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Abstract—In this paper, we present an efficient type-agnostic
approach for finding sub-sequences in data, such as text doc-
uments or GPS trajectories. Our approach relies on data
deduplication for creating an inverted index. In contrast with
existing data deduplication techniques that chunk raw sequences
of characters arbitrarily, our approach preserves the semantics
of the original sequence via the notion of token and can be used
to index normalized data. When compared to indexing methods
that preserve the semantics and operate on normalized data, our
method increases the relevance of the inverted index, reduces its
size and improves its performances. Since data normalization
is generally not used beyond the scope of textual data, we
introduce a framework that helps identify the extent to which
data should be normalized regardless of its type. On this basis,
we demonstrate with a dataset made of GPS trajectories that
our method can be used agnostically: it can be used to index
and query data of a completely different type. Finally, we show
that the resulting spatial index is characterized by a better
discrimination than classical spatial indexing approaches.

I. INTRODUCTION

We are witnessing an unprecedented rise in the demand
for data processing. A large part of data consists of ordered
sequences that can be processed in a batch or in a streaming
fashion. A common need when processing data is to find
common sub-sequences between a query and sequences of
items. In this paper, we introduce an efficient type-agnostic
approach for finding sub-sequences in sequences of data. We
refer to a token as a semantic piece of information that should
be preserved while handling sequences of data. Tokens can
be words in the context of textual data but may also refer
to groups of attributes such as the coordinates that compose
GPS trajectories. When searching for sub-sequences in data,
a common approach consists in segmenting the sequences
that compose the dataset. Two very practical segmenting ap-
proaches are generally used by indexing solutions for finding
sub-sequences in data.
• N-grams. The most common way of finding sub-

sequences (mainly for textual data) is called n-grams [15].
By computing all the possible overlapping sub-sequences
of size n in a sequence of tokens, n-grams give exhaus-
tive results when looking for similarities. This approach
comes with a high cost in terms of storage requirements,
which tends to increase with the overlapping factor n.
When used in the context of spatial indexing, the number
of possible n-gram combinations rapidly explodes and
disqualifies this technique.

• Hash-based. Another approach for producing segments,
called Hash-based (HB), identifies non-overlapping con-
tiguous sub-sequences of tokens, called chunks [6].
Chunks can be identified by comparing the hash sums
of the successive tokens to some constant. If the hash
sum is equal to the constant, then a chunk boundary is
set, otherwise the next token is hashed and the process is
repeated until a chunk boundary is found. This approach
requires less storage and computing power than n-grams,
but gives non-exhaustive results. In addition, since the
number of possible hash sums is limited to the number
of possible tokens, it tends to produce a lot of small
chunks that lead to the detection of short and irrelevant
sub-sequences.

When studying these two segmentation approaches, we
observe that there exists a clear tradeoff between the n-gram
approach (that requires a lot of resources) and the hash-based
approach (that trades effectiveness for efficiency). Some data
deduplication techniques, such as content-defined chunking
(CDC), might be considered as optimized variants of the
Hash-based approach. These techniques greatly improve the
aforementioned tradeoff, which is of great importance in the
context of data storage. However, data deduplication operates
on raw sequences of bytes and do not preserve the semantic
of tokens.

Contributions: In this paper, we introduce token-based
chunking (TB), an approach for segmenting sequences of
tokens regardless of their type. The chunking mechanism
used by this approach is inspired by CDC but preserves the
semantic of tokens and overcomes the issues associated to HB.
When compared to other segmenting techniques, TB greatly
improves the effectiveness of the index and reduces its size.
Normalization is relatively intuitive in the context of textual
data. However, the extent to which non-textual data such as
GPS trajectories should be normalized is harder to determine.
Consequently, we propose a normalization framework that can
be used to evaluate and determine the best normalization set-
tings. When used for indexing trajectories, we demonstrate that
TB overcomes the discrimination problem that characterizes
traditional spatial indexing methods.

The following sections aim at showing that TB can be
used as a general purpose technique for building indexes
on various kinds of sequential data. In Section II, we give
a birds-eye view of our approach. We provide a detailed



description of TB in Section IV. In in section V, we describe
our normalization framework and show to which extent data
should be normalized regardless of its type. In Section VI,
we present a detailed evaluation of TB with textual data.
In Section VII, we show how TB can be used to create
an index for GPS trajectories. Finally, in Section VIII, we
highlight previous works from the data storage and the data
deduplication fields.

