
Data Clustering Techniques
Qualifying Oral Examination Paper

Periklis Andritsos
University of Toronto

Department of Computer Science
periklis@cs.toronto.edu

March 11, 2002

1 Introduction

During a cholera outbreak in London in 1854, John Snow used a special map to plot the cases of the disease
that were reported [Gil58]. A key observation, after the creation of the map, was the close association be-
tween the density of disease cases and a single well located at a central street. After this, the well pump was
removed putting an end to the epidemic. Associations between phenomena are usually harder to detect,
but the above is a very simple, and for many researchers, the first known application of cluster analysis.

Since then, cluster analysis has been widely used in several disciplines, such as statistics, software
engineering, biology, psychology and other social sciences, in order to identify natural groups in large
amounts of data. These data sets are constantly becoming larger, and their dimensionality prevents easy
analysis and validation of the results. Clustering has also been widely adopted by researchers within com-
puter science and especially the database community, as indicated by the increase in the number of pub-
lications involving this subject, in major conferences.

In this paper, we present the state of the art in clustering techniques, mainly from the data mining
point of view. We discuss the procedures clustering involves and try to investigate advantages and disad-
vantages of proposed solutions. Finally, we shall present our suggestions for future research in the field.

The structure of this work is as follows: Section 2 outlines the stages commonly followed when per-
forming clustering techniques. Section 3 discusses the different kinds of data we might have in hand, and
metrics that define their similarities or dissimilarities. Section 4 introduces the main established cluster-
ing techniques and several key publications that have appeared in the data mining community. Section 5
distinguishes previous work done on numerical data and discusses the main algorithms in the field of cat-
egorical clustering. Section 6 suggests challenging issues in categorical data clustering and presents a list
of open research topics. Finally, Section 7 concludes our work.

2 Problem Definition and Stages

There are several definitions for clustering. We will borrow the one given by Jain and Dubes [JD88]:

1

“Cluster analysis organizes data by abstracting underlying structure either as a grouping of
individuals or as a hierarchy of groups. The representation can then be investigated to see if
the data group according to preconceived ideas or to suggest new experiments”.

In brief, cluster analysis groups data objects into clusters such that objects belonging to the same cluster are
similar, while those belonging to different ones are dissimilar. The notions of similarity and dissimilarity
will become clear in later section.

The above definition indicates that clustering cannot be a one-step process. In one of the seminal texts
on Cluster Analysis, Jain and Dubes divide the clustering process in the following stages [JD88]:

Data Collection : Includes the careful extraction of relevant data objects from the underlying data sources.
In our context, data objects are distinguished by their individual values for a set of attributes (or mea-
sures).

Initial Screening : Refers to the massaging of data after its extraction from the source, or sources. This
stage is closely connected to a process widely used in Data Warehousing, called Data Cleaning [JLVV99].

Representation : Includes the proper preparation of the data in order to become suitable for the clustering
algorithm. Here, the similarity measure is chosen, the characteristics and dimensionality of the data
is examined.

Clustering Tendency : Checks whether the data in hand has a natural tendency to cluster or not. This
stage is often ignored, especially in the presence of large data sets.

Clustering Strategy : Involves the careful choice of clustering algorithm and initial parameters.

Validation : This is one of the last and, in our opinion, most under-studied stages. Validation is often
based on manual examination and visual techniques. However, as the amount of data and their di-
mensionality grow, we have no means to compare the results with preconceived ideas or other clus-
terings.

Interpretation : This stage includes the combination of clustering results with other studies, e.g., classifi-
cation, in order to draw conclusions and suggest further analysis.

The following sections present solutions proposed for the above stages. We start with the collection
of data and examination of their types and measures, which are defined in the next section.

3 Data Types and their Measures

In clustering, the objects of analysis could be persons, salaries, opinions, software entities and many others.
These objects must be carefully presented in terms of their characteristics. These characteristics are the
main variables of the problem and their choice greatly influences the results of a clustering algorithm.

A comprehensive categorization of the different types of variables met in most data sets provides a
helpful means for identifying the differences among data elements. We present a classification based on
two schemes: the Domain Size and the Measurement Scale [And73].

2

3.1 Classification Based on the Domain Size

This classification distinguishes data objects based on the size of their domain, that is, the number of dis-
tinct values the data objects may assume. In the following discussion we assume a database

�
, of � ob-

jects, or tuples. If �� , �� and �� are three data objects belonging to
�

, each one of them has the form: ����
� �
	��������������������� , ���� � ��	��������������������� and ���� � ��	��������������������� , where � is the dimensionality, while each ��� , ���
and ��� , "!$#%!$� , is a feature, or an attribute of the corresponding object. Henceforth, the term “data types”
will refer to “attribute data types”. We have the following classes, [And73]:

1. An attribute is continuous if its domain is uncountably infinite, i.e., its elements cannot be put into a
one-to-one correspondence with the set of positive integers. This means that between any two values
of the attribute, there exists an infinite number of values. Examples of such attributes could be the
temperature and the colour or sound intensity.

2. An attribute is discrete if its domain is a finite set, i.e., a set whose elements can be put into a one-to-
one correspondence with a finite subset of the positive integers. Examples could be the number of
children in a family or the serial numbers of books.

The class of binary attributes consists of attributes whose domain includes exactly two discrete values.
They comprise a special case of discrete attributes, and we present as examples the Yes/No responses to
a poll or the Male/Female gender entries of an employees’ database.

3.2 Classification Based on the Measurement Scale

This classification distinguishes attributes according to their measurement scales. Suppose we have an
attribute # and two tuples �� and �� , with values ��� and ��� for this attribute, respectively. Then we have the
following classes [And73]:

1. A nominal scale distinguishes between categories. This means that we can only say if � � �&� � or � �('���� . Nominal-scaled attribute values cannot be totally ordered. They are just a generalization of binary
attributes, with a domain of more than two discrete values. Examples include the place of birth and
the set of movies currently playing in Toronto.

2. An ordinal scale involves nominal-scaled attributes with the additional feature that their values can
be totally ordered, but differences among the scale points cannot be quantified. Hence, on top of� � �)� � and � �('�&� � , we can assert if � �+* � � or � �-, � � . Examples include the medals won by athletes.

3. An interval scale measures values in a (roughly) linear scale [HK01]. With interval scaling we can tell
not only if one value comes before or after another, but also how far before or after. If �.� , ��� , since
values are put on a linear scale, we may also say that �� is � �0/ � � units different from �� with respect
to attribute # . Examples include the book serial numbers or TV channel numbers.

4. A ratio scale is an interval scale with a meaningful zero point. Examples include weight, height and
the number of children in a family.

More examples as well as a cross-classification of attribute data types will be given at the end of this section.
Nominal- and ordinal-scaled attributes are called qualitative or categorical attributes, while interval- and
ratio-scaled are called quantitative [And73].

3

3.3 Variable Standardization

It is common that quantitative attributes are mainly measured using specific units, such as kilograms and
centimeters. Measuring units affect the cluster analysis results, since, for example, changing measurement
units from kilograms to pounds for weight, may lead to a different result. The remedy to this problem is
called standardization, which leads to unit-less variables. Given an attribute # � ! # ! � , and � tuples
��
� 	�� � �� � ��� ��������� �� ��� � there is a two step procedure to standardize it [HK01]:

1. Find the mean absolute deviation, � � , of # , for all � tuples in the database
�

:

� �0�
�
�
	 � � 	��� /�� � 	��	 � � ���� /�� � 	���������	 � ��� �� /�� � 	 �

where,
� � � 	��� ��� � ���� ������� �� ��� �� � are the � values of attribute # and � � is the mean value of # .

2. Find the standardized measurement, or z-score:

� ��� �� � � ��� �� /�� �
� �

for all !�� !$� .

Notice that in the expression of �
��� �� we do not use the standard deviation � � . This is done because � � is con-

sidered more robust than � � in the presence of outliers [HK01]: the differences
	 � ��� �� /�� � 	 are not squared

in � � and thus the effect of outliers is reduced.

Standardization is optional and its usage depends on the application and the user. It is merely used
to remove the measurement units and give each variable a common numerical property, or in other words
equal weights.

3.4 Proximity Indexes

Once the characteristics of the data have been determined, we are faced with the problem of finding proper
ways to decide how far, or how close the data objects are from each other. Proximity indexes are measures
of alikeness or association between pairs of data objects. A proximity index can measure either similarity or
dissimilarity [JD88]: the more two objects resemble each other the larger their similarity is and the smaller
their dissimilarity. Speaking about dissimilarity it can be measured in many ways and one of them is dis-
tance. Moreover, distance can be measured in many ways, and this is by using distance measures. All
measures depend on the type of attributes we are analyzing. For example, having categorical attributes
we cannot use distance measures that require a geometrical orientation of the data; such data has no such
orientation inherent in it.

