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Abstract

Clustering is a problem of great practical importance in numerous applications. The problem of clustering

becomes more challenging when the data is categorical, that is, when there is no inherent distance measure

between data values. In this work, we introduce LIMBO, a scalable hierarchical categorical clustering algorithm

that builds on the Information Bottleneck (IB) framework for quantifying the relevant information preserved

when clustering. We use the IB framework to define a distance measure for categorical tuples and we also present

a novel distance measure for categorical attribute values. We show how the LIMBO algorithm can be used to

cluster both tuples and attribute values. LIMBO handles large data sets by producing a summary model for

the data. We propose two different versions of LIMBO, where we either control the size or the accuracy of the

model. We present an experimental evaluation of both versions of LIMBO, and we study how clustering quality

in information theoretic clustering algorithms compares to other categorical clustering algorithms. LIMBO also

supports a tradeoff between efficiency (in terms of space and time). We quantify this trade-off and we demonstrate

that LIMBO allows for substantial improvements in efficiency with negligible decrease in quality. LIMBO is a

hierarchical algorithm that produces clusterings for a range of k values (where k is the number of clusters). We

take advantage of this feature to examine heuristics for selecting good clusterings (with natural values of k) within

this range.
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1 Introduction

Clustering is a problem of great practical importance that has been the focus of substantial research in several

domains for decades. As storage capacities grow, we have at hand larger amounts of data available for analysis, and

mining. Clustering plays an instrumental role in this process. This trend has created a surge of research activity in

the construction of clustering algorithms that can handle large amounts of data, and produce results of high quality.

Clustering is defined as the problem of partitioning data objects into groups, such that objects in the same group

are similar, while objects in different groups are dissimilar. This definition assumes that there is some well defined

notion of similarity, or distance between data objects. When the objects are defined by a set of numerical attributes,

there are natural definitions of distance based on geometric analogies. These definitions rely on the semantics of the

data values themselves (for example, the values $100,000 and $110,000 are more similar than $100,000 and $1). The

definition of distance allows us to define a quality measure for a clustering (e.g., the mean square distance between

each point and the centroid of its cluster). Clustering then becomes the problem of grouping together points such

that the quality measure is optimized.

The problem of clustering becomes more challenging when the data is categorical, that is, when there is no

inherent distance measure between data values. This is often the case in many domains, where data is described

by a set of descriptive attributes, many of which are neither numerical nor inherently ordered in any way. As a

concrete example, consider a relation that stores information about movies. For the purpose of exposition, a movie

is a tuple characterized by the attributes “director”, “actor/actress”, and “genre”. An instance of this relation is

shown in Table 1. In this setting it is not immediately obvious what the distance, or similarity, is between the values

“Coppola” and “Scorsese”, or the tuples “Vertigo” and “Harvey”.

Without a clear measure of distance between data values, it is unclear how to define a quality measure for

categorical clustering. To do this, we employ mutual information, a measure from information theory. A good

clustering is one where the clusters are informative about the data objects they contain. Since data objects are

expressed in terms of attribute values, we require that the clusters convey information about the attribute values of

the objects in the cluster. That is, given a cluster, we wish to predict the attribute values associated with objects

of the cluster accurately. The quality measure of the clustering is then the mutual information of the clusters and
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the attribute values. Since a clustering is a summary of the data, some information is generally lost. Our objective

will be to minimize this loss, or equivalently to minimize the increase in uncertainty as the objects are grouped into

fewer and larger clusters.

director actor genre C D

t1 (Godfather II) Scorsese De Niro Crime c1 d1

t2 (Good Fellas) Coppola De Niro Crime c1 d1

t3 (Vertigo) Hitchcock Stewart Thriller c2 d1

t4 (N by NW) Hitchcock Grant Thriller c2 d1

t5 (Bishop’s Wife) Koster Grant Comedy c2 d2

t6 (Harvey) Koster Stewart Comedy c2 d2

Table 1: An instance of the movie database

Consider partitioning of the tuples in Table 1 into two clusters. Clustering C groups the first two movies

together into one cluster, c1, and the remaining four into another, c2. Note that cluster c1 preserves all information

about the actor and the genre of the movies it holds. For objects in c1, we know with certainty that the genre is

“Crime”, the actor is “De Niro” and there are only two possible values for the director. Cluster c2 involves only

two different values for each attribute. Any other clustering will result in greater information loss. For example, in

clustering D, d2 is equally as informative as c1, but d1 includes three different actors and three different directors. So,

while in c2 there are two equally likely values for each attribute, in d1 the director is any of “Scorsese”, “Coppola”,

or “Hitchcock” (with respective probabilities 0.25, 0.25, and 0.50), and similarly for the actor.

