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ABSTRACT
Relation extraction transforms the textual representation of a re-
lationship into to the relational model of a data warehouse. Early
systems, such as SystemT by IBM or the open source system GATE
solve this task with handcrafted rule sets that the system executes
document-by-document. Thereby the user must execute a highly
interactive and iterative process of reading a document, of express-
ing rules, of testing these rules on the next document and of refining
rules. Until now, these systems do neither leverage the full potential
of built-in declarative query languages nor the indexing and query
optimization techniques of a modern RDBMS that would enable a
user interactive rule refinement across documents and on the entire
corpus. We propose the INDREX system that enables a user for
the first time to describe corpus-wide extraction tasks in a declara-
tive language and permits the user to run interactive rule refinement
queries. For enabling this powerful functionality we extend a stan-
dard PostgreSQL with a set of white-box user-defined-functions
that enable corpus-wide transformations from sentences into re-
lations. We store the text corpus and rules in the same RDBMS
that already holds domain specific structured data. As a result, (1)
the user can leverage this data to further adapt rules to the target
domain, (2) the user does not need an additional system for rule ex-
traction and (3) the INDREX system can leverage the full power of
built-in indexing and query optimization techniques of the under-
laying RDBMS. In a preliminary study we report on the feasibility
of this disruptive approach and show multiple queries in INDREX
on the REUTERS-News’97 corpora.

1. INTRODUCTION
For more than 30 years, relational database management sys-

tems (RDBMS), provide the necessary infrastructure for efficient
storage of structured information and declarative query process-
ing. With the addition of indexing and optimization techniques,
RDBMS’ are able to support point as well as range queries over
large databases. However, today a large part of the information
is produced by humans in textual form. That information might by
derived from different sources, such as the Web, corporate intranets
or emails. However, there are no solutions that permit declarative
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queries on top of textual data and RDBMS in a unified fashion,
which would require an intersection of the capabilities of RDBMS’
and systems for executing the task of extracting relational data from
large text corpora. As a consequence, it is not possible to combine
information extraction queries that operate on both systems at the
same time.

Typical queries for the relation extraction task. Consider the
document "Torsten, 25, is a student of TUB". Although
this is really a simple sentence, we will treat it as a document for
our purposes. Having such sentences is a reality if, for instance,
we deal with project proposals the professors are writing in a Uni-
versity environment. If we assume more sentences like this, we
can build efficient inverted-indexes that store information about the
documents in which different keywords appear. It is, however, very
difficult to answer distributional queries across the size of a single
document or the size of the whole corpus of documents that we
have at hand. Such a query would ask What is the distri-
bution of the keyword "Torsten" in "University" con-
texts. This query is binary in that it asks for the frequency of the
keyword Torsten in University contexts. Moreover, it asks for
a relationship that cannot be easily induced by NLP tools. Namely,
the fact that we are asking about University, leads to an inherent
assumption that TUB is a University. This can only be discovered
if TUB exists in a different source that contains this relationship.

For such queries, the desired situation would be to store a de-
tailed view of the input document in a relation in order to be able to
directly query it or join it with other existing relations. This would
enable us to combine information either at the value level (text) or
higher level (e.g. syntactic features) within the same and across dif-
ferent documents. This way a Natural Language specialist, beyond
applying specific external tools to produce document annotations,
she may also discover what are the most important signals in the
document and can use the information extraction in a declarative
fashion (e.g. by applying SQL queries) to infer rules. For example,
a rule that may be extracted and deemed significant from a cor-
pus of proposals that professors write, is that students having a first
name Torsten work or study exclusively in German universities.

Our contribution. In this work, we extract relations from text
and store it in an effective way for declaratively querying it along
with other side information. We make contributions towards unify-
ing textual and relational information in one model and present in-
formation extraction queries and operations that can be performed
on top of them in a unifying fashion. More concretely, we make the
following contributions:

1. We propose a new data model for textual data in RDBMS.
Our model is able to host plain text as well as several anno-
tations that can be extracted from it. Moreover, it is flexible
enough to hold all necessary structures for the relation ex-



traction task, such as document structures, shallow and deep
syntactic structures, structures for the task of open informa-
tion extraction, structures for representing clustered relation
synsets and structures for expressing the semantic meaning
of relation attributes and relation names.

