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Abstract—Route planning algorithms attempt to find the opti-
mum path between two nodes in a graph, where a cost function
specifies a weight for each edge. In many situations cost is
related to distance or time. While time estimates are rather
straightforward for automotive applications, real-world route
planning for hiking and other outdoor activities requires careful
consideration of a variety of different factors in order to produce
reliable time estimates. Static estimates such as Naismith’s Rule
for estimating hike times do not consider individual factors
such as a hiker’s fitness or current progress along the trail.
In this paper we address these aspects and develop a model
for individual weight estimation that can be exploited in route
planning applications. An evaluation conducted on GPS traces
from hikes in South Tyrol, Italy indicates that the model can
outperform Naismith’s estimate by up to 23%.

Index Terms—route planning; time estimation; hiking; tourism

I. INTRODUCTION

Calculating time requirements has been an important part

of journey planning since at least Roman times. Vegetius,

for instance, wrote in his De Re Militari that the Roman

Army should march “with the common military step twenty

miles in five summer-hours” [1]. In this paper, we focus

on the more peaceful pursuit of recreational hiking, where

such estimates form an important planning element, allowing

walkers to determine what is feasible. Furthermore, in the

case of unexpected bad weather or emergencies, realistic time

estimates may help walker reach suitable shelter or aid search

and rescue operations.

In the tourism domain, mobile travel aids are becoming an

increasingly valuable tool for decision making ‘on the go’.

Here, accurate time estimates are of particular importance,

allowing hiking routes to be synchronized with the schedules

of public transportation facilities or the opening hours of

visitor centers. In the following section, we will examine

related work in the area of itinerary and route planning.

In Section III we describe the modeling approach and the

baseline estimate based on Naismith’s Rule. Finally, Section

IV describes our evaluation methodology and presents the

results of applying the empirical model to historical hiking

data.

II. RELATED WORK

Itinerary or route planning has attracted the attention of

the research community, especially since the development and

wide-spread use of GPS devices. Many well-known software

companies offer web-based and mobile solutions that assist

users in planning and following a route. Most of these tools,

however, are developed around the assumptions of constancy
and universality, two notions dictating that route planning

is independent of environmental parameters and user prefer-

ences [2].

Vansteenwegen and Souffriau [3] present a deep overview

of personalized electronic tourist guide systems. They model

the problem as an Orienteering Problem [4] and extend

it to include time-dependent information related to public

transportation systems. Hence, every itinerary produced is

different depending on the transportation system used and the

departure time. Apart from the aforementioned, a number of

objectives/criteria can be combined in order to improve the

planning process for users. The study presented in [5] offers a

decision-theoretic process based on spatial ontologies, which

models quantitative and qualitative data in a hierarchical way

and aims to provide a user-centric route plan.

Letchner et al. [2] offer a solution that is based both on

time-variant parameters, such as traffic speeds and patterns, as

well as previous GPS traces logged by the system. To arrive

at a personalized route, their TRIP system employs Hidden

Markov Models (HMM) that, given prior observations and

the current position, scores different locations and chooses the

one most likely to satisfy all constraints. Using travel-related

preferences, Tumas and Ricci [6] employ a knowledge-based

recommendation technology and a scoring function that takes

user input and point of interest characteristics and determines

the most relevant points to be included in a user’s itinerary.

With the advent of social media, it is increasingly easy

to reach users and, at the same time, share information and

produce content. For example, media sharing sites such as

Flickr1 act as a medium for storing pictures that are asso-

ciated with a timestamp, geographic information and user-

provided descriptions and tags, making such photo albums a

rich source of tourist information. Work on automatic mining

and information extraction from such repositories aims to

develop recommendation algorithms to enhance a tourist’s

experience. McGinty and Smyth [7] propose a route planning

algorithm using Case-Based Reasoning (CBR) that produces

new individualized routes based on prior experience of users

with similar preferences and environmental characteristics.