This intuitive idea was formalized by Tishby, Pereira and Bialek [16]. They recast clustering as the compression

of one random variable into a compact representation that preserves as much information as possible about another

random variable. Their approach was named the Information Bottleneck (IB) method, and it has been applied to a

variety of different areas. In this paper, we consider the application of the IB method to the problem of clustering

large data sets of categorical data. x

We formulate the problem of clustering relations with categorical attributes within the Information Bottleneck

framework, and define dissimilarity between categorical data objects based on the IB method. Our contributions are
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the following.

• We propose LIMBO, the first scalable hierarchical algorithm for clustering categorical data based on the IB method.

As a result of its hierarchical approach, LIMBO allows us in a single execution to consider clusterings of various

sizes. Depending on the requirements of the user, LIMBO can control either the size, or the accuracy of the model

it builds to summarize the data.

• We use LIMBO to cluster both tuples and attribute values. We define a novel distance between attribute values

that allows us to quantify the degree of interchangeability of attribute values within a single attribute.

• We empirically evaluate the quality of clusterings produced by LIMBO relative to other categorical clustering

algorithms including the tuple clustering algorithms IB, ROCK [10], and COOLCAT [2]; as well as the attribute

value clustering algorithm STIRR [9]. We compare the clusterings based on a comprehensive set of quality metrics.

• We examine heuristics based on information theoretic measures to determine the numbers of clusters into which a

given data set can be most naturally partitioned.

The rest of the paper is structured as follows. In Section 2, we present the IB method, and in Section 3, we

describe how to apply IB to the problem of clustering categorical data. In Section 4, we introduce LIMBO, and

Section 5 presents the experimental evaluation of LIMBO and other algorithms. Section 6 addresses the problem of

identifying a natural number of clusters in a given data set. Section 7 describes related work on categorical clustering,

and Section 8 concludes the paper.

2 Background

In this section, we review some of the concepts from information theory that will be used in the rest of the paper.

We also provide an outline of the Information Bottleneck method, and its application to the problem of clustering.

2.1 Information Theory basics

The following definitions can be found in any information theory textbook, e.g., [5]. Let T denote a discrete random

variable that takes values over the set T, and let p(t) denote the probability mass function of T . The entropy H(T )
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of variable T is defined by

H(T ) = −
∑

t∈T

p(t) log p(t) .

The entropy H(T ) can be thought of as the minimum number of bits on average required to describe the random

variable T . Intuitively, entropy captures the “uncertainty” of variable T ; the higher the entropy, the lower the

certainty with which we can predict the value of the variable T .

Now, let T and A be two random variables that range over sets T and A respectively, and let p(t, a) denote

their joint distribution and p(a|t) be the conditional distribution of A given T . Then conditional entropy H(A|T ) is

defined as

H(A|T ) =
∑

t∈T

p(t)H(A|T = t)

= −
∑

t∈T

p(t)
∑

a∈A

p(a|t) log p(a|t) .

Given T and A, the mutual information, I(T ; A), quantifies the amount of information that the variables hold about

each other. The mutual information between two variables is the amount of uncertainty (entropy) in one variable

that is removed by knowledge of the value of the other one. Specifically, we have

I(T ; A) =
∑

t∈T

∑

a∈A

p(t, a) log
p(t, a)

p(t)p(a)

=
∑

t∈T

p(t)
∑

a∈A

p(a|t) log
p(a|t)

p(a)

= H(t) − H(t|a) = H(a) − H(a|t) .

Mutual information is symmetric, non-negative and equals zero if and only if T and A are independent.

Relative Entropy, or the Kullback-Leibler (KL) divergence, is a standard information-theoretic measure of the

difference between two probability distributions. Given two distributions p and q over a set T, the relative entropy

is

DKL[p‖q] =
∑

t∈T

p(t) log
p(t)

q(t)
.