II. OVERALL APPROACH

An inverted index is usually composed of a dictionary of
terms, each of which points to a posting list that contains
document identifiers. Boolean queries are then used to retrieve
documents that contain a set of query terms. Alternatively,
phrase queries are used to take the position of the term in
the document into account. When building an index aimed
at searching for sub-sequences in documents, using words
as terms of the dictionary usually gives poor results both in
terms of efficiency and effectiveness. Therefore, segmentation
techniques such as n-gram, CDC or HB are used to create the
terms of the inverted index. The overall approach for creating
the index could be summarized in the phases listed hereafter.

1) Extraction. This phase depends on the type of the data
sequence and extracts meaningful data only. For example,
in the case of XML data, the unnecessary tags and
attributes are usually removed.

2) Tokenization. This phase splits the extracted data into
small pieces called tokens. In the case of textual data,
punctuation and white spaces can be used to create a
sequence of tokens that corresponds to words.

3) Normalization. Token normalization comprises all the
operations that can be performed on tokens (such as stop-
word removal, equivalence classes, case-folding, true-
casting, stemming or lemmatization).

4) Segmentation. When looking for sub-sequences, seg-
mentation techniques, such as n-grams or HB, are used
to compute overlapping or non-overlapping sequences of
tokens which are then used as dictionary terms.

5) Indexing. This phase creates the inverted index by adding
the segments and the document identifiers to the dictio-
nary and the posting lists.

CDC operates directly on sequences of bytes or characters
and Phases 2 and 3 are usually skipped [11], [3]. In contrast,
TB operates on token and benefits from the tokenization and
normalization phases.

III. BACKGROUND AND MODEL

The approach proposed in this paper builds on results from
three domains, namely tokenization, normalization and data
deduplication. To describe how these techniques operate, we
first introduce the notion of an alphabet, consisting of a finite
set of symbols. Formally, we define Σi, an alphabet containing
bit sequences of fixed length i, e.g., Σ1 = {0,1} and Σ2 =
{00,01,10,11}; so we have |Σi| = 2i to be the size of the
alphabet Σi. In the following we assume that the considered
alphabet is Σ8, the set of all possible bytes that can be used

to represent ASCII characters. We also define a byte word as
a variable size sequence of symbols from Σ8. Using Kleene
closure, we have Σ∗8, the set of possible byte words. Assuming
Σn

8 is the set of all byte words of exactly size n, we have:

Σ
∗
8 =

⋃
n∈N

Σ
n
8

Hereafter, we introduce the concepts and terminology that
are useful to understand our approach.

Tokenization: In the context of texutal data, tokenization
splits sequences of characters into words of some language.
In other words, tokenization is a process that takes a sequence
of bytes as input and produces a sequence of meaningful
tokens as output. Tokens belong to the infinite alphabet
T = Σ∗8. On this basis, we can define tokenization as a
function fc : Σ∗8 → T ∗, where T ∗ is a Kleen closure on T
that contains all the possible tokens. For example, assuming
the considered language is English and bytes are interpreted
as ASCII characters, byte sequence 〈T he quick brown f ox〉
is tokenized as 〈 〈T he〉,〈quick〉,〈brown〉,〈 f ox〉 〉, which we
simply write 〈T he,quick,brown, f ox〉 in the rest of the paper.

Normalization: In many cases, tokens can be different but
convey similar semantics. That is the case, for example, when a
word starts with a capital letter at the beginning of a sentence.
Normalization aims at removing such superficial differences,
so that a match can occur on semantically similar tokens.
We define it as a function fn : T ∗ → T ∗n , where Tn is a set
of tokens that depends on the type of normalization being
applied. For example, a case-folding normalization function,
which simply replaces capital letters by lower case letters,
would produce tokens in a subset of T . On the other hand,
a stemming normalization function, which defines heuristics
for making similar words converge toward the same tokens,
would produce tokens that do not necessarily belong to the
english language.