2. Based on this model we show how we perform in-database
information extraction. Our approach has the important ad-
vantage that extraction operations, such as scan, index and
optimize, can access both kinds of tables within the same sys-
tem: tables that hold textual data and tables that hold existing
relational data (such as tables in a CRM or ERP system). As
a result, the domain expert can augment and combine infor-
mation from different representations into a new table with
built-in join operations from the RDBMS. Therefore, the do-
main expert benefits from more than 30 years of research in
declarative query processing. The expert can focus on the
task description and the system takes care of the task exe-
cution and optimization. Moreover, built-in optimizations of
the RDBMS enable a high interactivity at the level of the sin-
gle document, but also at the level of the entire corpus.

3. For realizing this powerful functionality, we extend a POST-
greSQL system with a set of user defined functions (UDF).
We develop these UDFs as ’white-box’ functions so the Post-
greSQL RDBMS can fully process and optimize them. In our
study, we report the query experience of our UDF-based ab-
stractions, show first execution results and discuss potential
extensions toward distributed and column-based databases
(such as Cloudera’s IMPALA) or In-Memory data bases.

The paper is organized as follows: In Section 2 we recapture the
domain-independent and domain-dependent elements of the rela-
tion extraction stack, describe the iterative relation extraction pro-
cess and review existing work on document-by-document declara-
tive relation extraction . Next, in Section 3, we describe the novel
tasks of (1) corpus-wide declarative relation extraction, and, (2)
joining existing relations with text-based information. Then, we
propose our novel data model, list our abstraction of user defined
functions for executing this task and give an overview on our im-
plementation in PostgreSQL. In Section ??, we comment on the
feasibility of our data model and the UDF-based query abstraction
layer and discuss potential extensions. Finally, in Section ??, we
conclude our work.

2. RELATED WORK
We abstract the process of relation extraction as a multi-label

multi-class classification task. Given a set of document-specific,
surface, syntactic, deep syntactic, corpus-specific and domain-
specific features the classifier determines occurrences in text (such
as sequences of consecutive and non-consecutive characters and to-
kens) that likely represent a relation of a particular semantic type.
In this Section we present relevant work around algorithms for
commuting required features and interactivity for adapting these
features to a domain. Finally, we present existing RDBMS tech-
niques for executing this task.

2.1 Understanding Relation Extraction
For identifying these features and their interplay (aka. condi-

tional dependencies) the complex task of relation extraction re-
quires several base extraction functionalities that depend on each
other: First, the software needs to recognize document specific
structures. We focus here on document structures that include
natural language sentences and paragraphs. From these common

structures the software will extract shallow syntax, deep syntax [6]
and open information extraction [15]. Given these syntactic struc-
tures the software can determine un-typed binary [15] and higher
order [13, 1] candidate relations and candidate arguments. Next,
the system clusters likely synonymous relation candidates with the
help of corpus specific distributions into so called synsets [3, 26,
20]. Finally, these synset clusters are further adapted towards the
target schema through appropriate human interactions. A system
could implement these domain adaption procedures through an ac-
tive learning procedure [29] or through rule writing environments
[11]. In both cases the human requires to overview corpus-wide
distributions to learn common signals for the target domain. Fur-
thermore, the human will often pre-select these candidate relations
and synsets with the help of additional domain specific data [28],
such as existing data from an Enterprise Resource Planning (ERP),
Customer Relationships Management (CRM) or Sales Manage-
ment (SM) system.

2.2 Iterative Domain Adaptation Process
Discovering relations is an iterative task which contains lookup,

learn and explore activities. This simple abstraction was recog-
nized and published first by Bloom in 1956 [8]. Later, different
disciplines enriched this abstraction model. Authors of [27] refined
lookup activities into navigational, informational and transactional
activities. Furthermore, the work in the context of service search
by [25] gives example operators for each activity. For instance, the
author considers aggregation, comparison and integration as activ-
ities for learn and analysis, exclusion and transformation as activ-
ities for explore. Most recently, authors of [5] apply the original
ideas of Bloom to the problem of explorative data and text min-
ing. Given our stack from Figure 1 we abstract this process into a
step of an initial sequence of document and language specific trans-
formations and an iterative process of domain specific abstraction
transformations.