Intuitively, the relative entropy DKL[p‖q] is a measure of the redundancy in an encoding that assumes the distribution

q, when the true distribution is p.
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2.2 The Information Bottleneck Method

Let T denote a set of objects that we want to cluster (e.g., customers, tuples in a relation, web documents), and

assume that the elements in T are expressed as vectors in a feature space A (e.g., items purchased, words, attribute

values, links). That is, each element of T is associated with a sequence of values from A. In Section 3, we describe in

detail the types of datasets that we consider. Let n = |T| and d = |A|. Our data can then be conceptualized as an

n× d matrix M , where each row holds the feature vector of an object in T. Now let T , A be random variables that

range over the sets T and A respectively. We normalize matrix M so that the entries of each row sum up to one.

For some object t ∈ T, the corresponding row of the normalized matrix holds the conditional probability p(A|T = t).

The information that one variable contains about the other can be quantified using the mutual information I(T ; A)

measure. Furthermore, if we fix a value t ∈ T, the conditional entropy H(A|T = t) gives the uncertainty of a value

for variable A selected among those associated with the object t.

A k-clustering Ck of the elements of T partitions them into k clusters Ck = {c1, c2, c3, ..., ck}, where each cluster

ci ∈ C is a non-empty subset of T such that ci ∩ cj = ∅ for all i, j, i 6= j, and ∪k
i=1ci = T. Let Ck denote a random

variable that ranges over the clusters in Ck. We define k to be the size of the clustering. When k is fixed or when it

is immaterial to the discussion, we will use C and C to denote the clustering and the corresponding random variable.

Now, let C be a specific clustering. Giving equal weight to each element t ∈ T, we define p(t) = 1

n
. Then, for

c ∈ C, the elements of T, A, and C are related as follows:

p(c|t) =















1 if t ∈ c

0 otherwise

p(c) =
∑

t∈c

p(t)

p(a|c) =
1

p(c)

∑

t∈c

p(t)p(a|t) .

We seek clusterings of the elements of T such that, for t ∈ ci, knowledge of the cluster identity, ci, provides

essentially the same prediction of, or information about, the values in A as does the specific knowledge of t. Just as

I(A; T ) measures the information about the values in A provided by the identity of a specific element of T, I(A; C)

measures the information about the values in A provided by the identity of a cluster in C. The higher I(A; C),

the more informative the cluster identity is about the values in Y contained in the cluster. In the formalization
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of Tishby, Pereira and Bialek [16], the problem of clustering is recast as the problem of compressing variable T

while preserving information about variable A. Formally, they define clustering as an optimization problem, where,

for a given number k of clusters, we wish to identify the k-clustering that maximizes I(A; Ck). Intuitively, in this

procedure, the information contained in T about A is “squeezed” through a compact “bottleneck” clustering Ck,

which is forced to represent the “relevant” part in T with respect to A. Tishby et al. [16] prove that, for a fixed

number k of clusters, the optimal clustering Ck partitions the objects in T so that the average relative entropy

∑

c∈Ck,t∈T
p(t, c)DKL[p(a|t)‖p(a|c)] is minimized.

Finding the optimal clustering is an NP-complete problem [8]. Slonim and Tishby [14] propose a greedy agglom-

erative approach, the Agglomerative Information Bottleneck (AIB) algorithm, for finding an informative clustering.

The algorithm starts with the clustering Cn, in which each object t ∈ T is assigned to its own cluster. Due to

the one-to-one mapping between Cn and T, I(A; C) = I(A; X); that is, the clusters in Cn contain the same in-

formation for the values in the set A as the tuples in T. The algorithm then proceeds iteratively, for n − k steps,

reducing the number of clusters in the current clustering by one in each iteration. At step n − ` + 1 of the AIB

algorithm, two clusters ci, cj in `-clustering C` are merged into a single component c∗ to produce a new (` − 1)-

clustering C`−1. As the algorithm forms clusterings of smaller size, the information that the clustering contains

about the values in Y decreases; that is, I(A; C`−1) ≤ I(A; C`). The clusters ci and cj to be merged are chosen to

minimize the information loss in moving from clustering C` to clustering C`−1. This information loss is given by

δI(ci, cj) = I(A; C`) − I(A; C`−1). We can also view the information loss as the increase in the uncertainty. Recall

that I(A; C) = H(A) − H(A|C). Since the value H(A) is independent of the clustering C, maximizing the mutual

information I(A; C) is the same as minimizing the entropy of the clustering H(A|C).

