
AutoDict: Automated Dictionary Discovery

Fei Chiang, Periklis Andritsos, Erkang Zhu, Renée J. Miller

Department of Computer Science, University of Toronto
Toronto, Canada

{fchiang, periklis, zhuerkan, miller}@cs.toronto.edu

Abstract— An attribute dictionary is a set of attributes together
with a set of common values of each attribute. Such dictionaries
are valuable in understanding unstructured or loosely structured
textual descriptions of entity collections, such as product catalogs.
Dictionaries provide the supervised data for learning product
or entity descriptions. In this demonstration, we will present
AutoDict, a system that analyzes input data records, and discovers
high quality dictionaries using information theoretic techniques.
To the best of our knowledge, AutoDict is the first end-to-end
system for building attribute dictionaries. Our demonstration
will showcase the different information analysis and extraction
features within AutoDict, and highlight the process of generating
high quality attribute dictionaries.

I. INTRODUCTION

Web data is often in an unstructured text format or in a

semi-structured record format. To support effective structured

querying of this data, the information needs to be converted

into a structured format. Consider the following example of

TV descriptions. To understand, maintain, clean, or query this

information, it is helpful to understand what parts of a product

description represent properties such as manufacturer, model,

size, refresh frequency, etc.

• t1 : Samsung LN-52A650 52in 1080p LCD Widescreen 60Hz
• t2 : Mitsubishi WD65835 65” 1920x1080 Projection LCD TV

Widescreen
• t3 : Sony XBR 46” 1080p LCD HDTV 120Hz

Manually identifying the inherent structure and appropriate

attribute values in such records is a laborious task requiring

highly specific domain knowledge. Users would need to iden-

tify the desired attributes, and have knowledge of the syntax

and semantics of these attributes. Identifying the specifications

of a bicycle (e.g., manufacturer, frame size, type) is different

than the specifications of a digital camera (e.g., manufacturer,

memory, zoom). Current techniques rely on identifying basic

attributes, such as manufacturer, and having a domain expert

manually identify the remaining descriptive attributes (e.g.,

memory size), and then creating taxonomies that categorize

the entities and their properties. In this demonstration, we will

present a tool that automates this process for a user, by identi-

fying core attribute values in a record, and then automatically

identifying values that belong to the same attribute. Unlike

previous methods, we do not assume a priori knowledge of

any record structure or a catalog. Instead, we make use of

only a sample of marked values from the user.

Our demonstration will focus on product data. Many ven-

dors such as amazon.com which sell a variety of products from

different suppliers must be able to identify which parts of a

product description are associated with which attribute. Given

the heterogeneous data formats from different suppliers, that

may contain missing fields, incorrect values, and inconsistent

formats, the task of segmenting these records into attribute

values is challenging. To extract values for attributes such as

year, regular expressions can be used. However, for categorical

attributes with no clear distinguishing formatting, such as TV

manufacturer and model, a table of possible attribute values

(i.e., a set of dictionaries) is most useful. Often users know

which attributes they’re interested in (for a given querying or

cleaning task). So given a user provided set of attributes, we

would like to segment records into values of those attributes.

In AutoDict, we model attributes using discovered lists of

attribute values.

Previous work on segmentation has attempted to leverage

the inherent structure in the data records (given as strings) by

expanding models such as Hidden Markov Models (HMMs)

to include references to dictionaries [1], where the dictionaries

are already given as input and not learned. Models such

as Conditional Random Fields (CRFs) [2] and hierarchical

HMMs [1] have also been used to segment records into

entities, but the focus here is based on learning the models,

assuming a partial dictionary is given. Work in query seg-

mentation [3] and keyword tagging [4] has focused on using

generative models to maximize the probability that a candidate

segmentation is the correct one. Most of these models either

assume a fixed attribute order (making them inflexible to

handle string records where attribute values may appear in

different orders or where a single value may be composed of

non-sequential tokens in the string), or assume a dictionary is

given to facilitate the tagging process [5]. A semi-automatic

dictionary discovery tool is proposed by Godbole et al. [6] that

assumes the attributes, and an initial set of values to start the

search process, are given. Their discovery algorithm groups

words into the same dictionary based on a frequency, tf-idf

based similarity model. In our work, we discover frequently

co-occurring sets of values, and present these to the user,

ensuring that only relevant values are tagged. Furthermore, our

discovery algorithm applies information theoretic techniques

that capture both the frequency and information content be-

tween values.