From all measures, special interest has been given to those called metrics (we usually encounter dis-
tance metrics). Given three data points �� , �� and �� , all in

�
as described at the beginning of Section 3, a

distance metric � should satisfy [HK01]:

1. � � ��.� �� � �"! : non-negativity;

2. � � ��.� �� �%��! if and only if �� � �� : distance of an object to itself is ! ;
4

3. � � ��.� �� �%� � � ���� �� � : symmetry;

4. � � ��.� ���� !"� � ��.� ���� � � �� � �� � : triangle inequality;

Anderberg gives a thorough review of measures and metrics, also discussing their interrelationships [And73].
Note that any metric is also a measure, while a measure is not always a metric. To avoid any confusions,
we shall be using the term measure, mentioning whether it computes similarity or dissimilarity. We shall
revert to the word metric wherever this is appropriate. Here, we give a brief description of measures for
each type of attributes [HK01]:

Interval-Scaled Attributes : After standardization, the dissimilarity between �� and �� is computed using
the following distance metrics:

� Minkowski Distance, defined as:

� � �� � �� �%� � ��
��� 	

	 � � / ��� 	�� � 	�� �

where � is a positive integer.� Euclidean Distance, defined as:

� � ��.� �� �%� 	

�
��
��� 	

� � � / ��� � �

Note that this is equal to the Minkowski distance for � �� .� Manhattan Distance, defined as:

� � ��.� �� �%�
��
��� 	

	 � � / ��� 	

Note that this is equal to the Minkowski distance for � � .� Maximum Distance, defined as:

� � ��.� �� � � ��� � ���� 	 	 � � / ��� 	

Note that this is equal to the Minkowski distance for ����� .

Binary Attributes : Before introducing the proximity indexes for binary variables, we introduce the con-
cept of contingency tables [HK01]. Such a table is given in Table 1.

���� ���� !
���� � � � �
���� ! � � � �

� � � � �
Table 1: Contingency Table for two binary objects �� and �� , where ��� � � � �

For objects �� and �� with only binary values, we denote one of the values by and the second by ! .
Thus, this table contains the following information:

� � is the number of s in both objects;

5

� � is the number of attribute values that are equal to in �� and ! in �� ;� � is the number of attribute values that are equal to in �� but ! in �� ;� � is the number of ! s in both objects;

After that, we have the following proximity indexes:

� Simple Matching Coefficient, defined as:

� � ��.� �� �%� � ��
if both of the values �� and �� can take are of equal weight, i.e., �� and �� are symmetric.� Jaccard Coefficient, defined as:

� � ��.� �� �%� �
� � �

Notice that this coefficient disregards the number of ! / ! matches. Hence, it is mainly used for
cases where one of the possible states (described as) has a higher weight than the other, i.e.,
the binary attributes are asymmetric.

Special consideration has to be given in the meaning of existence when encountering binary variables.
If it is clear that one of the values of the variable denotes presence and the other one absence, then
it is useful to talk in terms of existence. For example, this is the case when such a variable has to do
with the presence of children in the appropriate attribute value of an employee’s record. On the other
hand, if the binary variable defines a dichotomy, then we can just measure 0-0 and 1-1 matches or 0-1
and 1-0 mismatches. This is the case when we store Male/Female gender values in a database.

Nominal-Scaled Attributes : The dissimilarity between objects �� and �� is given by:

� � ��.� ���� � � /��
�

where � is the number of matches and � is the total number of attributes.

Ordinal-Scaled Attributes : These are treated in a similar way as interval-scaled, in terms of measuring
dissimilarities. Assume # is an ordinal-scaled attribute with � � states (domain size). The steps we
follow are [HK01]:

1. The � � states are ordered, � ����� � ��� , so we can replace each value with its corresponding rank,� ���
	 ����� � ��� ;
2. Each ordinal attribute could have a different domain size, so it is often necessary to convert each

state onto a value of the � ! ��! � ��!� interval. This is achieved with the following:

� ��� �� � � ��� �� /
� � /

3. Dissimilarity can be computed with one of the measures for interval-scaled attributes using the
� ��� �� ’s.

6

Ratio-Scaled Attributes : There are several methods to compute dissimilarities between these variables.
One solution is to use a logarithmic formula on each attribute �.� , i.e., � �+������� � � � � . The � � ’s now can
be treated as interval-scaled. This logarithmic conversion is helpful in situations where the measure-
ments of the variable are on an exponential scale. Hence, the use of the logarithmic transformation
depends on the definition of the variables and the application. It may be more beneficial to treat
ratio-scaled variables without any transformation.

Mixed Attributes : Suppose we have � attributes of mixed type, two data objects �� and �� and an indicator��� �	 �
 that signifies the degree of dissimilarity between �� and �� in attribute � . Dissimilarity � � ��.� �� � is
defined as:

� � ��.� �� � ��
�
� �0	 ��� �	 �
 � � �	 �

�
�
� � 	 ��� �	 �

where the indicator ��� �	 �
 � ! if either
� � : �

� � �� or �
� � �� is missing (i.e., there is no measurement of at-

tribute � for object �� or object ��), or
� � � � � � �� � � � � �� � ! and attribute � is asymmetric binary; other-

wise, ��� �	 �
 � . The contribution of variable � to the dissimilarity between �� and �� , � � �	 �
 is computed
dependent on its type:

� If � is binary or nominal: � � �	 �
 ��! if �
� � �� �&� � � �� ; otherwise � � �	 �
 �

� If � is interval-based: � � �	 �
 � � 	��������� 	������� �����	�� 	��!�"�� � � � � �#	������� , where $ runs over all non-missing objects for

attribute � .

� If � is ordinal or ratio-scaled: compute the ranks �
� � �� and �

� � �� �&% ������ � 	' � � 	 , and treat �
� � �� as interval-

scaled.

Table 2 gives a cross-classification of attribute types, [And73], together with metrics appropriate for
measuring their distance.

Domain Size
Scale CONTINUOUS DISCRETE BINARY Metric
RATIO Temperature ((*)), weight,

height
Number of children,houses N/A Euclidean or Manhattan. Special trans-

formation may be needed prior to this

INTERVAL Temperature ((�+) Book Serial Numbers, TV
channel numbers

N/A Euclidean or Manhattan

ORDINAL Sound intensity, Color
intensity

athletes’ medals, clothes’
size

Tall/Short, Big/Small etc. After representingvalues with their ranks,
treat them as interval-scaled

NOMINAL N/A: requires an uncount-
ably infinite number of dis-
tinct values

Color, Favorite Actors Yes/No, On/Off etc. Simple Matching Coefficient or Jaccard
Coefficient

Table 2: Cross–classification of Attributes and their Metrics

Note two things: First, there is a distinction between temperature measured in , - and ,/. . This is done
because the zero point of the Kelvin scale is absolute zero, whereas the zero point of the Celsius scale is the
water’s freezing temperature. Hence, it is reasonable to say that ! ! ,�- is twice as hot as 0 ! ,1- . However,
such a comparison would be unreasonable in the Celsius scale. That’s why the Kelvin scale is considered a
ratio scale while Celsius as interval [And73]. Second, some of the attribute types could belong to more than
one category. For example, colour is usually considered as nominal (same as categorical here). However,

7

we all know that for each colour there is a point on the spectrum line for it, making it an ordinal-scaled
attribute.

One final note in regard to the types of data sets and their handling is that certain attributes, or all of
them, may be assigned weights. Sometimes upon removal of the measurement units, i.e. after standard-
ization, user’s judgment or understanding of the problem can be further taken into consideration to assign
weights so that each variable contributes to the mean, range or standard deviation of the composite in a
manner consistent with her objectives in the analysis [And73]. For example, if she analyzes a data set of
soccer players, she might want to give more weight to a certain set of attributes, such as the athlete’s height
and age, than others, such as the number of children or cars each of them has. Finally, weights can be used
in the distance measure above. For example, given the Euclidean distance, if each attribute is assigned a
weight � � , ! #%!$� , we then have the weighted Euclidean Distance, defined as:

� � ��.� ����%� 	

�
��
���0	 � � � � � / ��� � �

Now that we have studied the different kinds of attributes, we are ready to move on to the basic clus-
tering algorithms starting with a general classification in the next section.

4 Categorization of Clustering Techniques and Previous Work

Many diverse techniques have appeared in order to discover cohesive groups in large datasets. In the fol-
lowing two section we present the two classic techniques for clustering as well as more specific ones, re-
spectively.

4.1 Basic Clustering Techniques

We distinguish two types of clustering techniques: Partitional and Hierarchical. Their definitions are as fol-
lows [HK01]:

Partitional : Given a database of � objects, a partitional clustering algorithm constructs � partitions of
the data, where each cluster optimizes a clustering criterion, such as the minimization of the sum of
squared distance from the mean within each cluster.

One of the issues with such algorithms is their high complexity, as some of them exhaustively enu-
merate all possible groupings and try to find the global optimum. Even for a small number of ob-
jects, the number of partitions is huge. That’s why, common solutions start with an initial, usually
random, partition and proceed with its refinement. A better practice would be to run the partitional
algorithm for different sets of initial � points (considered as representatives) and investigate whether
all solutions lead to the same final partition.

Partitional Clustering algorithms try to locally improve a certain criterion. First, they compute the
values of the similarity or distance, they order the results, and pick the one that optimizes the crite-
rion. Hence, the majority of them could be considered as greedy-like algorithms.

Hierarchical : Hierarchical algorithms create a hierarchical decomposition of the objects. They are either
agglomerative (bottom-up) or divisive (top-down):

8

(a) Agglomerative algorithms start with each object being a separate cluster itself, and successively
merge groups according to a distance measure. The clustering may stop when all objects are in
a single group or at any other point the user wants.
These methods generally follow a greedy-like bottom-up merging.

(b) Divisive algorithms follow the opposite strategy. They start with one group of all objects and
successively split groups into smaller ones, until each object falls in one cluster, or as desired.
Divisive approaches divide the data objects in disjoint groups at every step, and follow the same
pattern until all objects fall into a separate cluster. This is similar to the approach followed by
divide-and-conquer algorithms.

Most of the times, both approaches suffer from the fact that once a merge or a split is committed, it
cannot be undone or refined.