After merging clusters ci and cj , the new component c∗ = ci ∪ cj has

p(c∗|t) =















1 if t ∈ ci or t ∈ cj

0 otherwise

(1)

p(c∗) = p(ci) + p(cj) (2)

p(A|c∗) =
p(ci)

p(c∗)
p(A|ci) +

p(cj)

p(c∗)
p(A|cj) . (3)
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Tishby et al. [16] show that

δI(ci, cj) = [p(ci) + p(cj)] · DJS [p(A|ci), p(A|cj)] (4)

where DJS is the Jensen-Shannon (JS) divergence, defined as follows. Let pi = p(a|ci) and pj = p(a|cj) and let

p̄ =
p(ci)

p(c∗)
pi +

p(cj)

p(c∗)
pj

denote the weighted average distribution of distributions pi and pj . Then, the DJS distance is:

DJS [pi, pj ] =
p(ci)

p(c∗)
DKL[pi||p̄] +

p(cj)

p(c∗)
DKL[pj ||p̄] .

The DJS distance is the average DKL distance of pi and pj from p̄. It is non-negative and equals zero if and only if

pi ≡ pj . It is also bounded above by one, and it is symmetric. We note that the information loss for merging clusters

ci and cj , depends only on the clusters ci and cj , and not on other parts of the clusterings C` and C`−1.

3 Clustering Categorical Data using the IB method

In this section, we formulate the problem of clustering categorical data in the context of the Information Bottleneck

method, and we consider some novel applications of the method. We consider two types of data: relational data and

market-basket data.

3.1 Relational Data

In this case, the input to our problem is a set T of n tuples on m attributes A1, A2, . . . , Am. The domain of attribute

Ai is the set Ai = {Ai.v1, Ai.v2, . . . , Ai.vdi
} so that identical values from different attributes are treated as distinct

values. A tuple t ∈ T takes exactly one value from the set Ai for the ith attribute. Let A = A1 ∪ · · · ∪ Am denote

the set of all possible attribute values. Let d = d1 + d2 + · · · + dm denote the size of A. We represent our data as

an n × d binary matrix M , where each t ∈ T is a d-dimensional row vector in M . M [t, a] = 1, if tuple t contains

attribute value a, and zero otherwise. Since every tuple contains one value for each attribute, each tuple vector

contains exactly m 1’s.

Now, let T and A be random variables that range over sets T and A respectively. Following the formalism of

Section 2, we define p(t) = 1/n, and we normalize the matrix M so that the tth row holds the conditional probability
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distribution p(A|t). Since each tuple contains exactly m attribute values, for some a ∈ A, p(a|t) = 1/m if a appears

in tuple t, and zero otherwise. Table 2 shows the normalized matrix M for the movie database example.1 Given

the normalized matrix, we can proceed with the application of the IB method to cluster the tuples in T. Note that

matrix M can be stored as a sparse matrix, so we do not need to materialize all n × d entries.

d.S d.C d.H d.K a.DN a.S a.G g.Cr g. T g.C p(t)

t1 1/3 0 0 0 1/3 0 0 1/3 0 0 1/6

t2 0 1/3 0 0 1/3 0 0 1/3 0 0 1/6

t3 0 0 1/3 0 0 1/3 0 0 1/3 0 1/6

t4 0 0 1/3 0 0 0 1/3 0 1/3 0 1/6

t5 0 0 0 1/3 0 0 1/3 0 0 1/3 1/6

t6 0 0 0 1/3 0 1/3 0 0 0 1/3 1/6

Table 2: The normalized movie table

Our approach merges all attribute values into one variable, without taking into account the fact that the values

come from different attributes. Alternatively, we could define a random variable for every attribute Ai. We will now

show that, in applying the Information Bottleneck method to the case of relational data, considering all attributes

together is equivalent to considering each attribute independently.