Data Deduplication: Data deduplication can be seen as a
particular approach to data compression that operates on large
corpora of files, rather than independent files. At the heart of
data deduplication techniques, we find chunking algorithms
working on multiple files, with the goal to find common data
chunks. Formally, a chunking algorithm takes a sequence of
data as input, in the form of one (long) byte word w ∈ Σ∗8,
and returns a sequence of byte words rw = 〈w1,w2, · · · ,wk〉,
called the recipe of w, such that ∀wi ∈ rw : wi ∈ Σ∗8 and
w=w1‖w2‖· · ·‖wm. The byte words of recipe rw are precisely
what we call chunks. For example, two possible recipes
for byte word 〈25763537〉 are 〈〈25〉,〈76〉,〈35〉,〈37〉〉 and
〈〈257〉,〈6353〉,〈7〉〉.

Another way to understand recipe rw consists in introduc-
ing new alphabet C = Σ∗8, which contains all the possible
byte words (the symbols of that new alphabet), and to see
rw as a word built using symbols of C. Note that C is an
infinite alphabet, contrary to Σ8. Using Kleene closure again,
we have C∗, the set of all possible recipes. Assuming Cn is
the set of all recipes of exactly size n, we have:



C∗ =
⋃

n∈N
Cn

On this basis, we define chunking as a function fc : Σ∗8→C∗

such that fc(w) = rw, with w and rw satisfying the constraints
mentioned earlier. Note that in practice, each chunk is stored
only once, while being referenced in one recipe or (hopefully)
more (hence the deduplication). That is, the recipe is a type
of meta-data containing only references to actual chunks from
which the original data sequence can be recreated.
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Fig. 1: Content-defined chunking (CDC)

Fixed-size chunks are common but comes with a ma-
jor drawback: when bytes are added at the beginning of
a sequence, all the following chunk boundaries are shifted.
CDC solves this issue by detecting addition-resistant chunk
boundaries [9]. Figure 1 depicts how a simple CDC algorithm
operates. A rolling hash function [21] of size s, depicted here
by a black box, slides over a file F one byte after the other.
After each move, the rolling hash function computes a hash
sum h for the bytes that are located in the window. Chunk
boundaries are detected by checking the condition h mod d = 0
on the hash sums produced by the sliding window, where
d is a user defined divisor. The divisor d is typically used
to manage the average chunk size. Since the boundaries are
based on the content, they resist to insertions. If we assume
two successive versions of a file, such that F ′ is a copy of
F with an insertion in the middle, the algorithm will be able
to find the same boundaries again and to isolate the chunk in
which the insertion occurred.

IV. TOKEN-BASED CHUNKING

As stated in Section I, CDC breaks the semantics of
tokens. This problem comes from the fact that CDC relies
on rolling hash functions to identify breakpoints. In order
to compute hash sums on sequences of bytes, rolling hash
functions usually map the symbols of the alphabets Σ8 to a
set of precomputed random irreducible polynomials. Since the
alphabet Σ8 is limited in size, these random polynomials are
necessary in order to uniformly and randomly distribute the
hash sums produced by the rolling hash function over the hash
sum space [21].

Precomputing a set of irreducible random polynomials
works well when the size of the alphabet is small and
known in advance, such as in the case of Σ8. In our case,
however, we deal with an alphabet made of tokens T , which

is potentially infinite, i.e., |T |=∞. Therefore, it is not possible
to precompute one irreducible random polynomial per token.
Furthermore, in contrast to CDC, we handle sequences of
tokens and produce recipes that contain sequences of tokens.
Another way to understand this issue consists in introducing
a new alphabet CT = T ∗, which contains all the possible
sequences of tokens. Again, a Kleene closure can be used
to define C∗T , the set of all possible recipes over the alphabet
T , such that:

C∗T =
⋃

n∈N
Cn

T

Based on this definitions, we can formally define TB as the
function ftb : T ∗→C∗T . The algorithm we introduce does not
rely on a precomputed set of irreducible random polynomials
in order to detect chunk boundaries and satisfy this definition
by producing chunks that consist of sequences of tokens.