Previous work has assumed that the attribute dictionaries

are given, and has not addressed the question as to how

these dictionaries are obtained. In some domains, standard

tables such as cities, states, and postal codes are readily avail-

able. However, for domains such as televisions or children’s

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.126

1277

2012 IEEE 28th International Conference on Data Engineering

1084-4627/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDE.2012.126

1277

clothing, although this information exists online, finding a

single authoritative source listing all manufacturers, tv lines,

or clothing lines, that is accurate and complete, is difficult. In

addition, customizing this list according to the needs of the

application and schema often requires highly specific domain

knowledge.

In this demonstration, we present AutoDict, a tool that

simplifies the segmentation and tagging tasks, and generates

dictionaries from semi-structured data. AutoDict is able to

achieve high quality dictionaries using only a small sample

of input entries. We will show in this demonstration how a

user can interactively create a dictionary according to their

application requirements.

II. SYSTEM OVERVIEW

Figure 1 illustrates the architecture of AutoDict consisting

of modules for identifying and expanding segments, and tag-

ging them to the appropriate attribute. A segment is an ordered

set of values. The system takes a raw data file containing a

list of records (where each string record contains a list of

values describing a product), a set of user specified threshold

parameters, and a schema containing k attributes as input, and

produces k populated dictionaries according to these attributes.

The first phase, seed identification, consists of identifying all

the frequent sets of values occurring in the dataset which we

call seeds. These seeds are ranked and refined according to the

amount of information they capture, which is determined in

the information content quantification module. At this point,

we have a basic set of candidate segments. Since the quality

of a dictionary is subjective according to the application

needs, we allow the user to associate particular segments to

specific dictionaries to produce more relevant dictionaries.

This feedback will be used in the segment tagging module

when deciding the segment to dictionary mapping. We expand

upon this basic set of candidates in the candidate generation
module by considering candidate values that may be composed

of non-sequential values in the record. Finally, in the segment
tagging component, for each record in the dataset, we tag each

segment in a record with one of the k dictionary labels, thereby

producing k populated dictionaries. We describe each of the

four modules next.

A. Seed Identification

The first step in the dictionary discovery process is to

identify the segments that are the core of a record. We call

these initial segments seeds, since they form the basic set

of segments which we will expand upon in the Candidate

Generation phase. Due to their importance, we expect their

frequency of occurrence in the data to be high. Given a raw

dataset I , we first compute and store the frequency of all

segments sl of length l (i.e., containing l values), l ∈ [1, n]
for a given n. We add candidate segment sl to an initial,

single dictionary D if it satisfies our cost function (we do

not assume a set of k attributes are known at this point). The

cost function is based on finding the smallest and simplest

model (i.e., dictionary) D to represent the data instance I . This

�������	
���
���	
�	�

����	
�
��	
��

�

��
��
�	
�
��	
��

����
��	
�
�
�
��	
��� �����

�����
��	��
	
���	��������
	
��
���
����� �		�
��	
�

�
�	
����

�

���
��
����
��	
�
�
	

������
���
	�
����
��
�	� �
��
�	�

����
��

� �

	�����

!�
�"
�
 �		�
��	

�������	
���#���

Fig. 1. Dictionary discovery framework

idea can be quantified using the Minimum Description Length
(MDL) Principle [7], [8]. MDL defines the description length

DL for D as the length of the model L(D), plus the length

to encode the data values in I given the model L(I|D). Our

objective is to minimize DL. We seek to add segments to D
that occur frequently in I . The idea is that if the frequency of

sl is sufficiently high, then adding sl to D will increase L(D)
and decrease L(I|D), such that the DL is further reduced.

By doing this, we find the frequent segments in I that are

now modeled in the dictionary D. After evaluating all sl, the

resulting D contains a basic candidate set of segments. We

refine these seeds by considering their information content.

B. Information Content Quantification

As mentioned earlier, one of the key restrictions of current

generative models is the inability to handle attribute values that

consist of values in a different order across records, or values

that do not appear consecutively. Our Seed Identification
algorithm shares this limitation. For example, it is not able to

identify the bi-gram ”LCD Widescreen” in t2 because these

keywords do not occur next to each other. To overcome this

issue and quantify the information content of naturally co-

occurring values, we use an information theoretic approach.