Figure 1(a) gives an example of two divisive algorithms performed in the same data set, with different
initial parameters. A ‘‘+’’ sign denotes the centre of clusters, which in this case is defined as the mean
of the values of a particular cluster. At the same time, Figure 1(b) depicts the dendrogram produced by
either a divisive or agglomerative clustering algorithm.

Clustering with k=2

Clustering with k=3

A

B

+

+

A

B

+

+ +
C

(a) Partitional

Objects: x y z w

Divisive

Agglomerative

Dendrogram

(b) Hierarchical

Figure 1: Examples of the classic clustering algorithms, where � is the number of clusters

Partitional and hierarchical methods can be integrated. This would mean that a result given by a hi-
erarchical method can be improved via a partitional step, which refines the result via iterative relocation
of points. Other classes of clustering algorithms are given in the next subsection.

9

4.2 Data Mining Clustering Techniques

Apart from the two main categories of partitional and hierarchical clustering algorithms, many other meth-
ods have emerged in cluster analysis, and are mainly focused on specific problems or specific data sets
available. These methods include [HK01]:

Density-Based Clustering : These algorithms group objects according to specific density objective func-
tions. Density is usually defined as the number of objects in a particular neighborhood of a data ob-
jects. In these approaches a given cluster continues growing as long as the number of objects in the
neighborhood exceeds some parameter. This is considered to be different from the idea in partitional
algorithms that use iterative relocation of points given a certain number of clusters.

Grid-Based Clustering : The main focus of these algorithms is spatial data, i.e., data that model the geo-
metric structure of objects in space, their relationships, properties and operations. The objective of
these algorithms is to quantize the data set into a number of cells and then work with objects belong-
ing to these cells. They do not relocate points but rather build several hierarchical levels of groups of
objects. In this sense, they are closer to hierarchical algorithms but the merging of grids, and conse-
quently clusters, does not depend on a distance measure but it is decided by a predefined parameter.

Model-Based Clustering : These algorithms find good approximations of model parameters that best fit
the data. They can be either partitional or hierarchical, depending on the structure or model they
hypothesize about the data set and the way they refine this model to identify partitionings. They
are closer to density-based algorithms, in that they grow particular clusters so that the preconceived
model is improved. However, they sometimes start with a fixed number of clusters and they do not
use the same concept of density.

Categorical Data Clustering : These algorithms are specifically developed for data where Euclidean, or
other numerical-oriented, distance measures cannot be applied. In the literature, we find approaches
close to both partitional and hierarchical methods.

For each category, there exists a plethora of sub-categories, e.g., density-based clustering oriented towards
geographical data [SEKX98], and algorithms for finding clusters. An exception to this is the class of cat-
egorical data approaches. Visualization of such data is not straightforward and there is no inherent geo-
metrical structure in them, hence the approaches that have appeared in the literature mainly use concepts
carried by the data, such as co-occurrences in tuples. On the other hand, categorical data sets are in abun-
dance. Moreover, there are data sets with mixture of attribute types, such as the United States Census data
set (see http://www.census.gov/) and data sets used in schema discovery [?]. As will be discussed,
current clustering algorithms focus on situations in which all attributes of an object are of a single type.We
believe that cluster analysis of categorical and mixed type data sets is an intriguing problem in data min-
ing.

But what makes a clustering algorithm efficient and effective ? The answer is not clear. A specific
method can perform well on one data set, but very poorly on another, depending on the size and dimen-
sionality of the data as well as the objective function and structures used. Regardless of the method, re-
searchers agree that characteristics of a good clustering technique are [HK01]:

� Scalability: The ability of the algorithm to perform well with large number of data objects (tuples).

� Analyze mixture of attribute types: The ability to analyze single as well as mixtures of attribute types.

10

� Find arbitrary-shaped clusters: The shape usually corresponds to the kinds of clusters an algorithm can
find and we should consider this as a very important thing when choosing a method, since we want
to be as general as possible. different types of algorithms will be biased towards finding different
types of cluster structures/shapes and it is not always an easy task to determine the shape or the
corresponding bias. Especially when categorical attributes are present we may not be able to talk
about cluster structures.

� Minimum requirements for input parameters: Many clustering algorithms require some user-defined
parameters, such as the number of clusters, in order to analyze the data. However, with large data
sets and higher dimensionalities, it is desirable that a method require only limited guidance from the
user, in order to avoid bias over the result.

� Handling of noise: Clustering algorithms should be able to handle deviations, in order to improve
cluster quality. Deviations are defined as data objects that depart from generally accepted norms of
behavior and are also referred to as outliers. Deviation detection is considered as a separate problem.

� Sensitivity to the order of input records: The same data set, when presented to certain algorithms in
different orders, may produce dramatically different results. The order of input mostly affects algo-
rithms that require a single scan over the data set, leading to locally optimal solutions at every step.
Thus, it is crucial that algorithms be insensitive to the order of input.

� High dimensionality of data: The number of attributes/dimensions in many data sets is large, and
many clustering algorithms cannot handle more than a small number (eight to ten) of dimensions. It
is a challenge to cluster high dimensional data sets, such as the U.S. census data set which contains
 ��� attributes.

The appearance of large number of attributes is often termed as the curse of dimensionality. This has
to do with the following [HAK00]:

1. As the number of attributes becomes larger, the amount of resources required to store or repre-
sent them grows.

2. The distance of a given point from the nearest and furthest neighbor is almost the same, for a
wide variety of distributions and distance functions.

Both of the above highly influence the efficiency of a clustering algorithm, since it would need more
time to process the data, while at the same time the resulting clusters would be of very poor quality.

� Interpretability and usability: Most of the times, it is expected that clustering algorithms produce us-
able and interpretable results. But when it comes to comparing the results with preconceived ideas or
constraints, some techniques fail to be satisfactory. Therefore, easy to understand results are highly
desirable.

Having the above characteristics in mind, we present some of the most important algorithms that have
influenced the clustering community. We will attempt to criticize them and report which of the require-
ments they meet or fail to meet. We shall treat clustering algorithms for categorical data in a separate sec-
tion.

11

4.3 Partitional Algorithms

This family of clustering algorithms includes the first ones that appeared in the Data Mining Community.
The most commonly used are k-means, [JD88, KR90], PAM (Partitioning Around Medoids), [KR90], CLARA
(Clustering LARge Applications), [KR90] and CLARANS (Clustering LARge ApplicatioNS), [NH94].

The goal in k-means is to produce � clusters from a set of � objects, so that the squared-error objective
function:

� �
��
��� 	

������� � 	 � / � � 	 �

is minimized. In the above expression, . � are the clusters, � is a point in a cluster . � and � � the mean of
cluster . � . The mean of a cluster is given by a vector, which contains, for each attribute, the mean values of
the data objects in this cluster and. Input parameter is the number of clusters, � , and as an output the algo-
rithm returns the centers, or means, of every cluster . � , most of the times excluding the cluster identities
of individual points. The distance measure usually employed is the Euclidean distance. Both for the opti-
mization criterion and the proximity index, there are no restrictions, and they can be specified according
to the application or the user’s preference. The algorithm is as follows:

1. Select � objects as initial centers;

2. Assign each data object to the closest center;

3. Recalculate the centers of each cluster;

4. Repeat steps � and
�

until centers do not change;

The algorithm is relatively scalable, since its complexity is, � �
	 � � � 1, where
	

denotes the number of iter-
ations, and usually ��� � .

PAM is an extension to k-means, intended to handle outliers efficiently. Instead of cluster centers, it
chooses to represent each cluster by its medoid. A medoid is the most centrally located object inside a clus-
ter. As a consequence, medoids are less influenced by extreme values; the mean of a number of objects
would have to ”follow” these values while a medoid would not. The algorithm chooses � medoids ini-
tially and tries to place other objects in clusters whose medoid is closer to them, while it swaps medoids
with non-medoids as long as the quality of the result is improved. Quality is also measured using the
squared-error between the objects in a cluster and its medoid. The computational complexity of PAM is,
� �	 � � � / � � � � , , with

	
being the number of iterations, making it very costly for large � and � values.

A solution to this is the CLARA algorithm, by Kaufman and Rousseeuw [KR90]. This approach works
on several samples of size � , of the � tuples in the database, applying PAM on each one of them. The out-
put depends on the � samples and is the “best” result given by the application of PAM on these samples.
It has been shown that CLARA works well with 0 samples of � ! � size [KR90], and its computational
complexity becomes, � � � � � ! � �

�
� � � / � � � . Note that there is a quality issue when using sampling

techniques in clustering: the result may not represent the initial data set, but rather a locally optimal so-
lution. In CLARA for example, if “true” medoids of the initial data are not contained in the sample, then
the result is guaranteed not to be the best.

1In this paper, we consider time complexities, unless otherwise specified

12

CLARANS, combines PAM with sampling, as well. Specifically, clustering is performed as a search in
a graph: the nodes of the graph are potential solutions, i.e., a set of � medoids. Two nodes are neighboring
if they differ by one medoid. The CLARANS approach works as follows:

1. Randomly choose � medoids;

2. Randomly consider one of the medoids to be swapped with a non-medoid;

3. If the cost of the new configuration is lower, repeat step � with new solution;

4. If the cost is higher, repeat step � with different non-medoid object, unless a limit has been reached
(the maximum value between � 0 ! and � � � / � � ;

5. Compare the solutions so far, and keep the best;

6. Return to step , unless a limit has been reached (set to the value of �);
CLARANS compares an object with every other, in the worst case and for every of the � medoids. Thus,
its computational complexity is, � � � � � � , which does not make it suitable for large data sets.