The algorithm is decomposed into two parts. The first part
is given in Algorithm 1 and is responsible for detecting chunk
boundaries. The main configuration parameters are a minimum
(min) and a maximum (max) chunk size, a divisor (d) and a
window size (s). As the tokens are consumed, a rolling hash
function produces hash sums and new chunks are produced
when these hash sums meet a certain criterion, represented
here by the expression h mod d = 0. TB differs from CDC in
the sense that it consumes tokens instead of bytes and produces
sequences of tokens instead of sequences of bytes.

Algorithm 1 Token-based chunking algorithm

initialize(min,max,d,s):
chunk←{∅}
hash← a rolling hash function of size s

read(token):
chunk← chunk :: token
h← hash.slide(token)
if |chunk| ≥ min and

(h mod d = 0 or |chunk| ≥ max) then
write(chunk)
chunk←{∅}

end if

The second part of the algorithm is the rolling hash function
given in Algorithm 2. Since it is not possible to precom-
pute random irreducible polynomials for a vocabulary of
an unknown size, we assume that the hash sums produced
by hashing the tokens are random enough to replace the
precomputed irreducible random polynomials. To do so, we
choose to use a fast non-cryptographic hash function called
Murmur Hash, which produces 32 bit integers. A fixed size
sliding window of hash sums is maintained over the sequence
of tokens to represent the incoming and outgoing tokens. Our
evaluation setup shows that the sums produced by this rolling
hash function reaches the desired properties and produces
balanced hash sums.

The segments generated by this algorithm can be used as
dictionary terms and overcome the following problems. First,



Algorithm 2 Token-based rolling hash function

initialize(s):
a← 31
b← as

hash← a murmur hash function
window← an array of size s filled with 0
position← 0
h← 0

slide(token):
in← hash.digest(token)
out← window[position]
window[position]← in
position← (position+1) mod s
h← a∗h+ in−b∗out
return h

a common pitfall of HB lies in the fact that the hash sum of a
single token is used to identify chunk boundaries. Therefore,
HB could identify boundaries for very frequent tokens such
as the. In contrast, our algorithm is not sensitive to token
frequency since it computes hash sums over a sliding window.
Second, the main problem associated to CDC relies in the
fact that it can break the semantics of the sequence of tokens.
Unlike CDC, our method preserves the semantics of tokens. In
addition, the introduction of thresholds tends to mitigate the
risk of extracting small or large segments that would impact
precision and recall negatively. As we will show later, our
algorithm is characterized by a much improved effectiveness
and efficiency than its counterparts.

V. NORMALIZATION FRAMEWORK

When dealing with textual data, the extent to which nor-
malization is performed is often based on simple intuitions.
However, these intuitions are not valid when dealing with
different types of data, such as GPS trajectories. In this section,
we introduce a normalization framework for evaluating the
extent to which normalization should be performed regardless
of the data type. By observing the evolution of precision and
recall, we show with a very simple textual dataset when one
should start and stop normalizing data.

In information retrieval, precision and recall are often used
to measure the effectiveness of an index, so we start by briefly
reminding these metrics. Precision corresponds to the fraction
of retrieved items that are relevant. In other words, precision=
t p/(t p+ f p), with t p (true positive) the number of relevant
items retrieved and f p (false positive) the number of irrelevant
items retrieved. Recall corresponds to the fraction of relevant
items that are retrieved. More formally, recall = t p/(t p+ f n),
with t p (true positive) the number of relevant items retrieved
and f n (false negative) the number of relevant items that have
not been retrieved.

Another important measure when looking for similarities
is the Jaccard Similarity coefficient. In our context, this
coefficient can be used to measure the similarity between two

recipes, which corresponds to sets of chunks. Therefore, given
two recipes r1,r2 ∈C∗T , their similarity coefficient is:

J(r1,r2) =
|r1∩ r2|
|r1∪ r2|

We previously stated that a good normalization function
should make highly similar sequences of tokens converge to
more similar recipes. So, given two highly similar sequences
sa,sb ∈ T ∗, a good normalization function fn should have the
following property:

J( ftb( fn(sa)), ftb( fn(sb)))> J( ftb(sa), ftb(sb))

Unfortunately, this metric does not indicate when someone
should stop making normalization more aggressive in the
context of chunks. Given an index and a query that use the
same normalization function, precision should remain stable
and should be close to 1, since the probability of having two
large identical sequences of words in unrelated documents is
low. On the other hand, recall should increase since more
relevant items will be found in the set of relevant items.
Therefore, we can say that precision and recall can be used
to identify the optimal extent of a normalization function and
we demonstrate it in the following paragraphs.