2.3 Declarative Relation Extraction
Declarative relation extraction enables domain experts to adapt

existing and create new extraction rules. This way, similar to SQL
and RDBMS technology, the system takes care of optimizing the
declarative query. As a result, the domain expert can focus on the
task of domain adaptation only. Moreover, some declarative lan-
guages have a similar syntax as SQL, therefore these languages
often do not require an expensive training phase for most analysts.

Document-by-document extraction. Authors of UIMA [17] de-
scribe a software architecture for Unstructured Information Man-
agement. Similar to the staging area in a data warehouse, they de-
fine roles, interfaces and communications of large-grained compo-
nents essential for transformation steps in natural language process-
ing. Authors of [22] were among the first to recognize the power of
declarative languages for NLP domain adoption tasks. They pro-
pose an SQL-likish language called AQL that bases on the principle
of a span, which is basically an occupance of a string in a document
with a single or multiple semantic meaningful labels. Humans can
define AQL extractors through rules. An engine called System-
T executes these rules. The AQL language provides user defined
functions and predicates for comparison and combination of multi-
ple spans. These functions and predicates enable the users to com-
bine multiple basic extractors into a combined and complex ex-
tractor. Contrary to INDREX, System-T executes AQL queries per
document only and does not provide queries that deliver distribu-
tions across documents. Hence, AQL and System-T can only rely
on document wide distributional information for extraction tasks.
As a result, the user still needs to aggregate distributions (such as
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Figure 1: Transformation steps for relation extraction. For the task of domain dependent relation extraction, we abstract document and
language adaptation as a linear process and domain adaptation as a interactive and iterative process. This abstraction is true in most scenarios
where non-NLP persons bring in domain knowledge on fixed corpus. In scenarios where the goal is to improve NLP techniques, these domain
dependent interactions may also trigger learning tasks on the syntactic and document specific layer; for example, authors of [24] consider
human click behavior for retrieving only fact-rich documents and authors of [19] consider human click behavior for adapting a part-of-speech
tagger.

in an RDBMS) from each document into a single view. INDREX
overcomes this important limitation by executing the domain spe-
cific information extraction task inside the database system while
still leveraging the power of a declarative query language.

Optimization strategies for text-joins. The authors of SQOUT
[21] assume existing extractors that create views where each view
represents the textual content that describes tuples of a single re-
lationship type in the text. The user can integrate these views
with select-project-join queries, while the SQOUT system opti-
mizes join processing. We consider the SQOUT system as an or-
thogonal optimization for a specific join scenario that might further
speed up query processing for NLP tasks in a RDBMS. Authors of
[14] propose another join optimization and join selection strategy,
while authors of [10] discuss optimization strategies for main mem-
ory data bases and Hadoop clusters. Finally, authors of GRAFT [7]
propose another set of scoring-based optimization strategies in the
presence of an index.

All-in-one-system. Most similar to our work is the system pro-
posed by the authors of [30]. Their work is based on the semi-
structured data model and propose a parse tree database where they
hold dependency tagged sentences and a query language for select-
ing subtrees that likely indicate a relation. For fast retrieval of rele-
vant subtrees they use an additional key value index called Lucene.
In contrast, the abstraction in INDREX is based on the relational
data model that allows us to leverage the full spectrum of existing
RDBMS and data warehouse technology, including main memory
and distributed databases with existing adaptors for data integration
for a large number of text data sources.

3. DISTRIBUTIONAL EXTRACTION
We focus on the task of transferring textual information into re-

lations. INDREX explores distributions of relations and signals
within a single text document, across a corpus of many documents,
as well as between documents stored in relations with other exist-

ing relational data or distributions. Such joins and aggregations en-
able NLP-engineers and domain experts to discover new rules and
augment existing data with relations from text. In this Section, we
describe the data model and operators that enable this functionality.