���

���

oo
oo

oo
o

o

oo
o

o
o

o

ooo
oo

oo

o

x
xx

xx xxxx

o

xx
xx

xxx x
xx

xx
xxx

xx
x

x
x
xx
xx
x
xo

oo

o
oo

���

���

�������
�������
�������
�������

x
�������
�������
	�	�	�	
	�	�	�	

close to each other

(a) Well separated Clusters (b) Clusters of different sizes (c) Aribtrary-Shaped Clusters

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������
�������

Figure 2: Three applications of the k-means algorithm

Figure 2 presents the application of k-means on three kinds of data sets. The algorithm performs well
on appropriately distributed (separated) and spherical-shaped groups of data (Figure 2(a)). In case the two
groups are close to each other, some of the objects on one might end up in different clusters, especially if
one of the initial cluster representatives is close to the cluster boundaries (Figure 2(b)). Finally, k-means does
not perform well on non-convex-shaped clusters (Figure 2(c)) due to the usage of Euclidean distance. As
already mentioned, PAM appears to handle outliers better, since medoids are less influenced by extreme
values than means, something that k-means fails to perform in an acceptable way.

CLARA and CLARANS are based on the clustering criterion of PAM, i.e., distance from the medoid,
working on samples of the data sets they are applied on, and making them more scalable. However, their
efficiency and effectiveness highly depend on the sample size and its bias. A bias is present in a sample
when the data objects in it have not been drawn with equal probabilities.

Finally, their application is restricted to numerical data of lower dimensionality, with inherent well
separated clusters of high density.

13

4.4 Hierarchical Algorithms

As we already mentioned, standard hierarchical approaches suffer from high computational complexity,
namely � � � � � . Some approaches have been proposed to improve this performance and one of the first
ones is BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [ZRL96]. It is based on the idea
that we do not need to keep whole tuples or whole clusters in main memory, but instead, their sufficient
statistics. For each cluster, BIRCH stores only the triple

� � �����%����� � , where � is the number of data objects
in the cluster, ��� is the linear sum of the attribute values of the objects in the cluster and ��� is the sum
of squares of the attribute values of the objects in the cluster. These triples are called Cluster Features (CF)
and kept in a tree called CF-tree. In the paper by Zhang et al. [ZRL96] it is proved how standard statistical
quantities, such as distance measures, can be derived from the CF’s.

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF1

child1

CF3

child3

CF2

child2

CF6

child6

CF1

child1

CF3

child3

CF2

child2

CF5

child5

CF1 CF2 CF6
prev next CF1 CF2 CF4

prev next

B = 7

L = 6

Root

Non-leaf node

Leaf node Leaf node

Figure 3: A CF-Tree used by the BIRCH algorithm, [HK01]

CF-trees are characterized by two parameters. These are the Branching Factor, B and the Threshold, T,
the former being the maximum number of children for a non-leaf node and the latter the maximum dis-
tance between any pair of points, i.e. the diameter, in sub-clusters stored at leaf nodes. An example of a
CF-tree is given in Figure 3. All nodes store CF’s: non-leaf ones store the sums of the CF’s of their chil-
dren, while leaf nodes the CF’s of the data objects themselves. BIRCH works as follows:

1. The data objects are loaded one by one and the initial CF-tree is constructed: an object is inserted
into the closest leaf entry, i.e. sub-cluster. If the diameter of the this sub-cluster becomes larger than
�

, the leaf node, and possible others, are split. When the object is properly inserted in a leaf node,
all nodes towards the root of the tree are updated with necessary information.

2. If the CF-tree of stage does not fit into memory, build a smaller CF-tree: the size of a CF-tree is con-
trolled by parameter

�
and thus choosing a larger value for it will merge some sub-clusters making

the tree smaller. Zhang et al. show how this stage does not require to start reading the data from the
beginning and guarantees the creation of a smaller tree.

3. Perform clustering: leaf nodes of the CF-tree hold sub-cluster statistics; in this stage BIRCH uses
these statistics to apply some clustering technique, e.g. k-means, and produce an initial clustering

4. Redistribute the data objects using centroids of clusters discovered in step
�
: this is an optional stage

14

which requires an additional scan of the data set and re-assigns the objects to their closest centroids.
Optionally, this phase also includes the labeling of the initial data and discarding of outliers.

The algorithm obviously requires one scan over the data, i.e., its computational complexity is � � � � , with an
optional additional scan to fix the problems of the first pass. The disadvantages, however, have to do with
the quality of the discovered clusters. First of all, since it uses Euclidean distance, it works well only on well
distributed numerical data. Second, and most important, is the issue of the order of input: parameter

�

affects the cluster sizes and thus their naturalness, forcing objects that should be in the same cluster to end
up in different ones, while duplicate objects could be attracted by different clusters, if they are presented
to the algorithm in different order. Finally, BIRCH has not been tested in higher dimensional data sets, so
its performance in this respect is questionable.

Choosing one representative for each cluster might degrade the quality of the result. CURE (Clustering
Using REpresentatives) [GRS98] chooses to use more than one point in each cluster as its representatives. As
a consequence, CURE is able to capture clusters of varying shapes and varying sizes, in large databases,
like the ones in Figure 4.

Figure 4: Varying shapes and sizes of data sets for CURE, [GRS98]

The algorithm is summarized below:

1. Draw a random sample from the data set;

2. Partition this sample into equal sized groups: the main idea here is to partition the sample into �
partitions, each of size

���� , where � � is the size of the sample;

3. Cluster the points of each group: we perform an initial clustering until each partition has
� �� � , � ,

clusters;

4. Eliminate outliers: this is a two phase procedure. First, as clusters are being formed for some time
until the number of clusters decreases below a certain fraction of the initial number of clusters. Sec-
ond, in case outliers are sampled together during sampling phase, the algorithm eliminates small
groups;

5. Cluster the partial cluster. The representative points are shrunken towards the center, i.e. replaced
by other points closer to the center, by a shrinking factor � ;

6. Mark the data with corresponding labels;

15

The computational complexity of the algorithm is � � � ������� � � . As discussed, it is a reliable method for
arbitrary shapes of clusters and has been shown to perform well on two-dimensional data sets. However,
it appears to be sensitive to the parameters, such as the number of representative objects, the shrinking
factor and the number of partitions.

In general, BIRCH outperforms CURE in time complexity, but is lacking cluster quality. Finally, they
both handle outliers well.

4.5 Density-Based Algorithms

Clusters can be thought of as regions of high density, separated by regions of no or low density. Density
here is considered as the number of data objects in the “neighborhood”.

The most popular one is probably DBSCAN (Density-Based Spatial Clustering of Applications with Noise,
[EKSX96]. The algorithm finds, for each object, the neighborhood that contains a minimum number of
objects. Finding all points whose neighborhood falls into the above class, a cluster is defined as the set of
all points transitively connected by their neighborhoods. DBSCAN finds arbitrary-shaped clusters while at
the same time not being sensitive to the input order. Besides, it is incremental, since every newly inserted
point only affects a certain neighborhood. On the other hand, it requires the user to specify the radius of
the neighborhood and the minimum number of objects it should have; optimal parameters are difficult to
determine. In this work, Ester et al. employ a spatial index to help finding neighbors of a data point. Thus,
the complexity is improved to � � � �����

� � , as opposed to � � � � � without the index. Finally, if Euclidean
distance is used to measure proximity of objects, its performance degrades for high dimensional data.

OPTICS (Ordering Points To Identify the Clustering Structure) [ABKS96] is an extension to DBSCAN that
relaxes the strict requirements of input parameters. OPTICS computes an augmented cluster ordering, such
as in Figure 5, to automatically and interactively cluster the data. The ordering represents the density-
based clustering structure of the data and contains information that is equivalent to density-based cluster-
ing obtained by a range of parameter settings [HK01]. OPTICS considers a minimum radius that makes
a neighborhood legitimate for the algorithm, i.e., having the minimum number of objects, and extends it
to a maximum value. DBSCAN and OPTICS are similar in structure and have the same computational
complexity, � � � �����

� � .

Reachability
distance

Cluster-order

of the objects

undefined

 ‘

Figure 5: Augmented cluster ordering in OPTICS [HK01]

16

DENCLUE (DENsity-based CLUstEring) [HK98] is the third representative and uses a different approach
to cluster data objects:

1. The influence of an object to its neighborhood is given by an influence function;

2. Overall density is modeled as the sum of the influence functions of all objects;

3. Clusters are determined by density attractors, where density attractors are local maxima of the overall
density function.

The influence function can be an arbitrary one, as long as it is determined by the distance � � ��0� �� � between
the objects. Examples are the square wave influence function:

��� ��� � %�� � ��0� �� �%�
� ! �	� � � ��.� �� � , �

��
������� ��� �
where � is a threshold, or a Gaussian:

��� � ����� � � � � ��0� �� �%��� ��� ���� � �! ��""$# "
Application of the second function is given in Figure 6. Density attractors are the peak values (local

maxima) in the graph. After that, a center-defined cluster for an attractor �&% is a subset . , where the density
function at � % is no less than ' .

(a) Data Set (b) Gaussian

Figure 6: DENCLUE using a Gaussian influence function [HK01]

We can see that DENCLUE highly depends on the threshold ' (noise threshold) and parameter � (density
parameter). On the other hand, it involves the following advantages [HK01]:

1. Has a solid mathematical foundation;

2. Handles outliers;

3. Allows a compact mathematical description of arbitrary-shaped clusters even in high dimensional
data sets.

4. Uses grid cells and keeps info about the ones that do actually contain objects.

17

DENCLUE’s computational complexity is � � � �����
� � . Density-based algorithms do not perform any sam-

pling on the data, which may increase the cost. This is done because there might be a difference in the
density of the sample from the density of the whole data set [HVB00]. Another important issue here is the
distinction between the previously discussed algorithms, BIRCH and CURE, and density based ones. The
latter ones grow their clusters according to the density criterion, while the former try to accommodate data
objects in specific clusters, with the use of extra passes over the data sometimes for optimization purposes.
Moreover, density-based methods are generally insensitive to the order of input, while BIRCH depends on
it.