In the most recent work in the area of personalized route

1http://www.flickr.com
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planning, Luccese et al. [8] offer a graph-based algorithm

for the discovery of individual routes. As input, the algorithm

takes a weighted graph of points-of-interest that are connected

if the probability (based on past experience) that they belong

to the same itinerary is high. They then employ a Random

Walk with Restarts algorithm [9] to rank the candidate points-

of-interest and come up with the best route for a user.

III. MODELS FOR TIME ESTIMATION

In 1892, Scottish mountaineer William W. Naismith pro-

posed a basic rule for calculating hike times: “men in fair

condition should allow for easy expeditions, namely, an hour

for every three miles on the map with an additional hour for

every 2000ft of ascent” [10]. While this rule forms the basis

for most estimates, many adjustments have been made over the

years that have followed. For instance, in 1965 Philip Tranter

introduced further corrections to compensate for hiker fitness,

as determined by the time required to climb 300 meters over

a distance of 800 meters. Other common corrections include

subtracting 30 minutes for each kilometer of gentle descent

(5◦− 12◦) and adding 30 minutes for each kilometer of steep

descent ( > 12◦) [11]. Additional variations may be used to

account for weather, terrain and pack load. In addition to these

factors, we suppose that the length of hike, motivation and

fatigue may influence hiker speed. For example, longer hikes

may require more gear and therefore be slower. Alternatively,

hikers may speed up due to increased enthusiasm as they

approach their goal.

Several works have investigated the validity of Naismith’s

Rule. Scarf examined its applicability to both fells and tread-

mill running, finding an 8:1 ratio between flat distance and

elevation for fells and an 1:3 ratio for treadmills [12], [13].

Norman confirmed these results, adding an additional ratio of

6:1 for roads based on the results of some very specific events

and concluding that while the rule was generally applicable,

its parameters were dependent on the terrain [14].

Despite this, Naismith’s rule is ambiguous with respect

to the treatment of downhill sections: [15] explains that the

correction for ascent may be considered to account for descent

as well or that it implies that descent is possible at the same

speed as that on level ground. [16] provides a survey of many

alternative models and advocates polynomial models as they

can be easily fitted to both ascent and descent data.

A significant shortcoming of all of these models is that

they are unable to react to the particular conditions of a

hike or to the current abilities of the hikers. Despite their

simplicity, the models are designed to be applied before a hike

to create a static estimate, often based on traditional mapping

materials such as topographic maps. The wide availability

of GPS devices, integrated for example into mobile phones,

means that, in addition to standard mapping data, detailed

information is available about a hiker’s current position (p)

and speed/velocity (v). We propose to exploit this data in two

steps:

1) Modeling: To create a model for the speed of hikers

under various conditions.

2) Personalization: To exploit current hike data to adapt

estimates to the real-time performance of the hiker.

While active, a GPS receiver periodically produces data

about its current position. Each measurement typically in-

cludes information about the longitude, latitude and altitude, as

well as a timestamp. Over time, these may be accumulated as

a sequence of positions P = 〈p0, p1, ..., pn〉 and a sequence of

timestamps T = 〈t0, t1, ..., tn〉, collectively known as a trace.

A speed vi may be calculated for each segment spanning from

i− 1 to i:

vi =
dist(pi−1, pi)

ti − ti−1
(1)

Furthermore, a feature vector �zi of length m may be

extracted from a given P at point i by a function g, i.e.:

�zi = g(P, i) (2)

The feature vector could, for example, include information

about the segment, such as its gradient, contextual information

about the segment’s position in the trace, such as the propor-

tion of elapsed distance, and information about the trace as a

whole, such as its length. Hiker speed may be modeled by a

function of �zi for each segment:

v̂i = f(�zi) =
m∑
j=1

αjzij (3)

where A = (α1, α2, ..., αm) is a vector of coefficients. The

modeling task is thus reduced to linear optimization: given a

set of n speeds V and feature vectors Z, find Â such that the

cost function C is minimized:

Cmin = min
A

m∑
i=0

(vi − v̂i)
2
= min

A

m∑
i=0

⎛
⎝vi −

m∑
j=1

αjzij

⎞
⎠

2

(4)

i.e.:

Â = argmin
A

m∑
i=0

⎛
⎝vi −

m∑
j=1

αjzij

⎞
⎠

2

(5)

where vi ∈ V , zi ∈ Z. The model may then be applied to

estimate the time r̂ required for an unknown hiker to walk a

known hike specified by P :

r̂ =

n∑
i=1

dist(pi−1, pi)

v̂i
=

n∑
i=1

dist(pi−1, pi)

A · g(P, i) (6)

IV. EVALUATION

A dataset of 360 hikes was constructed from GPS traces

logged in South Tyrol, Italy. The GPS data itself was obtained

from a leading publicly available repository using a filter

restricting the traces to hiking (activity type = “hiking”)

logged between March 2011 and March 2012. In general, each

trace originates from a different route and hiker.
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Fig. 1. Plots of components vθ, vx, va, vd, vl
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Furthermore, the data was preprocessed and cleaned to mit-

igate any bias introduced by the range of logging devices. In

particular, as logging frequencies can vary substantially, from

a second to several minutes, the longitude and latitude data

was resampled to produce points at five minute intervals using

piecewise cubic splines. This has the additional benefits of

minimizing variations in measurement accuracy and reducing

the dataset to a manageable size. Furthermore, as loggers may

or may not contain specific hardware for measuring elevation,

e.g. using barometric pressure, the recorded altitude values

were replaced with data from a single elevation web service.

Following pre-processing, each trace was checked for con-

sistency ensuring that it did not contain any velocities in excess

of 4 ms-1 which, for example, might indicate that a logger

was left active during car travel. Furthermore, any sections

of a hike with an average speed of less than 0.2 ms-1 were

explicitly marked as pauses and removed from the traces to

prevent them from having any bearing on the time estimates.

For the analysis, the 360 hikes were randomly split

into two equally sized sets, namely a learning set

and a testing set. An overview of the dataset is

given in Table I. The anonymized dataset is avail-

able for download from http://www.isbi.at/media/OSTAR-

SmoothedTracesForTimeEstimation.zip.

�z = b (1, θ, θ2, θ3, θ4, θ5, θ6, θ7, x, x2, x3,

a, a2, a3, d, d2, d3, l, l2, l3) (7)

For the evaluation, the function g was specified to create

feature vectors containing polynomials of each segment’s

gradient angle θ (in radians), proportion of elapsed distance x,

ascent a and descent d (each standardized to [0, 1]), as well as

track length l (kilometers). With the exception of θ, which

was included up to degree seven, cubic polynomials were

used as higher degree polynomials produced no improvement.

Furthermore, as some walkers are faster the others due to

fitness or the difficulty of the hike, we introduced a scaling

TABLE I
DATASET PROPERTIES

Fix Count

Average 0− 25 26− 50 51− 75 > 75

54.5 85 88 109 78

Distance (km)

Average 0− 5 5− 10 10− 15 > 15

7.59 111 160 71 18

Active Time (hours)

Average 0− 1 1− 2 2− 4 > 4

3.03 36 85 141 98

Pause Time (hours)

Average 0− 1 1− 2 2− 3 > 3

1.43 186 97 48 29

Average speed (km/h)

Average 0− 2 2− 3 3− 4 > 4

2.59 69 209 68 14

Total Ascent (m)

Average 0− 500 500− 1000 1000− 1500 > 1500

564 172 144 38 6

Total Descent (m)

Average 0− 500 500− 1000 1000− 1500 > 1500

543 178 133 46 3

factor b determined by the average speed of the associated

hiker on flat ground (calculated using sections with an angle

of gradient between −5◦ and 5◦). Thus each feature vector

had the form:

Importantly, b may be estimated once a hike is in progress

by comparing an r̂ for the elapsed distance with the associated

measured r:

b̂ =
r

r̂
(8)

As each hike contains a different number of points, points
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Fig. 2. Model performance compared to Naismith’s estimate
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were randomly duplicated such that each hike contributes the

same number of feature vectors and thus has the same bearing

on the model.