In prior work on schema discovery, the Agglomerative Infor-
mation Bottleneck, (AIBM) clustering algorithm has been used

to quantify redundancy in large data sets [9]. The outcome

of AIBM is a hierarchy of clusters of co-occurring values.

To create attribute dictionaries, we cluster values and consider

their distribution according to how they appear in the data

set. We compute the information content between values and

records, captured by the information-theoretic measure mutual
information.

Since we would like to identify the strongest seeds based on

the natural co-occurrence of values, we employ the Informa-
tion Loss function as originally introduced in the Information
Bottleneck Method [10]. Intuitively, information loss measures

the change in information content when replacing a set of

12781278

values represented by u with a set of values represented by v.

We would like to find sets of values with minimal information

loss.

Our AIBM clustering computes the information loss for

every pair of values that appear in the dataset. At each

step, AIBM merges the values that incur the smallest loss of

information. These are values that appear either exclusively

(information loss equals zero), or almost exclusively in the

data. This procedure assumes a bag-of-word semantics, and

helps to identify values that are out of order in a record. At

the end of the routine, we have quantified the information

content in the dataset in two ways: (1) we know the order in

which values merge with other values, and (2) we know the

information loss incurred at each step. This information will

be used to identify extensions of candidate segments in the

candidate generation module.

C. Candidate Generation

Using the pairwise information loss values, we expand each

candidate in the basic candidate set. Each candidate is a

segment sl also known as a seed. A seed serves as a core

component of the record due to its high frequency of occur-

rence. We hope to extend the seeds with descriptive values

while incurring minimal information loss, since our goal is to

find strongly correlated values describing an attribute. We do

this by considering candidate values v1 . . . vi within a window

w of the seed, where i ∈ [1, w]. We expand sl by adding i
values to sl. These i values occur on either side of sl, possibly

excluding values vj , j ∈ [1, w], to account for values that may

not appear sequentially. In order for an expanded segment s
′
l

to be added to the initial dictionary D, two conditions must be

satisfied: (1) the amount of information loss between sl and

(v1 . . . vi) (the descriptive values) must be less than the loss

percentage we are willing to tolerate; and (2) the conviction

value1 between sl and (v1 . . . vi) must be greater than the

conviction threshold set by the user, since we only want to

expand the segment with values that have strong association

with sl. Finally, the resulting set of s
′
l segments are added

to D, which will serve as the starting point for the segment

tagging to generate the final set of dictionaries.

D. Segment Tagging

To allow a user to customize the dictionaries to their appli-

cation requirements, we present a sample set of s
′
l segments

to the user, and ask the user to mark each segment with one

of the k attribute labels. This allows our tagging algorithm to

produce more relevant dictionaries based on the user’s starting

preferences. Segments marked with label u ∈ [1, k], will

compose the initial entries of dictionary du. A dictionary du
contains values describing a specific attribute, and we define a

property called validity that each du must satisfy with respect

to all tuples in I . Specifically, the validity property states that

a tuple can only contain at most one value from a dictionary

du. For example, a tuple describing digital cameras cannot

1Conviction is an association measure based on co-occurrence frequency
used to quantify attribute value relationships [11].

Fig. 2. Define the input parameters

contain both Nikon and Canon as manufacturers. We will

reference the validity property as we populate the dictionaries.

We apply the MDL Principle to find a model M (a set

of du’s) that can represent the data instance I as succinctly

as possible. We initialize M to the initial entries in du, ∀u.

The initial L(M) consists of counting the segments in du for

all u, these values are considered tagged in I . From this, we

compute L(I|M) by counting those values not in M , these

values are considered untagged. The instance I consists of

tuples that may contain both tagged, and untagged values. For

each tuple, we consider the possible assignments to tag the

untagged values, and compute the associated DL cost. We

select the assignment with lowest cost. If there is a tie, we

compare the similarity between the candidate values and the

dictionary values of the assigned attribute, and we select the

attribute assignment with the highest similarity. If a candidate

assignment leads to a violation of the validity property, that

is, a tuple contains two values from the same du, then that

candidate is disregarded. We process the tuples in increasing

order of the number of untagged values. After evaluating all

the tuples, the set of k dictionaries is returned to the user for

review.