4.6 Other Approaches

In this subsection, we present some algorithms that belong to the rest of the categories. First, we deal with
grid-based clustering, which is mainly oriented towards spatial data sets. The main concept of these al-
gorithms is the quantization of the data space into a number of cells. STING (STatistical INformation Grid),
[WYM97], WaveCluster, [SCZ98] and CLIQUE (CLustering In QUEst, [AGGR98] are three representatives
of this family of algorithms.

STING breaks the spatial data space into a finite number of cells using a rectangular hierarchical struc-
ture, as the one in Figure 7. It then processes the data set and computes the mean, variance, minimum,
maximum and type of distribution of the objects within each cell. As we go higher in the structure, statis-
tics are being summarized from lower levels (similar to the summarization done with CF’s in a CF-tree).
New objects are easily inserted in the grid and spatial queries can be answered visiting appropriate cells
at each level of the hierarchy. A spatial query is defined as one that retrieves information of spatial data
and their interrelationships. STING is highly scalable, since it requires one pass over the data, but uses a
multi-resolution method that highly depends on the granularity of the lowest level. Multi-resolution is the
ability to decompose the data set into different levels of detail (an example is given in Figure 8). Finally,
when merging grid cells to form clusters, children are not properly merged (because they only correspond
to dedicated parents) and the shapes of clusters have vertical and horizontal boundaries, conforming to
the boundaries of the cells.

Figure 7: The multi-resolution grid used by STING [HK01]

On the other hand, WaveCluster, which employs a multi-resolution approach as well, follows a differ-
ent strategy. It uses Wavelets to find arbitrary shaped clusters at different levels of resolution. A wavelet
transform is a signal processing method that decomposes a signal into different frequency bands. Figure 8
shows this application of the algorithm on a data set. The leftmost image corresponds to high resolution,
the middle one to medium and the rightmost to lower resolution. Hence, applying this transform into clus-
tering helps in detecting clusters of data objects at different levels of detail. The algorithm handles outliers

18

well, and is highly scalable, � � � � , but not suitable for high dimensional data sets. Compared to BIRCH,
CLARANS and DBSCAN, WaveCluster was found to perform better [HK01].

Figure 8: The application of WaveCluster, [HK01]

In higher dimensions, clusters might exist in a subset of dimensions, i.e. a subspace. CLIQUE is a sub-
space clustering algorithm. It partitions the data into hyper-rectangles, i.e. rectangles with more than two
dimensions, and finds the dense ones, i.e. the ones with a certain number of objects in a given neighbor-
hood; unions of such rectangles constitute the clusters. CLIQUE first finds -dimensional dense cells, then� -dimensional dense rectangles and so on, until all dense hyper-rectangles of dimensionality � are found.
As for its efficiency, it handles high dimensional data sets well, is insensitive to the input order and com-
putes clusters in � � � � time.

Finally, we present the Expectation-Maximization (EM) algorithm [BFR98], which is generally consid-
ered as a model-based algorithm or just an extension to the k-means algorithm [HK01]. Indeed, EM assigns
each object to a dedicated cluster according to the probability of membership for that object. The prob-
ability distribution function is the multivariate Gaussian and main goal is the iterative discovery of good
values for its parameters, with objective function the logarithm of the likelihood of the data, given how
well the probabilistic model fits it. The algorithm can handle various shapes of clusters, while at the same
time it can be very expensive since hundreds of iterations may be required for the iterative refinement of
parameters. Bradley et al. also propose a scalable solution to EM, based on the observation that data can
be compressed, maintained in main memory or discarded [BFR99]. Objects are discarded if their cluster mem-
bership is ascertained, they are compressed if they cannot be discarded but belong to a tight sub-cluster,
and retained in memory otherwise.

The algorithms discussed so far are given in Table 3, together with some of their characteristics. This
table indicates the input parameters required by each algorithm (� nd column), the type of data sets it is
optimized for (

�
rd column), the cluster structure (� th column), whether it handles noise or not (0 th column)

and its computational complexity (� th column). In general complexity can be given in terms of the number
of operations in main memory or the I/O cost required. In our clustering techniques, we assume number
of in-memory operations and thus a complexity of � ��� � does not necessarily mean that there is only one
scan over the data. It means that there is a constant number of in-memory operations and maybe multiple
scans of the data set.

19

Partitional Methods
Algorithm Input Parameters Optimized For Cluster

Structure
Outlier
Handling

Computational
Complexity� � �� �� � Number of Clusters Separated Clusters Spherical No

� �	 � �

� �

Number of Clusters Separated Clusters, Small Data Sets Spherical No

� �	 � � � � �
 �

�� �� �

Number of Clusters Relatively Large Data Sets Spherical No

� � � � ��� � � � � �

�� �� �� �

Number of Clusters, Maximum
Number of Neighbors

Spatial Data Sets, Better Quality of
Clusters than PAM and CLARA

Spherical No

� � � � �

Hierarchical Methods�	 � ��

Branching Factor, Diameter
Threshold

Large Data Sets Spherical Yes

� � �

�� � �

Number of Clusters, Number of
Cluster Representatives

Arbitrary Shapes of Clusters, Rela-
tively Large Data Sets

Arbitrary Yes

� � � ���� � �

Density-Based Methods� � � � ��

Radius of Clusters, Minimum
Number of Points in Clusters

Arbitrary Shapes of Clusters, Large
Data Sets

Arbitrary Yes

� � � ��� � �

� �� �� � �

Radius of Clusters, Minimum
Number of objects

Arbitrary Shapes of Clusters, Large
Data Sets

Arbitrary Yes

� � � ��� � �

� � 	 � �

Radius of Clusters (min,max), Min-
imum Number of objects

Arbitrary Shapes of Clusters, Large
Data Sets

Arbitrary Yes

� � � ��� � �

Miscellaneous Methods� 	 � !

Number of cells in lowest level,
Number of objects in cell

Large Spatial Data Sets Vertical and
Horizontal
Boundaries

Yes

� � �

" �# � �$�% � &�'

Number of Cells for each Dimen-
sion, Wavelet, Number of applica-
tion of Transform

Arbitrary Shapes of Clusters, Large
Data Sets

Arbitrary Yes

� � �

�� 	 (� �

Size of the Grid , Minimum Num-
ber of Points within each Cell

High Dimensional Large Data Sets Arbitrary Yes

� � �

��) � $ � * $ � �

Initial Gaussian Parameters, Con-
vergence Limit

Large Data Sets with Approxi-
mately Uniform Distribution

Spherical No (?)

� � �

� =number of objects,
�

=number of clusters, �=size of sample,

	

=number of iterations

Table 3: Properties of Various Clustering Algorithms

20

5 Clustering Databases with Categorical Data

In this section of the paper, we consider databases with attributes whose values are categorical. These
values, as already mentioned, cannot be ordered in a single way and, therefore, clustering of such data is
a challenge. We summarize the characteristics of such data in the following list:

� Categorical Data have no single ordering: there are several ways in which they can be ordered, but
there is no single one which is more semantically sensible than others.

� Categorical Data can be visualized depending on a specific ordering.

� Categorical Data define no a priori structure to work with [GKR98];

� Categorical Data can be mapped onto unique numbers and, as a consequence, Euclidean distance
could be used to prescribe their proximities, with questionable consequences though;

One sensitive point is the last one. Guha et. al. give an example why this entails several dangers [GRS99]:
assume a database of objects through � with the following tuples: (a) 	�� ����������� � , (b) 	 ��������� ��� � , (c) 	�� ��� � ,
and (d) 		� � 2. These objects could be viewed as vectors of ! ’s and ’s denoting the presence of these objects
inside the corresponding tuples. The four tuples become:

(a) 	
� ����������� � � 	�� � � � � ����� � �� � ;
(b) 	 ��������� ��� � � 	 ��� � � � � � � � �� � ;
(c) 	
� ��� � � 	�� ��������� � ����� � ;
(d) 	�� � � 	 ������������������ � � ;

Now, using Euclidean distance between tuples (a) and (b), we get:

�
� ! � ! �

� ! � ! � � 	 ��� ��� �
and this is the smallest distance between pairs of tuples, forcing (a) and (b) to be merged using a centroid-
based hierarchical algorithm. The centroid of the new cluster is 	 ������� � � � ��! � 0 � ��! � . In the following steps,
(c) and (d) have the smallest distance and, thus will be merged. However, this corresponds to a merge
of tuple 	�� �� � with tuple 	�� � , which have no objects in common, assuming here that matching based on
presence is more important than matching based on absence. After that, we reach the conclusion that using
a binary mapping of categorical attributes and Euclidean distance, some tuples that should not be in the
same cluster end up being together. In this particular case, Hamming distance would perform better.

It becomes apparent, then, that we need different methods, and especially different similarity mea-
sures, to discover “natural” groupings of categorical data. The following subsections introduce the most
important Clustering Algorithms on databases with categorical attributes.

2tuples are considered sets of categorical values, whose identifiers we report

21

5.1 The k-modes Algorithm

The first algorithm in the database community, oriented towards categorical data sets is an extension to
k-means, called k-modes [Hua98]. The idea is the same as in k-means and the structure of the algorithm does
not change. The only difference is in the similarity measure used to compare the data objects.