In the case of textual data, a tokenizer is used to split a given
text into a sequence of tokens that belong to the alphabet T .
A sequence of tokens can be altered during the normalization
phase to make highly similar tokens converge toward the same
token. In order to illustrate more practically the effect of
data normalization on a small dataset, we consider a set S
of four sequences of tokens s1,s2,s3,s4 ∈ Σ∗8. We assume that
the deduplication of these sequences results in four recipes
r1,r2,r3,r4 ∈C∗ containing a single chunk after deduplication,
such that:

r1 = ftb(s1) = {〈A, f ox,runs〉}
r2 = ftb(s2) = {〈T he, f oxes,run〉}
r3 = ftb(s3) = {〈Master, f ox, is,running〉}
r4 = ftb(s4) = {〈But,chickens,are,running, f aster〉}

We now consider a query such that rq = ftb(sq) =
{〈A, f ox,runs〉} and assume that both s1 and s2 are relevant
answers. If sq is used to retrieve relevant items in S by looking
for exact duplicates, we expect a single result that corresponds
to s1. In that case, precision would be 1/(1 + 0) = 1 and
recall would be 1/(1+1) = 1/2. We now consider a normal-
ization function for textual data f a

n which removes common
stop-words, applies some case-folding rules and does some
stemming on verbs and adjectives. The resulting recipes after
normalization and deduplication may look like this:

ra
1 = ftb( f a

n (s1)) = {〈 f ox,run〉}
ra

2 = ftb( f a
n (s2)) = {〈 f ox,run〉}

ra
3 = ftb( f a

n (s3)) = {〈master, f ox,run〉}
ra

4 = ftb( f a
n (s4)) = {〈chicken,run, f ast〉}

By using the same normalization function on the query sq,
we end-up with the recipe ra

q = ftb( f a
n (sq)) = {〈 f ox,run〉} and



we expect two results which correspond to the two relevant
sequences of token s1 and s2. In that case, precision would still
be 2/(2+ 0) = 1 but recall would improve at 2/(2+ 0) = 1.
We can now easily show that our assertion regarding Jaccard
similarity is true since:

J(ra
1,r

a
2) =

|{〈 f ox,run〉}∩{〈 f ox,run〉}|
|{〈 f ox,run〉}∪{〈 f ox,run〉}|

=
1
1
= 1

is greater than:

J(r1,r2) =
|{〈A, f ox,runs〉}∩{〈T he, f oxes,run〉}|
|{〈A, f ox,runs〉}∪{〈T he, f oxes,run〉}|

=
0
2
= 0

In order to determine when one should stop making a
normalization function more aggressive, we consider a second
normalization function f b

n which only retains nouns and drops
all the other words. The resulting recipes after normalization
and deduplication may look like this:

rb
1 = ftb( f b

n (s1)) = {〈 f ox〉}
rb

2 = ftb( f b
n (s2)) = {〈 f ox〉}

rb
3 = ftb( f b

n (s3)) = {〈 f ox〉}
rb

4 = ftb( f b
n (s4)) = {〈chicken〉}

In that case, precision would drop to 2/2+ 1 = 2/3 and
recall would remain stable at 2/(2+0) = 1. As a consequence,
we get an idea of when it is sound or not to normalize in
the context of TB. While recall improves, the data can be
normalized more aggressively. On the contrary, a drop in
precision indicates that normalization is too aggressive and
the tokens do not capture what characterizes the sequence
anymore.

VI. EVALUATION

In this section, we compare TB with some other state
of the art segmentation methods used for building inverted
indexes and finding similarities in document corpora. Table
I enumerates these methods and illustrates some possible
segments produced by consuming the sequence of four tokens
〈the,quick,brown, f ox〉. As illustrated, the methods based on
n-gram compute all the possible contiguous overlapping se-
quences of tokens. HB produces non-overlapping chunks of
variable size [6]. CDC finds chunk boundaries based on bytes
and, hence, a token can be divided arbitrarily [11], [3].