Let Ai be a random variable that ranges over the set Ai. For some a ∈ Ai, and some t ∈ T we use p(a|t) to

denote the conditional probability p(A = a|t), and pi(a|t) to denote the conditional probability p(Ai = a|t). Also

let p(a) denote p(A = a), and pi(a) denote p(Ai = a). Since each tuple takes exactly one value in each attribute,

pi(a|t) = 1, if a appears in t, and zero otherwise. From the definitions in Section ?? we have that p(a|t) = 1

m
pi(a|t),

for all 1 ≤ i ≤ m, a ∈ Ai, and t ∈ T. It follows that p(a) = 1

m
pi(a). Furthermore, let c denote a cluster, and

let |c| denote the number of tuples in c. Since p(a|c) = 1

|c|

∑

t∈c p(a|t), and pi(a|c) = 1

|c|

∑

t∈c pi(a|t) we have that

p(a|c) = 1

m
pi(a|c). Now let Ck be a k-clustering, for 1 ≤ k ≤ n, and let Ck be the corresponding random variable.

We have that

H(A) =
1

m

m
∑

i=1

H(Ai) + log m

1We use abbreviations for the attribute values. For example d.H stands for director.Hitchcock.
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H(A|Ck) =
1

m

m
∑

i=1

H(Ai|Ck) + log m

I(A; Ck) =
1

m

m
∑

i=1

I(Ai; Ck) .

Given that Cn ≡ T , the information loss for some clustering C can be expressed as

I(A; T ) − I(A; C) =
1

m

m
∑

i=1

(I(Ai; T ) − I(Ai; C)) .

Therefore, minimizing the information loss for variable A is the same as the minimizing the sum of the information

losses for all individual variables Ai.

3.2 Market-Basket Data

Market-basket data describes a database of transactions for a store, where every tuple consists of the items purchased

by a single customer. It is also used as a term that collectively describes a data set where the tuples are sets of values

of a single attribute, and each tuple may contain a different number of values. This is what distinguishes market

basket from relational data where tuples contain one value from each of a fixed number of distinct attributes. In the

case of market-basket data, the input to our problem is a set T of n tuples on a single attribute A, with domain A.

Tuple ti contains di values. If d is the size of the domain A, we can represent our data as an n× d matrix M , where

each t ∈ T is a d-dimensional row vector in M . M [t, a] = 1, if tuple t contains attribute value a, and zero otherwise.

The vector for tuple ti contains exactly di 1’s.

Now, let T and A be random variables that range over sets T and A respectively. For tuple ti ∈ T, 1 ≤ i ≤ n

we define

p(ti) = 1/n

p(a|ti) =















1/di if a appears in t

0 otherwise

.

We can now define the mutual information I(T ; A) and proceed with the Information Bottleneck method to cluster

the tuples in T.
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3.3 Intra-Attribute Value Distance

In this section we propose a novel application that can be used within LIMBO to quantify the distance between

attribute values of the same attribute. Categorical data is characterized by the fact that there is no inherent distance

between attribute values. For example, in the movie database instance, given the values “Scorsese” and “Coppola”,

it is not apparent how to assess their similarity. Comparing the set of tuples in which they appear is not useful since

every movie has a single director. In order to compare attribute values, we need to place them within a context.

Then, two attribute values are similar if the contexts in which they appear are similar. We define the context as the

distribution these attribute values induce on the remaining attributes. For example, for the attribute “director”, two

directors are considered similar if they induce a “similar” distribution over the attributes “actor” and “genre”.

Formally, let A′ be the attribute of interest, and let A′ denote the set of values of attribute A′. Also let

Ã = A \A′ denote the set of attribute values for the remaining attributes. For the example of the movie database,

if A′ is the director attribute, with A′ = {d.S, d.C, d.H, d.K}, then Ã = {a.DN, a.S, a.G, g.Cr, g.T, g.C}. Let A′

and Ã be random variables that range over A′ and Ã respectively, and let p(Ã|v) denote the distribution that value

v ∈ A′ induces on the values in Ã. For some a ∈ Ã, p(a|v) is the fraction of the tuples in T that contain v, and also

contain value a. Also, for some v ∈ A′, p(v) is the fraction of tuples in T that contain the value v. Table 3 shows

an example of a table when A′ is the director attribute.

director a.DN a.S a.G g.Cr g.T g.C p(d)