The vector A was found using a batch gradient descent

optimizer on feature vectors extracted from the learning set.

The algorithm conducted 20 random restarts which produced

only minimal variations in the coefficients. The resulting

model is summarized below in Equation 9 and plots of the

individual component functions vθ, vx, va, vd and vl are

presented in Figure 1. Of particular interest is vθ, which

closely corresponds to functions proposed in the literature

(see [16] for example). It can be observed that a slight

descent increases speed, while steeper ascents or descents

decrease speed significantly. In general, speed increases with

hike length, presumably due to the fact that only experienced

hikers attempt longer hikes. An initial value of b = 0.82, for

use before a personalized b̂ is available, was also determined

from the learning set.

v(θ, x, a, d, l) = + 0.87

− 0.40θ − 4.02θ2 + 3.41θ3 + 10.24θ4

− 9.36θ5 − 7.33θ6 + 6.94θ7

− 0.86x+ 1.63x2 − 0.96x3

+ 0.71a− 0.83a2 + 0.27a3

+ 0.53d− 1.65d2 + 1.17d3

− 0.009l + 0.068l2 − 0.048l3 (9)

Following the modeling phase, we then applied the model

to the withheld testing set and compared its performance to

the well-known Naismith estimate as a baseline. Both were

required to produce an estimate for the remaining time at

1% intervals throughout each of the hikes and compared

using mean absolute relative error (MARE) (Equation 10).

Specifically, the metric calculates relative errors as each trail

is of varying length and requires a different amount of time.

Furthermore, these are considered in absolute terms to penalize

over and under estimation equally and averaged over all q
trails:

MARE(x) =
1

q

q∑
k=1

| ˆrkx − rkx
rkx

| (10)

The results of the evaluation are presented in Figure 2.

The model clearly outperforms the Naismith estimate and is

significantly better (by as much as 23%) during the crucial

region of 20% to 80%. The problem becomes understandably

more difficult during the final stages of a hike — small

variations have a large influence on the accuracy of the

estimate — however we assume that once a hiker has already

completed more than 80% of a trail it is unlikely that the few

remaining rerouting opportunities would require accurate time

estimates. The slight increase during the first 5% is caused by

initial instability in b̂, the individualized scaling factor for each

hiker and hike, due to a lack of available progress information.

V. CONCLUSION

In this paper we have constructed an empirical model for

estimating the speed of hikers based on the gradient of ascent

or descent, the current progress along the route as well as the

overall length of the hike. Importantly, an evaluation of the

model on historical data demonstrates that its time estimates

are significantly more accurate than those produced by the
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well-known Naismith estimate. Furthermore, we believe that

the improvement would be even more pronounced if tested

on a broader sample of hikers, as GPS traces harvested

from the web are representative of the hiker population as a

whole, but rather are biased towards technology savvy and

younger hikers. In future work we will extend our model

to other types of outdoor activities associated with tourism,

such as mountain biking and trail running. In addition, also

hope to improve estimates by considering other variables,

such as terrain information and weather estimates, and to

carry out further evaluations using a larger and more varied

dataset. The estimators will also be tested as part of a mobile

application that will support hikers by offering personalized

recommendations and individualized route planning.

ACKNOWLEDGMENT

The authors wish to acknowledge the financial support of

the European Union (EU), the European Regional Develop-

ment Fund (ERDF), the Austrian Federal Government and

the State of Carinthia in the Interreg IV Italien-Österreich
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