3.1 Requirements and Tasks
Processing different text abstractions per document. Relation

extractors process character, token, syntactic, tree-based and lexi-
cal signals from text (see Section 2.1). Interestingly, we observed
that commercial vendors of NLP technology often do not agree on
a single modernization standard to enforce a vendor lock-in with
their customizers. Ideally, our data model supports input and out-
put interfaces of character-, token- and hyperedge-based annota-
tions. In figure 2, we show three example sentences with character-
and token-based sentence, syntactic, deep-syntactic and semantic
(entities and a ternary relationship type) annotations.

Exploring corpus wide document distributions. Beyond the
diversity of text abstractions, the system should permit the domain
expert to explore and understand aggregations and distributions
across these annotations with the goal of unraveling document-
and corpus-wide commonalities among sentences. Consider for
instance n sentence-annotated. If the string holds the position of
is considered a synonym of is a, a domain expert can aggregate
from the corpus-wide distribution of the two strings works as (1x),
and is a (2x). Next, from this distribution a domain expert could
derive that these strings are likely synonymous expressions for the
relationship type person-position for these three documents. More-
over, we may also derive useful clues as to how age is expressed.
In all three sentences, the age is syntactically expressed as an appo-
sition of the argument of the semantic type person and is expressed
lexically by commas, brackets and the keyword years.

Augmenting text with signals from other sources. Finally, the
domain expert should be able to join equal or similar strings from
underlying text with information in relational tables. For instance,
in figure 2 the domain expert could execute a hash-join or fuzzy-



join over likely synonymous phrases "works as", "is a" with strings
over existing synonym dictionaries, like WordNet1. The unsuper-
vised extraction, domain adaptation and complementation of such
synonym dictionaries is an area of active research in computational
linguistics [3, 26, 20]. Moreover, the domain expert could com-
plement existing relational data (such as data in an ERP or CRM
system) with information from text. Consider again figure 2: Here
the relational data consists of a table salary that contains also a
column position. The domain expert could join the extracted re-
lations from the text over the position attribute with complementary
information from the relational database.

3.2 Data Model
Our model uses the relational data model with three data types,

namely the span, annotation and relations.

Spans.
We use the term string to represent our textual data. We then

represent strings as character sequences and assign a unique ID to
every sequence. A logical document, such as an email or a web
page, consists of one or more strings. We use spans to mark parts
of a string. They point to an interval of characters. In our model,
a span consists of two parts. The first part is the character-based
span. A character-based span consists of the string ID, strID, and
the position of the first character, b, and the last character, e.

Definition 1. A character-span is the 3-tuple csp = (strID, b, e) ∈
CS P, where

CS P =

(strID, b, e)

∣∣∣∣∣∣∣∣
getS tr(strID) ∈ S T,
b, e ∈ N,
0 ≤ b ≤ e < length (t)


In addition to the definition of the span in other systems, like

IBM’s SystemT [11, 22], we also store an optional segment-span
that may hold a complete and non-overlapping segmentation of the
string, such as the output of a tokenization or sentence-splitting
operation on a character span.

Definition 2. A segment-span ssp = (segID, b, e)) ∈ CS P is a 3-
tuple referring to a segment within a text t with

S S P =

(segID, b, e)

∣∣∣∣∣∣∣∣
segID ∈ S EG,
b, e ∈ N,
0 ≤ b ≤ e


Depending on the NLP task, the NLP-operator will require ei-

ther character- or segment-based spans or, it may require both span
types.

Definition 3. A span is a tuple sp = (csp, ssp) ∈ S P, with csp ∈
CS P ∧ ssp ∈ S S P.

Consider figure 2. The character-span {26,0,6} represents the
fact that in document with ID 26, keyword Torsten appears between
character positions 0 and 6. At the same time the segmentation-
span {26,0,0} represents the fact that the same string is at token
position 0.