III. DEMONSTRATION

AutoDict has been implemented as a working prototype

using Python and Perl, and offers an interactive web interface

implemented using the jQuery UI Javascript library running

on an Apache server. In the demonstration, we will highlight

features of the AutoDict tool using real datasets, and guide

a user as to how they can discover relevant dictionaries from

their data. In particular, a user can upload their own data or use

one of the provided sample datasets. We allow users to control

the thresholds of the qualitative measures that our discovery

algorithm uses, as shown in Figure 2. For example, if the given

12791279

Fig. 3. Define the attributes

dataset contains important syntactic formatting, i.e., a user

would like the data values to be matched based on distinctive

data patterns, then a high similarity threshold should be used.

Alternatively, if a user would like to obtain seed segments

containing correlated values, then a higher conviction value

should be specified. These parameter values can be adjusted

using the sliding bars as shown in Figure 2.

In the next step, shown in Figure 3, users define their

schema by specifying a list of attributes, where a dictionary

will be created and populated for each attribute. Users can

specify a priority ordering over the attributes by dragging

and dropping the attribute to the desired ordered position.

Attributes at the top have highest priority, indicating that the

discovery algorithm will try to maximize the quality of these

attribute dictionaries over attributes lower in the ordered list. In

our example shown in Figure 3, we use a real laptops dataset

focusing on IBM Thinkpads and define eight attributes,

with the Models attribute having the highest priority. If

users would like to customize the dictionaries towards their

application requirements, they can define initial entries for

each dictionary. We present a list of high frequency segments

in the data (top right panel of Figure 3), and ask the user

to assign these segments to a dictionary by dragging and

dropping the segment into the appropriate attribute box.

After defining the schema and initial entries, Figure 4

shows the resulting set of populated dictionaries. There may

be cases where not all the values in a record have been

matched to a dictionary. We display these values (shown

in bold) in their respective record, in an Untagged Tokens
list, shown at the bottom of Figure 4. In our example, the

value ibm was not matched to a dictionary since there was

Fig. 4. The final populated dictionaries

no suitable Manufacturer attribute. Users may download

the dictionaries as a text file, or modify the parameters to

generate a new set of dictionaries according to their application

requirements.

IV. CONCLUSIONS

In this demonstration, we present AutoDict, a novel dictio-

nary discovery tool that incorporates a set of measures includ-

ing information content, similarity, and conviction, to produce

relevant and accurate dictionaries. We show the usefulness of

our approach by demonstrating our tool using real data in the

products domain.

REFERENCES

[1] V. Borkar, K. Deshmukh, and S. Sarawagi, “Automatic segmentation of
text into structured records,” SIGMOD Rec., vol. 30, no. 2, pp. 175–186,
2001.

[2] S. Sarawagi and W. W. Cohen, “Semi-markov conditional random fields
for information extraction,” in NIPS, 2004, pp. 1185–1192.

[3] B. Tan and F. Peng, “Unsupervised query segmentation using generative
language models and wikipedia,” in WWW, 2008, pp. 347–356.

[4] N. Sarkas, S. Paparizos, and P. Tsaparas, “Structured annotations of web
queries,” in SIGMOD Conference, 2010, pp. 771–782.

[5] E. Cortez, A. S. da Silva, M. A. Gonçalves, and E. S. de Moura,
“Ondux: on-demand unsupervised learning for information extraction,”
in SIGMOD ’10, 2010, pp. 807–818.

[6] S. Godbole, I. Bhattacharya, A. Gupta, and A. Verma, “Building re-
usable dictionary repositories for real-world text mining,” in CIKM,
2010, pp. 1189–1198.

[7] J. Rissanen, “Modeling shortest data description,” in Automatica, 1978.
[8] T. Cover and J. Thomas, “Elements of information theory.”
[9] P. Andritsos, R. J. Miller, and P. Tsaparas, “Information-theoretic tools

for mining database structure from large data sets,” in SIGMOD, 2004,
pp. 731–742.

[10] N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in
NIPS, 1999, pp. 617–623.

[11] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in SIGMOD’97,
pp. 255–264.

12801280