More specifically the differences are:

1. a different dissimilarity measure is used;

2. the means are replaced by modes;

3. a frequency based method is used to update modes.

Given two categorical data objects �� and �� , their dissimilarity is found using the following expression:

� � �� � �� �%�
��
��� 	 �

� � � ���� �

where
� � � � ���� �%� � ! �	� � � �&� �

 �	� � � '�&���
Intuitively, the above expression counts the number of mis-matches the two data objects have on their cor-
responding attributes. Note that every attribute is given the same weight. If we consider the frequencies
of the values in a data set, then the dissimilarity expression becomes:

� � ��0� �� �%�
��
���0	 �

	 � �
 �
� 	 � �
 � � � � � ����� �

where � 	 � and �
 � are the numbers of objects in the data set with attributes values � � and ��� for attribute # ,
respectively. The mode of a set is the value that appears the most in this set. For a data set of dimensionality
� , every cluster � , !�� ! � , has a mode defined by a vector

��� � � � � 	 �� �� ����������� �� � . The set of
���

’s that
minimize the expression:

� �
��
� � 	

�
�	 � � �

� ��.� � � �

is the desired output of the method.

The similarities, in structure and behavior, with k-means are obvious, with k-modes carrying, unfortu-
nately, all the disadvantages of the former. An interesting extension to data sets of both numerical and
categorical attributes is that of k-prototypes [Hua97]. It is an integration of k-means and k-modes employing:

� � % : dissimilarity on numeric attributes;
� � � : dissimilarity on categorical attributes;
� dissimilarity measure between two objects:

� % � � �
where � is a weight to balance the two parts and avoid favoring either type of attribute.

� is a parameter specified by the user.

22

5.2 The ROCK Algorithm

ROCK (RObust Clustering using linKs) [GRS99] is a hierarchical algorithm for categorical data. Guha et al.
propose a novel approach based on a new concept called the links between data objects. This idea helps to
overcome problems that arise from the use of Euclidean metrics over vectors, where each vector represents
a tuple in the data base whose entries are identifiers of the categorical values. More precisely, ROCK defines
the following:

� two data objects �� and �� are called neighbors if their similarity exceeds a certain threshold � given by
the user, i.e., ��# � � ��.� �� � � � .

� for two data objects, �� and �� , we define: � # �.� � ��0� �� � is the number of common neighbors between the
two objects, i.e., the number of objects �� and �� are both similar to.

� the interconnectivity between two clusters . 	 and . � is given by the number of cross-links between
them, which is equal to � �	�� � ����� �	�� � � " � # �.� � �� � � �� % � .

� the expected number of links in a cluster . � is given by �
	�� � � �
	 �� . In all the experiments presented

� � � �%� 	 � 		�� 	
In brief, ROCK measures the similarity of two clusters by comparing the aggregate interconnectivity of two
clusters against a user-specified static interconnectivity model. After that, the maximization of the following
expression comprises the objective of ROCK:

� �
��
��� 	 � �

� �
�	 � � �	 � � � �

� # �.� � �� � � �� % �
�
	�� � ��	 ��

The overview of ROCK is given in Figure 9.

Draw Random SampleDATA Cluster Sample with Links Label Data on Disk

Figure 9: Overview of ROCK [GRS99]

As we see, a random sample is drawn and a clustering algorithm (hierarchical) is involved to merge
clusters. Hence, we need a measure to identify clusters that should be merged at every step. This measure
between two clusters . � and . � is called the goodness measure and is given by the following expression:

� � . � � . � �%� � # �.� � . � � . � �� � �

� � � 	��.� � �
	 � / �

	��.� � �
	 �� / �
	��.� � ��	 ��

where � # � � � . � � . � � is now the number of cross-links between clusters:

� # �.� � . � � . � � � �
�	 � ��� � � �	 � � � �

� # � � � �� � � �� % �

The pair of clusters for which the above goodness measure is maximum is the best pair of clusters to be
merged.

The computational complexity of ROCK is � � � �

� � � � � �

� �����
� � , where: � � is the maximum

number of neighbors of a data object and � � is the average number of neighbors for a data object.

23

5.3 The STIRR Algorithm

STIRR (Sieving Through Iterated Relational Reinforcement) [GKR98] is one of the most influential methods
for clustering categorical data sets. It uses an iterative approach where data objects are considered to be
similar if the items with which they appear together in the database have a large overlap, regardless of
the fact that the objects themselves might never co-occur. For example, car types Civic and Accord are
similar since tuples [Honda, Civic,1998] and [Honda,Accord,1998] have a large overlap, i.e., the
values Honda and 1998.

KEY FEATURES OF THE APPROACH

1. There is no a-priori quantization. This means that clustering the categorical data sets is purely done
through their patterns of co-occurrence, without trying to impose an artificial linear order or numer-
ical structure on them.

2. Gibson et al., wish to define a notion of similarity among items of the database that will apply even
to items that never occur together in a tuple; their similarity is based on the fact that the sets of items
with which they do co-occur have large overlap.

3. Viewing each tuple in the database as a set of values, the authors treat the entire collection of tuples
as an abstract set system, or hyper-graph (Figure 10).

Besides the above, spectral methods relate “good” partitions of an undirected graph to the eigenvalues and
eigenvectors of certain matrices derived from the graph. STIRR employs spectral partitioning on hyper-
graph clustering using non-linear dynamical systems, instead of eigenvectors and proposes a weight-propagation
method which works roughly as follows:

� It first seeds a particular item of interest, e.g., Honda, with a small amount of weight. This is not a
required assignment, since all weights can be initialized to ;

� This weight propagates to items with which Honda co-occurs frequently;

� These items, having acquired a weight, propagate it further (back to other automobile manufactur-
ers, perhaps);

� The process iterates until it converges;

We are now ready to present some of the main technical details of the approach. Following are the descrip-
tions of the concepts used throughout this technique.

Representation : each possible value in each possible attribute is represented by an abstract node; an ex-
ample of a data set represented this way, is given in Figure 10.

Configuration : the assignment of a weight ��� to each node � ; we will refer to the entire configuration as
� ;

Normalization function
� �

� � : re-scales weights of the nodes associated with each attribute, so that their
squares add up to and ensure orthonormality.

Combining Operator � : this is defined by any of the following:

24

1. product operator, � : � �
�
	 ��������� �

� �%� �
	

�
� ����� �

� .
2. addition operator: � �

� 	�������� � � ��� � � 	

� �
 ����� � � .

3. a generalization of the addition operator that is called the � � combining rule, where � is an odd
natural number. �

� �
�
	 ��������� �

� �%� �
�

�
	 ����� �

�
� � � 	�� � � . Addition is simply an � 	 rule.

4. a limiting version of the �
�

rules, which is referred to as ��� . ��� � � 	���������� � ��� is equal to � � , where
� � has the largest absolute value among the weights in 	

� 	���������� � � � .
Dynamical System : repeated application of a function � on some set of values.

Fixed points : points such that � ��� �%� �
, for all nodes

�
.

Function � : maps one configuration to another and is defined as follows:

To update � � :
for every tuple ��� 	 ��� � 	�������� � � � � 	 � , containing � do���	� � �

�
� � ��������� �

��
� � �
� � � � � � �

Figure 10: Representation of a database in STIRR [GKR98]

From the above, a choice of �%	 for � involves a linear term for each of the tuples, while � and � � , for � , ,
involve a non-linear one. The latter ones include the potential to represent co-occurence in a stronger way.

Finally, one of the key components of the approach is the choice of an initial configuration. Such a
configuration could be chosen in two ways:

1. If we do not want to focus on the weight in a particular portion of the set of tuples, then we could
adopt a uniform initialization, i.e., all weights are set to and are then being normalized, or we could
adopt a random initialization, where all weights are taking values from the � ! � � interval with a nor-
malization phase following again.

2. If we want to focus on a particular weight, we give this weight a higher value than the other.

The paper by Gibson et al. [GKR98] presents some useful theorems from spectral graph theory, to
prove that STIRR converges and more over gives a result where some values have negative weights, while
others have positive weights. Experimental results are given, when the algorithm is applied on a bib-
liographical database where database publications are successfully distinguished from theoretical ones.
However, there are no experiments where more than two clusters were discovered. Finally, STIRR requires
one pass over the data set.

25

5.4 The CACTUS Algorithm

An improvement to STIRR came from the CACTUS (Clustering Categorical Data Using Summaries algorithm [GGR99].
The main idea here is that summary information constructed from the data set is sufficient for discovering
well-defined clusters. This way, the algorithm is able to find types of clusters that STIRR cannot discover,
such as clusters with overlapping cluster-projections on any attribute and clusters where two or more clus-
ters share the same cluster projection. An overview of CACTUS has as follows:

� Summarization: summaries of data are computed;

� Clustering: using the summaries, candidate clusters are computed;

� Validation: the set of candidate clusters are validated, after the clustering phase;

In CACTUS a set of categorical attributes 	�� 	���������� � � � is assumed with domains 	�� 	���������� � � � , which
are considered to be very small. Then, an interval region is defined by � � � 	�� ������� � � if for every # : �
��� � � .
If � � ��� � and � � �	� � , # '� � , the support � � � ��� � � � is:

� � � � � � � �%��

	� �	� � � � � � � � � and � � � � � � � �

i.e., the number of tuples where � � and � � co-occur. Now the support of the region � , � � � � is the number of
tuples in the data set that belong to � . If all attributes are independent and their values are equally likely:

Expected Support of � � � ��� � � � � � 	 � 	��
	
� 	 	 � ������� 	 � � 		 � 	 	 � ������� 	 � � 	

and
Expected Support of

� � ��� � � � � � ��� � � � � � � � � � 	 � 	�� 	 � � 	 � 	 � � 	

Values � � and � � are now strongly connected if:

� � � � � � � � , � � � ��� � � � � � � � �
and a cluster is defined by the following:

Cluster in CACTUS : . � . ��� ������� . � is a cluster if and only if:

1. for all # � � , . � and . � are strongly connected, i.e. all pairs of values in them are strongly connected;

2. . � is maximal for all #
3. � � � � � � � � . � is � times the expected;

The above definition implies that clusters could be regions, as shown in Figure 11, where region 	 � 	�� � � � �
	�� 	�� � � � � 	 � 	�� � � � , (dotted area), defines a cluster. After that, we can delve into the stages of CACTUS.