Dataset: For each evaluated methods, we indexed a full
dump of the English version of Wikipedia (50GB of raw
textual data). Except for CDC, all the evaluated methods
operates on normalized tokens. The normalization procedure
was performed using Apache Lucene [1], a suite of tools that
among others includes natural language processing methods.
We performed the following normalization steps: tokens are
normalized to lowercase characters; numeric tokens are filtered
out; rare big tokens (larger than 1000 characters) are filtered
out; english possessive forms are removed; common stop
words are filtered out; stemming is performed.

Queries: In order to evaluate the effectiveness and effi-
ciency of the different methods, we introduce two search

Method Possible chunks
1-gram {〈the〉,〈quick〉,〈brown〉,〈 f ox〉}
2-gram {〈the,quick〉,〈quick,brown〉,〈brown, f ox〉}
3-gram {〈the,quick,brown〉,〈quick,brown, f ox〉}
4-gram {〈the,quick,brown, f ox〉}
HB {〈the〉,〈quick,brown, f ox〉}
CDC {〈the quic〉,〈k brown f ox〉}
TB {〈the,quick〉,〈brown, f ox〉}

TABLE I: Indexing methods

scenarios. The first one consists in searching the dataset
for exact sentences. In this case, the set of queries is built
by randomly choosing wikipedia articles and, within each
one, randomly picking two consecutive sentences. For each
consecutive sentences, we then verify their uniqueness in the
dataset and eliminate the one that occurs several times. Thus,
this set contains 973 queries which are guaranteed to have
at most one relevant result. The second scenario consists in
searching the dataset for cross references, which typically
corresponds to cases of plagiarism detection. We build this
set of queries by combining the queries of the first set into
486 queries that are guaranteed to have at most two relevant
results. This scenario is important because phrase queries,
which accounts for the position of the terms in the document,
cannot be used in the case of n-gram indexes, resulting in a
loss of precision.

Configuration: Table II lists all of the configuration param-
eters we used to conduct our experiments. Parameter ”Unit”
shows if the method mentioned in the corresponding column
operates on tokens or on bytes. The ”Window size”, ”Min
size” and ”Max size” parameters depend on the unit mentioned
above and specify constraints on the size of the chunks
produced. The ”Divisor” and ”Backup divisor” are used in
order to detect chunk boundaries as explained in Section
III. We defined the ”Min size”, ”Max size” and ”Divisor”
parameters according to the recommendations described by
Eshghi et al. [9] with the intent to reach a desired average
chunk size. In order to compare the segmentation methods in
a fair manner, we targeted configuration parameters that would
generate segments of approximately 52 bytes in average.

Environment: We evaluated our indexes with
Apache Lucene [1], which is a state of the art information
retrieval library developed in java. This library provides the
necessary components for configuring n-gram indexes. We
implemented some custom components for building HB,
CDC and TB indexes. Furthermore, the library contains a
good set of benchmarking tools that we used as a basis to
measure precision, recall, as well as performances. Regarding
our hardware configuration, we ran all our benchmarks using
a Dell Power Edge T110 II with an Intel Xeon CPU clocked
at 3.50GHz and 16GB of RAM.

Chunk distribution: Figure 2 depicts the chunk size dis-
tribution for the three non-overlapping segmentation methods
we evaluated. As illustrated here, HB produces a lot of small
chunks, which results in a lot of irrelevant query results (Figure
5) and in a poor throughput (Figure 6). CDC solves this issue
by introducing the min and max thresholds but the arbitrary



Method 1-gram 2-gram 3-gram 4-gram HB CDC TB
Unit Token Token Token Token Token Byte Token
Window size - - - - - 23 3
Min size - - - - - 41 4
Max size - - - - - 248 27
Divisor - - - - 6 48 3
Backup Divisor - - - - - 24 -
Normalization Yes Yes Yes Yes Yes No Yes
Exact sentence (query type) Phrase Phrase Phrase Phrase Boolean Boolean Boolean
Cross reference (query type) Boolean Boolean Boolean Boolean Boolean Boolean Boolean

TABLE II: Configuration parameters
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chunk boundaries result in a loss of relevant query results.
Therefore, TB reaches the best tradeoff in terms of efficiency
and effectiveness by operating on tokens instead of bytes and
avoiding arbitrary chunk boundaries.