Annotations.
Until now, systems like IBM’s SystemT [11, 22], model a tuple

as a finite sequence of w spans s1, ..., sw. We extend this model
with the new data type, called annotation. Annotations now per-
mit complex corpus-wide annotations to be stored for resolving
logical entities, document-wide annotations for storing dependency
trees and annotations for storing n-ary relations with non-sequential
spans. Consequently, an annotation in INDREX may assign a sin-

1http://wordnet.princeton.edu

gle meaning to a single span or a single meaning to an array of
spans.

Meaning.
In addition to annotations, we define meanings, denoted by M,

as the possible complex values assigned to a type. For instance,
in figure 2 the string POS denotes the (syntactic) type and NNP
denotes the value that a computational linguist would assign to a
proper noun. Similarly, Token expresses the type and Torsten the
string value. Typically the extractor component, such as a tokenizer
or a part of speech tagger, assigns these meanings. Queries that
produce new annotation can also assign meanings.

Definition 4. An annotation an ∈ AN = S P+ × M is an n-tuple of
spans with a meaning. S P+ is the transfer of the Kleene Plus

S P+ =
n⋃

i=1
S Pi = S P1 ∪ S P2 ∪ S P3 ∪ . . .

Assigning multiple meanings to a group of spans.
An annotation can consist of multiple spans. This group of spans

might have different meanings. In figure 2, the annotations for OIE-
relation candidates and the semantic relations share the same spans,
but contain different meanings. If we assign different meanings to
a group of spans, we create different annotations.

For example, the character string of an entire Web page repre-
sents an annotation of the type Web page. If we consider figure 2,
the character-span {26,0,6} is assigned to the syntactic annotation
POS:NNP. The character-span {26,0,13} is assigned to another
syntactic annotation Phrases:NP and to the semantic annotation
Entities:Person. Dependencies give us a more detailed syntactic
information about the function of a word in the sentence and the
relationships among words. They permit a more precise extraction
of OIE relation candidates [1]. A dependency is an annotation with
two spans. For example, the two spans, {26,31,37} and {26,8,13}
are the start and end points of the Dependency:nsubj, respectively.
Open Information Extraction Systems, such as [1], extract untyped
n-ary relations. The following spans build in figure 2 a OIE relation
candidate: {26,0,13}, {26,16,17}, {26,25,37} are the arguments of
the relation and {26,20,23} the predicate.

Relation.
A relation in INDREX is a multi-set of tuples, similar to a stan-

dard relational table in an RDBMS. All tuples of a relation share
the same schema and its attributes store different data types, such
as annotations. This, for example, permits the join between multi-
ple annotations. Moreover, each operator in our algebra takes zero
or more relations as input and produces a single relation as out-
put. We use the standard definition of the relational model, first
described in [12].

Definition 5. For the given domains S 1, . . . , S n, a relation R is a
multi-set over the subset of S 1 × S 2 × · · · × S n. A tuple is, then,
defined as an element r of R.

We add to this definition the new domain annotations, AN, and
spans, SP.

3.3 What is the ’right’ abstraction model?
Studying abstraction principles. Finding the right abstraction

level for ’declarative programming’ on both, text and relational
data, is a difficult task. For solving this task we conducted a pre-
liminary user study with fifteen master students of computer sci-
ence. We selected a random sample of thousand documents from
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Figure 2: Three documents with the most common language specific annotations, such as tokens, part-of-speech (POS), phrases, depen-
dencies, constituencies (between the phrases), oie-relation candidates, entities and semantic relations. Each horizontal bar represents an
annotation with one span and each arrow an annotation with multiple spans. The semantic relation PersonCareerAge is an annotation with
three spans. The entities "Torsten Kilias" in document 25 and "Torsten" in document 26 are connected by a cross-document co-reference
annotation. The query in the right-bottom corner shows a join between a Human Resource relation in a CRM system with the extracted
semantic relations from text.