In the summarization phase, two types of summaries are computed:

� inter-attribute summaries: counts of all strongly connected attribute value pairs from different at-
tributes;

26

a2

a1

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

A B C

a2

a1

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

a2

a1

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

A B C

(a)

Figure 11: Example using CACTUS [GGR99]

� intra-attribute summaries: computation of similarities between attribute values of the same attribute;

In the clustering phase, CACTUS analyzes each attribute, in order to compute all cluster projections.
For an attribute � � , its projection is a subset of values from this attribute, that is strongly connected to the
attribute values of every other attribute � � , # '� � , denoted by �

�� . For example, if we consider attribute
� in Figure 11, then we can compute ���� � 	 � 	�� � ��� ��� � ��� � and �

�
� � 	 � 	�� � � � and the projection of � is

� ���� �
�
� . After that, the clustering phase synthesizes, in a level-wise manner, candidate clusters on sets of

attributes from the cluster-projections on individual attributes. Intuitively, this step extends the previous
one by increasing the dimensionality of clusters by one.

Finally, in the validation phase, the algorithm recognizes false candidates by checking if the support of
each candidate cluster is greater than the required threshold.

CACTUS is a scalable algorithms since it requires only one pass of the data set. A second pass is needed
for the validation phase, without any implications on scalability. The authors present sufficient experi-
mental results that prove a better performance compared to STIRR, in terms of time and the number of
attributes.

5.5 Discussion

Clustering Categorical data is a challenging issue as we already argued. The algorithms we just discussed
introduce a variety of methods to tackle this problem and give different solutions in terms of their perfor-
mance, with respect to the time it takes for the algorithms to run when the number of tuples and dimen-
sions change. On the other hand, quality of produced clusters is measured by the user’s expertise and
examination of the results. Due to space considerations, it is impossible to present all technical details of
the approaches. However, our intention is to compare these categorical clustering algorithms and stress
their advantages and weaknesses.

Hence, we first introduced k-modes and k-prototypes, which first appeared in the database community,
after the observation that means, in the k-means method, could be replaced by modes so as to compare cat-
egorical attributes. Both k-modes and k-prototypes are scalable but do not handle outliers well.

k-modes is a partitional method. The first, and probably the only, representative algorithm from the

27

hierarchical family is ROCK. Its novelty is based on the assumption that an attribute value, in addition to
its occurrence, should be examined according to the number of other attribute values it exists with. ROCK
works totally differently than k-modes not only because it is hierarchical but also due to the fact that it works
on samples of the data. It is more scalable than other sampling techniques but less than k-modes. In our
opinion, the main disadvantage of ROCK is that it employs sampling and the results highly depend on it.

A well presented and novel technique is STIRR, based on the iterative computation of new weights
for the nodes of a graph. The idea seems similar to the work done by Jon Kleinberg on discovering au-
thoritative sources on the web [Kle98], however STIRR highly depends on the choice of the combining op-
erator, � and the notion of the iterative function, � , which defines a dynamical system. Gibson et. al. argue
that there hasn’t been much proved about the behavior of dynamical systems in the literature and they
base their proof of convergence and the discovery of final clusters, on results that come from the spectral
graph theory research area. An additional observation is that STIRR gives a result where each value has
acquired either a positive or negative weight, and the reporting of final clusters might involve a heavy
post-processing stage. Moreover, choosing different initial configurations, the authors discovered differ-
ent partitions of their data set, which leads to the conclusion that initial weights have an impact on the final
result. Note that the different clusterings could be meaningful, but still they are not the same and cannot
be directly compared with each other. On the other hand, STIRR converges quickly and identifies clusters
in the presence of irrelevant values, i.e., values that co-occur with no other values [GKR98].

Finally, we presented CACTUS, an approach that entails the computation of summaries from the un-
derlying data set (a concept similar to the one used in BIRCH), as well as techniques used to find frequent
item-sets in databases. CACTUS’s summaries have to do with the support of pairs of attribute values from
different attributes and the similarity of values that belong to the same attribute. The disadvantage of this
algorithm is that, as the number of dimensions grow, when computing the summaries, each attribute value
of a tuple is compared with every other value while the results can be kept in main memory only if the do-
main size of every attribute is very small. We believe that larger domains would have a destructive result
in the current implementation, which requires intensive CPU computations.

Table 4 gives an overview of the features of each algorithm. In our opinion it becomes obvious that
there is no “optimal solution” for the problem of categorical data and the choice of an algorithm highly
depends on the knowledge of the data itself, the parameters of individual approaches and the resources
that are available. From our presentation of clustering methods, it is also obvious that there are no good
techniques for handling large data sets of mixed attributes. k-prototypes or EM can be employed but their
performance degrades as the database grows in size and number of dimensions. At the same time, the
majority of data sets nowadays contain attributes with mixed values, which require robust clustering tech-
niques. Note that some of the values might be missing either due to reporting errors or unavailability of
information, something that is not explicitly handled by the presented approaches.

In the next section we give our suggestions for future research.

6 Research Challenges

As we discussed earlier, the problem of cluster analysis becomes very interesting, and at the same time
challenging, when the data in hand contain categorical attributes. The number of algorithms, however,
for the discovery of groups in such data is limited, compared to the research devoted on data sets with
numerical data. Further, few algorithms (perhaps only EM) deal with mixtures of values, i.e., attributes of
numerical and categorical values. Ideally, a clustering algorithm should:

28

Categorical Clustering Methods
Algorithm Input Parameters Optimized For Outlier

Handling
Computational
Complexity� � �' � & � &� �� � Number of Clusters Mixed Data Sets No

� � �

� � � �

Number of Clusters Small Data Sets with Noise Yes

� � � ��� � ��� ��� � � ���� � �

� 	 � �

Initial Configuration, Combining
Operator, Stopping Criteria

Large Data Sets with Noise Yes

� � �

� � � � �

Support Threshold �, Validation
Threshold

Large Data Sets with Small Dimen-
sionality and Small Attribute Do-
main Sizes

Yes

� � �

� =number of objects,

�

=number of clusters, � � , ��� =maximum and average number of neighbors for an object, respectively.

Table 4: Properties of Categorical Clustering Algorithms

29

� scale well, i.e., at most one scan of the data is required;

� handle deviations efficiently;

� discover arbitrary-shaped clusters (only for non-categorical attributes);

� be insensitive to the order of input;

� give reasonable execution times in the presence of high dimensional data sets;

� present a succinct model of the clusters.

In the algorithms we presented, some of the above desiderata are not met. For example, few of the
algorithms work well with large number of attributes, due to the inherent sparsity, while there are consid-
erable trade-offs in the others. In particular, the output of BIRCH depends not only on the parameters but
also on the order of input of the data set.

After that, we believe that there are some key points worth mentioning in this challenging area, em-
bodying promising opportunities for further research:

Numerical versus Categorical. So far, there is no clear comparison between algorithms on numerical and
categorical data. The former ones have, in general, better mathematical properties, and the qual-
ity of some of them can be quantified [HVB00]. Besides, given a data set, proper visualization may
sometimes give hints as to which technique to be used. This does not hold for categorical databases
and we cannot tell which algorithm works better on them, i.e., which algorithm discovers the most
“natural” groups. Their performance is usually given in terms of their scalability.

In such a situation we can formulate a comparison of algorithms in terms of their performance on nu-
merical data sets only. Numerical values can be considered as categorical and moreover a numerical
algorithm can be chosen that works well on it. A real challenge would now be to perform cluster-
ing using a categorical technique and discover differences in the results. We should stress here that
the main interest is not in the performance of algorithms in terms of time and space, but basically in
terms of the clusters found.

Comparison of Clusterings. Categorical data presents difficult challenges for graphical display. On the
other hand, numerical data can be graphically displayed, introducing hints for the number of clus-
ters or shapes for them, most of the times. If one is working on categorical values, the expertise of
domain knowledgeable users is needful, and considerable post-processing of the results is essential
in order to assess the goodness of the results. In both numerical and categorical algorithms, even
the same method gives different results for different runs (if the order of input or the algorithm pa-
rameters change), and the comparison between the partitionings becomes a difficult problem. In the
community of Software Engineering, Tzerpos and Holt recently introduced a measure, called MoJo,
to quantify how far apart two different partitionings of the same data set are from each other [TH99].
Their approach counts the number of Moves, of objects, and Joins, of partitions, required to convert
one of them to the other. They deal only with software entities, and in this context they give a weight
of one to each of the operations. A similar technique does not exist for cluster analysis algorithms
that involve data sets with large amounts of data and high dimensionality. Furthermore, MoJo’s lin-
ear performance is not formally proved.