Scorsese 1/2 0 0 0 1/2 0 1/6

Coppola 1/2 0 0 0 1/2 0 1/6

Hitchcock 0 1/3 1/3 0 2/3 0 2/6

Koster 0 1/3 1/3 0 0 2/3 2/6

Table 3: The “director” attribute

For two values v1, v2 ∈ A′, we define the distance between v1 and v2 to be the information loss δI(v1, v2),

incurred about the variable Ã if we merge values v1 and v2. This is equal to the increase in the uncertainty of

predicting the values of variable Ã, when we replace values v1 and v2 with v1 ∨ v2. In the movie example, Scorsese
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and Coppola are the most similar directors.2

The definition of a distance measure for categorical attribute values is a contribution in itself, since it imposes

some structure on an inherently unstructured problem. We can define a distance measure between tuples as the sum

of the distances of the individual attributes. Another possible application is to cluster intra-attribute values. For

example, in a movie database, we may be interested in discovering clusters of directors or actors, which in turn could

help in improving the classification of movie tuples. Given the joint distribution of random variables A′ and Ã we

can apply the LIMBO algorithm for clustering the values of attribute A′. Merging two v1, v2 ∈ A′, produces a new

value v1 ∨ v2, where p(v1 ∨ v2) = p(v1) + p(v2), since v1 and v2 never appear together. Also,

p(a|v1 ∨ v2) =
p(v1)

p(v1 ∨ v2)
p(a|v1) +

p(v2)

p(v1 ∨ v2)
p(a|v2) .

The problem of defining a context sensitive distance measure between attribute values is also considered by Das

and Mannila [6]. They define an iterative algorithm for computing the interchangeability of two values. We believe

that our approach gives a natural quantification of the concept of interchangeability. Furthermore, our approach has

the advantage that it allows for the definition of distance between clusters of values, which can be used to perform

intra-attribute value clustering. Gibson et al. [9] proposed STIRR, an algorithm that clusters attribute values.

STIRR does not define a distance measure between attribute values and, furthermore, produces just two clusters of

values.

4 scaLable InforMation BOttleneck (LIMBO) Clustering

The Agglomerative Information Bottleneck algorithm suffers from high computational complexity, namely O(n2d2 log n),

which is prohibitive for large data sets. We now introduce the scaLable InforMation BOttleneck, LIMBO, algorithm

that uses distributional summaries in order to deal with large data sets. LIMBO is based on the idea that we do not

need to keep whole tuples, or whole clusters in main memory, but instead, just sufficient statistics to describe them.

LIMBO produces a compact summary model of the data, and then performs clustering on the summarized data. We

present two versions of our algorithm: in the first, LIMBOS , we bound the the size of our summary model, and in

the second, LIMBOφ, we control the accuracy of the model by bounding the loss in mutual information. We employ

2A conclusion that agrees with a well-informed cinematic opinion.
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an approach similar to the one used in the BIRCH clustering algorithm for clustering numerical data [17]. However,

we use an IB inspired notion of distance and a novel definition of summaries to produce the solution.

4.1 Distributional Cluster Features

We summarize a cluster of tuples in a Distributional Cluster Feature (DCF). We will use the information in the

relevant DCF s to compute the distance between two clusters or between a cluster and a tuple.

Let T denote a set of tuples over a set A of attributes, and let T and A be the corresponding random variables,

as described earlier. Also let C denote a clustering of the tuples in T and let C be the corresponding random variable.

For some cluster c ∈ C, the Distributional Cluster Feature (DCF ) of cluster c is defined by the pair

DCF (c) =
(

p(c), p(A|c)
)

where p(c) is the probability of cluster c, and p(A|c) is the conditional probability distribution of the attribute values

given the cluster c. We will often use DCF (c) and c interchangeably.

If c consists of a single tuple t ∈ T, p(t) = 1/n, and p(A|t) is computed as described in Section 2. For example,

in the movie database, for tuple ti, DCF (ti) corresponds to the ith row of the normalized matrix M in Table 2. For

larger clusters, the DCF is computed recursively as follows. Let c∗ denote the cluster we obtain by merging two

clusters c1 and c2. The DCF of the cluster c∗ is equal to

DCF (c∗) =
(

p(c∗), p(A|c∗)
)

where p(c∗) and p(A|c∗) are computed using Equations 2, and 3 respectively.