the Reuters NIST new corpus’97, which is a standard evaluation
corpus in the information retrieval community. Following the rela-
tion extraction stack from Figure 1 we applied language depended
taggers from the Stanford CoreNLP pipeline 2 over these docu-
ments, including sentence taggers, shallow and deep syntax tag-
gers and the Stanford 7-Class NER tagger. Finally, we applied the
open information extraction system REVERB [16] to each sentence
to identify relation candidates. Next, we loaded the text data and
annotated data in a PostgreSQL Version 9.1 that implemented our
data model from the previous section. Then we asked our users to
create two relation extractors with that environment:

• Task ’Person-Age-Extractor’: Show the distribution of ages
assigned to persons in the corpus. Use appositions that link
to the entity type person via a comma. For executing this
task the user needs to identify sentences that contain a per-

2nlp.stan f ord.edu/so f tware/corenlp.shtml

son and a apposition that is directly linked in the dependency
structure to the person. Moreover the user needs to filter out
all appositions that do not contain a number.

• Task ’Company-Acquisition Extractor’: First, the user needs
to select all sentences that contain two companies that rep-
resent arguments in a candidate relation from an open infor-
mation extraction framework (see also Section 2). Next, the
user needs to identify the distribution of predicates for these
candidate relations and needs to join this distribution against
a pre-computed synset dictionary with words that likely ex-
press an acquisition. Computing such dictionaries is a cur-
rent research task in the computational linguistics commu-
nity (see also Section 2).

We chose these extraction tasks since they forced our users to
master typical hard text mining problems, such as understanding
the concept of lexical and deep syntactic analysis, understanding



SELECT
c o n s o l i d a t e _ p h r a s e s ( nouns . s p a n s [ 1 ] ) )

FROM (
SELECT ∗ FROM pos_nnp
UNION
SELECT ∗ FROM pos_nnps
UNION
SELECT ∗ FROM pos_nn
UNION
SELECT ∗ FROM pos_nns

)

Listing 1: The task of this query is to seek in the text for sequences
of nouns. Our syntax tagger follows the Penn Treebank type sys-
tem and distinguishes between four classes of nouns. The query
forwards the union of potentially overlapping spans for each noun
class to the consolidate operator that applies a common heuristic
for Latin and Indo German languages and outputs in the case of
overlapping spans the left longest span.

the role of pre-computed open information extraction candidates,
reusing existing information from synset dictionaries and execut-
ing these these tasks with the standard relational algebra.

INDREX features three operator categories only. During this
preliminary study we could identify that our users required six cat-
egories of operators in INDREX: (1) Operators for executing per-
document queries to create and refine initial candidate relations,
(2) relational operators for exploring corpus-wide distributional se-
mantics that enable the user refining rules for candidate relations,
(3) join operators for augmenting annotations with domain seman-
tics, such as semantics from rule dictionaries, from synset dictio-
naries or from multi word values in existing relational data. We will
introduce these operators and will give examples in the reminder of
this section.

3.4 Per-Document Extraction Queries
These operators enable the user important tasks, such as ex-

tracting non-overlapping spans that may likely represent candidate
arguments for a relation or spans that likely give clues for the
name of the relation. We provide operators for executing span,
consolidation and regular expression queries.

Span and consolidation queries. We abstract span sequences
in text data as intervals and extend standard relational algebra with
operations from Allen’s interval algebra [4] in order to manage in-
tervals of spans. Rule languages that are based on the interval al-
gebra cannot express complex nested and overlapping structures
in a document. To overcome this problem we also implemented
consolidation operators [22]. These operators take as an input a
set of annotations and output a consolidated single annotation. We
implement consolidation operators as table generating aggregation
functions. Listing 1 illustrates the usage of span and consolidation
operators.

Translating regular expression queries into SQL queries.
Computational linguists utilize regular expressions for decades to
express arguments and relations for lexical and shallow syntactic
character sequences (see for example [15, 20]). Consequently, we
provide a tool that translates regular expressions on characters, to-
kens or phrases and the combination of these elements with con-
catenation, alternation and the Kleene star to span and consolida-
tion Queries. Consider again listing 1, which shows such a transla-

tion for the token regular expression (NNP | NNP | NN | NNS)*
to a span query with consolidation. For space restrictions we
shorten the query by selecting the annotations in the views pos_nn,
pos_nns, pos_nnp and pos_nnps.

