for different queries that
process local joins with aggregations.
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Appendix C. Feature Comparison

Table 2 shows a comparison of the available features for
different relation extraction systems.
actions systems. We compare the two Prototypes mentioned in Section 5,
QL [47] from Section 2.

PIG/INDREX SystemT GATE PTQL

Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes possible as

UDF
UDF Link grammar

Yes possible as
UDF

UDF No

Yes Yes Yes No
Yes No No No
Yes No Yes Yes

Yes Yes Yes No

Pig Latin Pig Latin,
JAQL

Yes Yes

Yes Yes Yes No
Yes Yes JAPE No

ans
Yes Yes No No
Yes Yes No Only Before
Yes No No No
Yes Yes No No

File, table or column
based

File based File
based

Broker joins the query
results

Yes Yes No No
Pig Latin Pig Latin/

JAQL
No No

Yes Yes No No
Pig Latin Pig Latin/

JAQL
No No

Pig Latin Pig Latin/
JAQL

No No
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