Index size: Figure 3 and 4 depict the index size and the
number of dictionary terms for the methods we compared.
Here, we notice that, as the size of the n-gram increases, so
does the index in terms of size and dictionary terms. From
this perspective, HB and TB are more efficient than CDC,
confirming the positive effect of avoiding arbitrary chunk
boundaries.

Efficiency: Throughput is a measure of efficiency which
corresponds to the number of requests per second that our
setup can handle. Figures 6 and 7 depicts the throughput
for the methods we compared and for the search scenarios
we evaluated. Regarding this metric, we first notice that the
throughput decreases as the size of the n-gram grows. This
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comes from the index size which grows fast as the size of
the n-gram increases and from the fact that n-gram methods
account for the position of the terms in the documents. In
contrast, since the segments extracted by HB, CDC and TB are
large and non-overlapping, it is not necessary to account for
their positions in the documents. The poor throughput of HB
is explained by the great number of irrelevant results (Figure
5), whereas the medium throughput of CDC is explained by
the index size (Figure 3). Therefore, By addressing these two
issues, TB is the most efficient method with a maximum
throughput of 1058.76 requests per second.

Effectiveness: The F1 score is a measure of effectiveness
which corresponds to the harmonic mean of precision and
recall. In Figure 8, we notice the cost of adopting HB,
CDC or TB over n-grams in terms of effectiveness when
searching for exact sentences. On one hand, n-gram methods
are the best in terms of effectiveness but perform poorly in
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Fig. 11: A trajectory query (red) and some results that share
sub-sequences (blue)

terms of throughput. On the other hand, when comparing
TB with n-gram methods, we notice a loss of approximately
10% percent in terms of effectiveness (F1) for a gain of
800% in term of efficiency (throughput). As highlighted here,
when compared to HB and CDC, TB clearly optimizes this
tradeoff. Figure 7 depicts the F1 score for the second search
scenario which consists in searching for cross references. As
mentioned earlier, it is not possible to use phrase queries in
this context and we notice a drop in the F1 score for the 1-
gram method. Consequently, since the other n-gram methods
use more storage than TB and have a much lower throughput,
the choice regarding this use case is not a matter of tradeoff
anymore.

VII. TOWARD SPATIAL DATA

In this section, we empirically show that, by abstracting
the notion of token, our approach can be used to create a
spatial index and perform trajectory-based queries. Given a
trajectory, the idea is to find all the trajectories in the dataset
that share some common sub-sequence with the query. Today,
most trajectory indexes use spatio-temporal bounding boxes in
order to create search trees. For instance, that is the case for the
QuadTree, the RTree, and the TBTree [10], [19]. When dealing
with trajectories, bounding boxes that span over three dimen-
sions introduce a lot of dead space. The SETI index capitalizes
on the special nature of the temporal dimension to address
this discrimination issue [8]. This kind of index performs well
when the queries involve spatio-temporal intervals. However,
their performances decrease drastically once the queries are
themselves based on trajectories. As a result, similarity and
distance measures are used to filter the results and detect which
trajectories actually share some common sub-sequence with
the query. Computing similarities for a huge result set that
includes a lot of outliers introduces an important overhead.

Since our approach indexes sub-sequences, this filtering step
is not necessary.

Dataset: In order to perform our experiment, we used a set
of GPS trajectories gathered by Nokia from 2009 to 2011 [13].
We grouped the recorded GPS locations per user and per day
to produce daily trajectories. The resulting dataset contains
32’144 distinct trajectories located in the area of Lausanne,
Switzerland. GPS trajectories are composed of several GPS
locations each one having several properties such as longitude,
latitude and time. This kind of sequences differ from the kind
of data we previously examined, since several dimensions are
involved. Thus, using L, we denote the alphabet composed of
all the possible longitude/latitude coordinates, and using L∗,
we denote the set of all possible sequences of GPS coordinates.
In our case, the notion of time is simply carried by the fact
that sequences are ordered.