3.5 Relational Operators for Aggregations
Our data model is a minimal extension to the relational

model. Therefore, all of the standard relational operators (select,
project, group by, aggregations) apply without any change.
Contrary to existing approaches, like SystemT, the user now also
executes these operators across the entire corpus. As a result, we
enable the user to derive corpus-wide distributions, permit the user
to resolve logical entities across documents and understand the dis-
tribution of words, spans, annotations and relations across docu-
ments.

Solving task 1: Person-Age Extractor. Consider Figure
3, which applies span, consolidation and relational operators for
showing a distribution of age information that is linked to a per-
son. The query in the figure applies the pattern < person ><
COMMA >< NUMBER >< COMMA > to each sentence in the
corpus.

Figure 3: The query solves task 1, the person age extractor. In
addition, the query provides a distribution for age information in
our corpus. The outer SELECT statement computes the aggrega-
tion for each age observation, grouped and ordered by age. The
nested select statement projects two strings: the person and the age
from conditions in the WHERE clause that implement the heuris-
tic of a syntactic apposition, in this case represented by the patter
< person >< comma >< number >< comma >.

3.6 Adding Domain Semantics
These operators enable a user further to refine potentially exist-

ing annotations with domain specific semantics. In INDREX we
propose operators for refining attribute values, for disambiguating
relation names and regular expression dictionaries.

Refining relation attributes and entity semantics with multi-
word lookups from existing tables. Computational linguists often
use so called dictionaries that contain multi-word strings. They use
these external resources for refining the semantic type of a sequence
of tokens in the text that likely represents an attribute or an entity of
a relation. For instance, a user might apply a domain specific dic-
tionary from customer data to a set of company names and might
call the resulting set of new annotations preferred_customers. Each
relational database system may manage tables that already con-
tain such multi-word strings. However, in existing systems, such
as SystemT or GATE, these dictionaries must be loaded from the
RDBMS into the extraction system before the extraction system



can match strings from the dictionaries to tokens in a text docu-
ment. INDREX avoids this painful data shipping across system
borders. Instead, INDREX provides the user with a user-defined-
function (UDF) that permits multi-word lookups from potentially
existing tables within the same RDBMS that also holds the text
data. In INDREX we implemented multi-word lookups as theta-
join with an approximate string matching.

Disambiguating relation names with synset dictionaries. An-
other common technique of Computational Linguists are pre-
computed resources, called synset dictionaries, for resolving syn-
onymous relation names. Latest research, such as [2, 26], shows
that these dictionaries can be computed in a unsupervised fash-
ion by clustering approaches from syntactically labeled data. For
instance the synset dictionary for the semantic type acquisi-
tion(company, company) from our work in [2] contains the follow-
ing (and other) multi-word expressions: acquired by, acquisition
by, acquisition of, acquired, purchased, bought, takeover of, agreed
to buy, to acquire, sold, sold to, acquired in, to sell, acquisition in,
acquires stake in, purchased by, bid for, bought by, sale of, buys in-
terest in, bought out, completed took over, corporation in, merger
with, purchase of, incorporated from, bought from, announced to
purchase. The INDREX user can import these valuable linguistic
resources in a standard relational table and might assign each multi-
word phrase the semantic type acquisition. Next, the user can join
this information with syntactic information from sentences, such
as predicates or tokens between two company names. Again, we
implemented this join as a UDF that executes a theta-join with an
approximate string matching.

Regular expression dictionaries for filtering annotations. An-
other common technique of computational linguists is the reuse
of predefined patterns for regular expressions. For instance,
the system REVERB uses few regular expressions for identi-
fying strings that likely represent the name of a relation, such
as V = verbparticle?adv?, W = (noun|ad j|adv|pron|det) or
P = (prep|particle|in f .marker). Often computational linguists
even combine these patterns into a single regular expression,
such as V |VP|VW ∗ P. INDREX enables sharing and reusing
such predefined, or even pre-computed pattern, among queries
of multiple users. For enabling this functionality, a user in IN-
DREX may store a regular expression and an name in a ta-
ble. Next, INDREX provides another user-defined-function called
regex_lookup(span,regex_name) that takes as input the name of a
regular expression and a span, executes the regular expression on
the span and returns matches as sets of new annotations. This func-
tionality enables users to reuse not only existing regular expres-
sions from the existing literature, but also searching and adapting
existing regular expressions to specific domains.