Such an approach would be beneficial in the comparison of our clustering algorithms. However,
we need to propose a symmetric measure and weigh the operations we should perform to convert

30

one partition to the other. For example, speaking in information theoretical terms, the move of one
object to a different partition might have a positive or negative change in the partitions entropy. In
this respect, we will attempt to quantify the answer of the following question: Given two clusterings�

and � over the same data set, what is the amount of information (usually given by the number of bits) needed
for the clusters � � � � � "!$#%!$� and � � � � � ! � ! � , with � not necessarily equal to � , to communicate
their values to each other. Given this quantity, we may then be able to measure the quality of clustering�

given � and vice versa.

Schema Discovery Through Clustering. There is the case where large database tables are the product of
several joins among smaller tables, which eventually expire or become unavailable. In other cases the
schema of a large table is the result of a schema mapping application, as in Clio [?], and the Amalgam
project [?]. We believe that clustering, as a means of a succinct representation of similar groups, might
lead to the break up of large relations into smaller ones, strongly coupled with smaller schemas. In
this case, a cluster comparison seems necessary, while at the same time we need efficient handling
of absent values in the data set.

Stability of Clustering Techniques. Data sets evolve and, as a consequence, their interdependencies and
groupings change. One of the desired properties of the cluster analysis is to remain stable whenever
the data changes by small amounts, that is new data objects are inserted and existing ones change or
get deleted. But, how stable are BIRCH, STIRR, CACTUS and the collection of methods we described
? If the data set analyzed consists of daily transactions and a daily clustering technique is part of the
data mining process, it is easy to understand that all changes in the data affect the results, where ex-
treme deviations from previous ones are unwanted. The stability of categorical clustering algorithms
is an under-studied issue and has not attracted much attention. It would be interesting to know how
much the output of a clustering algorithm is affected when the input changes slightly. We intend to
propose a measure of stability and the effects of changes in the data set, e.g. measure the difference
in the resulting clusters.

Other Techniques in Clustering. When performing clustering on categorical data, it is obvious that the
techniques used are based on co-occurrences of the data objects or the number of neighbors they
have, and at the same time do not deal with mixed attribute types. STIRR adopts theory from the
dynamical systems area and spectral graph theory to give a solution. CACTUS employs techniques
similar to the ones used in frequent item-set discovery and summarizes information in a similar way
as BIRCH does.

It is our belief that there exist methods not yet applied to categorical attributes which mainly lead to
more succinct result (recall that STIRR needs a painful post-processing step to describe the results).
For instance, there are techniques employed by the machine learning community which are used to
cluster documents according to terms they contain [ST00]. It is our interest to examine the properties
of these methods and investigate whether it can be effectively applied to categorical as well as mixed
attribute types.

7 Conclusions

Clustering lies at the heart of data analysis and data mining applications. The ability to discover highly
correlated regions of objects when their number becomes very large is highly desirable, as data sets grow
and their properties and data interrelationships change. At the same time, it is notable that any clustering
“is a division of the objects into groups based on a set of rules – it is neither true or false” [Eve93].

31

In this paper we described the process of clustering from the data mining point of view. We gave the
properties of a “good” clustering technique and the methods used to find meaningful partitionings. At the
same time, we concluded that research has emphasized numerical data sets, and the intricacies of working
with large categorical databases is left to a small number of alternative techniques. We claimed that new
research solutions are needed for the problem of categorical data clustering, and presented our ideas for
future work.

References

[ABKS96] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. OPTICS: Ordering
Points To Identify the Clustering Structure. In Proceedings of the International Conference on Man-
agement of Data, (SIGMOD), volume 28(2) of SIGMOD Record, pages 49–60, Philadelphia, PA,
USA, 1–3 June 1996. ACM Press.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Auto-
matic Subspace Clustering of High Dimensional Data for Data Mining Applications. In Pro-
ceedings of the International Conference on Management of Data, (SIGMOD), volume 27(2) of SIG-
MOD Record, pages 94–105, Seattle, WA, USA, 1–4 June 1998. ACM Press.

[And73] Michael R. Anderberg. Cluster analysis for applications. Academic Press, 1973.

[BFR98] Paul S. Bradley, Usama Fayyad, and Cory Reina. Scaling Clustering Algorithms to Large
Databases. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Min-
ing, (KDD), pages 9–15, New York, NY, USA, 27–31 August 1998. AAAI Press.

[BFR99] Paul S. Bradley, Usama Fayyad, and Cory Reina. Scaling EM (Expectation-Maximization) Clus-
tering to Large Databases. Technical Report MSR-TR-98-35, Microsoft Research, Redmond,
WA, USA, October 1999.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jöerg Sander, and Xiaowei Xu. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the 2nd Inter-
national Conference on Knowledge Discovery and Data Mining, (KDD), pages 226–231, Portland,
OR, USA, 2–4 August 1996. AAAI Press.

[Eve93] Brian S. Everitt. Cluster Analysis. Edward Arnold, 1993.

[GGR99] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. CACTUS: Clustering Categor-
ical Data Using Summaries. In Proceedings of the 5th International Conference on Knowledge Dis-
covery and Data Mining, (KDD), pages 73–83, San Diego, CA, USA, 15–18 August 1999. ACM
Press.

[Gil58] E. W. Gilbert. Pioneer Maps of Health and Disease in England. Geographical Journal, 124: 172–
183, 1958.

[GKR98] David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Clustering Categorical Data: An
Approach Based on Dynamical Systems. In Proceedings of the 24th International Conference on
Very Large Data Bases, (VLDB), pages 311–322, New York, NY, USA, 24–27 August 1998. Morgan
Kaufmann.

32

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient Clustering Algorithm
for Large Databases. In Proceedings of the International Conference on Management of Data, (SIG-
MOD), volume 27(2) of SIGMOD Record, pages 73–84, Seattle, WA, USA, 1–4 June 1998. ACM
Press.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust Clustering Algorithm for
Categorical Atributes. In Proceedings of the 15th International Confererence on Data Engineering,
(ICDE), pages 512–521, Sydney, Australia, 23–26 March 1999. IEEE Press.

[HAK00] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. What is the Nearest Neighbor
in High Dimensional Spaces? In Proceedings of the 26th International Conference on Very Large
Data Bases, (VLDB), pages 506–515, Cairo, Egypt, 10–14 September 2000. Morgan Kaufmann.

[HK98] Alexander Hinneburg and Daniel A. Keim. An Efficient Approach to Clustering in Large Mul-
timedia Databases with Noise. In Proceedings of the 4th International Conference on Knowledge Dis-
covery and Data Mining, (KDD), pages 58–65, New York, NY, USA, 27–31 August 1998. AAAI
Press.

[HK01] Jiawei Han and Michelle Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,
2001.

[Hua97] Zhexue Huang. Clustering Large Data Sets with Mixed Numeric and Categorical Values. In
Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining, (PAKDD),
pages 21–34, Singapore, 1997. Springer.

[Hua98] Zhexue Huang. Extensions to the � -Means Algorithm for Clustering Large Data Sets with Cat-
egorical Values. Workshop on Research Issues on Data Mining and Knowledge Discovery, (DMKD),
2(3): 283–304, 1998.

[HVB00] Maria Halkidi, Michalis Vazirgiannis, and Yannis Batistakis. Quality Scheme Assessment in
the Clustering Process. In Proceedings of the 4th European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD), volume 1910 of Lecture Notes in Computer Science, pages 265–
276, Lyon, France, 13-16 September 2000. Springer.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.

[JLVV99] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis. Fundamentals of
Data Warehouses. Springer, 1999.

[Kle98] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In Proceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 668–677, San Francisco, CA,
USA, 25–27 January 1998. ACM Press.

[KR90] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 1990.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and Effective Clustering Methods for Spatial Data
Mining. In Proceedings of the 20th International Conference on Very Large Data Bases, (VLDB), pages
144–155, Santiago, Chile, 12–15 September 1994. Morgan Kaufmann.

33

[SCZ98] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. WaveCluster: A Multi-
Resolution Clustering Approach for Very Large Spatial Databases. In Proceedings of the 24th
International Conference on Very Large Data Bases, (VLDB), pages 428–439, New York, NY, USA,
24–27 August 1998. Morgan Kaufmann Publishers.

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-Based Clustering in
Spatial Databases: The Algortihm GDBSCAN and Its Applications. Workshop on Research Issues
on Data Mining and Knowledge Discovery, (DMKD), 2(2): 169–194, 1998.

[ST00] Noam Slonim and Naftali Tishby. Document Clustering Using Word Clusters via the Infor-
mation Bottleneck Method. In Proceedings of the 23d Annual International ACM Conference on
Research and Development in Information Retrieval, (SIGIR), pages 208–215, Athens, Greece, 24-
28 July 2000. ACM Press.

[TH99] Vassilios Tzerpos and Richard C. Holt. MoJo: A Distance Metric for Software Clustering. In
Proceeedings of the 6th Working Conference on Reverse Engineering, (WCRE), pages 187–195, At-
lanta, GA, USA, 6–8 October 1999. IEEE Press.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz. STING: A Statistical Information Grid Approach
to Spatial Data Mining. In Proceedings of the 23rd International Conference on Very Large Data Bases,
(VLDB), pages 186–195, Athens, Greece, 26–29 August 1997. Morgan Kaufmann Publishers.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient Data Clustering
Method for Very Large Databases. In Proceedings of the International Conference on Management
of Data, (SIGMOD), volume 25(2) of SIGMOD Record, pages 103–114, Motreal, QB, Canada, 4–
6 June 1996. ACM Press.

34