Normalization: GPS tracking devices are not synchronized
and might showcase different sampling rates. Therefore, two
persons following the same path will end-up with different
sequences of GPS locations. This issue can be solved by
normalizing the data. In order to find sub-sequences in the
trajectories, we normalized the coordinates using a hash func-
tion called GeoHash, which subdivides the longitude/latitude
coordinate system into cells [18]. In our case, GeoHash maps
any longitude/latitude coordinates into cells of approximately
150m by 150m. The center of the cell is then used as the
normalized coordinate. Such a normalization function could be
defined as f geo

n : L∗→ L∗geo with Lgeo ⊆ L. Figure 10 illustrates
the fact that, after normalization, trajectories converge toward
something more identical. The sequences that result from
normalizing the coordinates can directly be consumed by TB.
Our configuration produces chunks that have an average length
of 10 normalized coordinates which corresponds to an average
distance of 1,5 kilometers by sub-sequences.

Preliminary results: We compared the resulting index with
two common spatial indexes, namely the Quad Tree [10] and
the Sort-Tile-Recursive Tree[22] implemented in JTS [2]. To
perform our experiment, we picked a trajectory in the dataset
and queried the three indexes for similar trajectories. Since the
dataset is very dense, the Quad Tree returned 22’304 results
and the Sort-Tile-Recursive Tree discriminated slightly better
with 18’070 results, which, in both cases, represents a great
number of outliers that confirms the discrimination problem.
Since our inverted index has a dictionary made of unique
trajectory sub-sequences, it preserves information regarding



the similarity of the trajectories. As a result, the query returned
the 36 matches depicted in Figure 11 which are guaranteed to
share some sub-sequences of more or less 1,5 kilometers with
the query.

VIII. RELATED WORK

The idea of computing all the overlapping sub-sequences
of terms in a document was first introduced by Mamber et al.
in [15]. Brin et al. also described some methods for copy de-
tection that include n-gram and hash-based segmentation [6].
The term shingle, introduced by Broder et al. [7], is often used
as a substitute to n-gram. Data deduplication is mainly used in
the context of data storage and data synchronization [17], [20],
[16]. It usually relies on CDC [9], [5] for identifying identical
sub-sequences in data. In order to avoid redundancies, chunks
are identified by their hash sums and stored in content ad-
dressable storage. Recipes consist of lists of chunk hash sums
which are used to reconstruct the original data. Muthitacharoen
et al [17], improve CDC by introducing a maximal and a
minimal chunk size which positively impact the compression
ratio. In [9], Eshghi et al. introduce a backup divisor which
allows to avoid arbitrary cuts when the maximal threshold
is reached. More recently, other interesting variants, such as
bimodal content-defined chunking [12] and frequency-based
chunking [14], have been proposed to achieve even better
compression rates. Two distinct documents whose recipes
share common chunks are related to each other with a high
probability. This assumption has been used by Forman et al.
to identify near-duplicates in very large collections of manuals
and technical documents [11]. In [3], Bhagwat et al. generalize
the idea of using recipes to build inverted indexes for near-
duplicate search. They create an inverted index where the
dictionary terms correspond to the hash sums of chunks and
the postings correspond to document identifiers.

In contrast, our approach does not operates on raw data
and can agnostically be used to index different kind of data.
Similarity detection in textual data has been studied for several
decades and lots of techniques have been investigated. For
example, techniques based on local maxima and minima,
sometimes referred to as Winnowing, are used to filter hash
values [23], [4]. Our future work, will explore how techniques
commonly used with textual datasets can be leveraged with
different types of data.

IX. CONCLUSION & FUTURE WORK

In this paper, we introduced token-based chunking, a generic
approach for finding sub-sequences in data. We studied its
characteristics in terms of storage requirements, throughput,
precision and recall and demonstrated that it performs better
than its traditional counterparts at trading effectiveness for
efficiency. We showed that, by operating on tokens, this
technique can be used agnostically on various types of data.
We introduced a framework that helps at identifying the extent
to which data should be normalized regardless of its type.
In addition, we empirically demonstrated that token-based
chunking can efficiently index GPS trajectories. Finally, we

showed that the resulting index have better discrimination
characteristics than traditional spatial indexing approaches. To
our knowledge, the usage of a segmentation methods inspired
by data deduplication in the context of spatial indexes has
not been explored before and our preliminary results are
promising. This opens exiting new research avenues and we
plan to investigate the properties of this novel kind of spatial
index in the future.
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