Joining Annotations with existing Tables. Finally, INDREX
also permits users joining recognized relations in text data with re-
lations from existing structured data. For instance, the user might
know from the document meta data the author, creation date and the
author location. From the content of the document the user might
extract additional relations, such as the age of persons or acquisi-
tion. Using the standard join operations in the RDBMS the user
can join the information over the common document identifier.

4. CONCLUSION AND OUTLOOK
We described INDREX, a powerful system for in-database rela-

tion extraction. Our system manages both text data and annotated
data in a standard relational database management system, together
with potentially existing relational data. As a result, the user no
longer needs to ship data between the RDBMS and another extrac-
tion system, like SystemT or GATE. Moreover, the user can ac-

Figure 4: The query solves task 2, the person acquisition extrac-
tor. In addition the query provides a distribution for acquisitions
grouped by company name, for instance in our corpus we could
observe two acquisitions for Conagra and Texaco, while for the
other listed companies we could only observe one acquisition. The
outer SELECT statement projects organization names and sentence
predicates and applies in the WHERE clause the following condi-
tions: (1) The predicate must appear after the first organization. (2)
The second organization must follow after the predicate. (3) The
syntactic structure of the sentence must follow the spans defined
in the table ’oie_relations’ (where oie stands for open information
extraction) and must follow the structure <any argument> <pred-
icate> <any argument> (expressed in the query by ’*<TYPE>*’)
and (4) the string of the predicate must match with strings in the
synset dictionary ’Business Acquisition’.

cess data with their preferred standard SQL workbench and writes
queries in standard SQL. Therefore, the user benefits from built-in
query optimization techniques which permit the fast user response
times even for corpus-wide operations. Finally, the user may use
potentially existing data to refine semantics of relation attributes
and names that the system extracts from text data. From a prelim-
inary study we report that this unique feature combination enables
non-computational linguists to write even complex relation extrac-
tors in standard SQL.

Our work has only scratched the surface of this exciting new
research direction. In our future work we will address the following
research questions:

Enable data-driven repair. We believe that the usability of
a database is as important as its capability. However, modern
database systems are very difficult to use. Our abstraction in IN-
DREX addresses issues in the data model and database design.
One interesting direction is further abstracting the relation extrac-
tion process by repair operations. Such an operation would inspect
candidate argument relation extractors and automatically correct
wrong boundaries. Since INDREX holds the raw text data as well
as annotations, we prefer a data-driven approach that could learn
from existing annotations.

N=ALL: Exploit main-memory and multi-core databases for
sub-second response times. In INDREX we used PostgrSQL as
underlying RDBMS. However, our PostgreSQL installation can
neither leverage pipeline parallelism nor modern multicore hard-
ware. Moreover, most text data sets are not web-scale and will fit
in a compressed format in a main memory database [9]. In our fu-
ture work we will explore the power of such database systems for
domain adaption tasks on data sets with the sample size N=all.

N=ALL: Leverage column-based index structures for Web
scale data. In some rare cases, the amount of text data is as large



as the web. In that case the INDREX data model and operator
design could leverage from existing implementations of broadcast
joins, such as in IMPALA or CLYDESDALE, or column-based in-
dex structures like the work in [18] or TREVNI.

Incorporate user feedback from OLAP and search applica-
tions. Clickstream-based approaches, such as Google’s knowl-
edge graph, or query driven part-of-speech tagger models from [19]
leverage click stream data for refining rule based and pre-computed
extractors. In the case of INDREX, and OLAP or CRM application
might trigger a rule refinement. In [23] we defined a preliminary
set of such interactions. In our future work, we will explore how
these interactions may improve the quality (in terms of precision
and recall) of rule-based extractors in INDREX.
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