We define the distance, d(c1, c2), between DCF (c1) and DCF (c2) as the information loss δI(c1, c2) incurred for

merging the corresponding clusters c1 and c2. The distance d(c1, c2) is computed using Equation 4. The information

loss depends only on the clusters c1 and c2, and not on the clustering C in which they belong. Therefore, d(c1, c2)

is a well-defined distance measure independent of the DCF tree.

The DCF s can be stored and updated incrementally. The probability vectors are stored as sparse vectors,

reducing the amount of space considerably. Each DCF provides a summary of the corresponding cluster which is

sufficient for computing the distance between two clusters.

13



child1 child3child2 child6child1 child3child2 child6
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Figure 1: A DCF tree with branching factor 6.

4.2 The DCF tree

The DCF tree is a height-balanced tree as depicted in Figure 1. Each node in the tree contains B entries, where B is

the branching factor of the tree. All node entries store DCF s. At any point in the construction of the tree, the DCF s

at the leaves define a clustering of the tuples seen so far. Each non-leaf node stores DCF s that are produced by

merging the DCF s of its children. The DCF tree is built in a B-tree-like dynamic fashion. The insertion algorithm is

described in detail below. After all tuples are inserted in the tree, the DCF tree embodies a compact representation

in which the data set is summarized by the information in the DCF s of the leaves.

4.3 The LIMBO clustering algorithm

The LIMBO algorithm proceeds in three phases. In the first phase, the DCF tree is constructed to summarize the

data. In the second phase, the DCF s of the tree leaves are merged to produce a chosen number of clusters. In the

third phase, we associate each tuple with the DCF to which the tuple is closest.

Phase 1: Insertion into the DCF tree. Tuples are read and inserted one by one. Tuple t is converted into

DCF (t), as described in Section 4.1. Then, starting from the root, we trace a path downward in the DCF tree.

When at a non-leaf node, we compute the distance between DCF (t) and each DCF entry of the node, finding the

closest DCF entry to DCF (t). We follow the child pointer of this entry to the next level of the tree. When at a leaf

node, let DCF (c) denote the DCF entry in the leaf node that is closest to DCF (t). DCF (c) is the summary of some

cluster c. At this point we need to decide whether t will be absorbed in the cluster c or not.
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We use two criteria depending on whether we are controlling the size of the model (LIMBOS), or the accuracy

of the model (LIMBOφ).

LIMB0S: In our space-bounded algorithm, an input parameter S indicates the maximum space bound. Let E

be the maximum size of a DCF entry (note that sparse DCF s may be smaller than E). We compute the maximum

number of nodes (N = S/(EB)) and keep a counter of the number of used nodes as we build the tree. If there is an

empty entry in the leaf node that contains DCF (c), then DCF (t) is placed in that entry. If there is no empty leaf

entry and there is sufficient free space, then the leaf node is split into two leaves. This is done in a manner similar

to that in BIRCH [17]. We find the two DCF s in the leaf node that are farthest apart and we use them as seeds for

the new leaves. The remaining DCF s, and DCF (t) are placed in the leaf that contains the seed DCF to which they

are closest. Finally, if the space bound has been reached, then we compare d(c, t) with the minimum distance of any

two DCF entries in the leaf. If d(c, t) is smaller than this minimum, we merge DCF (t) with DCF (c); otherwise the

two closest entries are merged and DCF (t) occupies the freed entry.

LIMBOφ: Alternatively, if wish to control the accuracy of the model, rather than its size, we use a threshold on

the distance d(c, t) to determine whether to merge DCF (t) with DCF (c), thus controlling directly the information

loss for merging tuple t with cluster c. The selection of an appropriate threshold value will necessarily be data

dependent and we require an intuitive way of allowing a user to set this threshold. Within a data set, every tuple

contributes, on “average”, I(A; T )/n to the mutual information I(A; T ). We define the clustering threshold to be a

multiple φ of this average and we denote the threshold by τ(φ). That is,

τ(φ) = φ
I(A; T )

n

We can make a pass over the data, or use a sample of the data, to estimate I(A; T ). Given a value for φ (0 ≤ φ � n),

if a merge incurs information loss more than φ times the “average” mutual information, then the new tuple is placed

in a cluster by itself. In the extreme case φ = 0.0, we prohibit any information loss in our summary. We discuss the

effect of φ in Section 5.4.

For both algorithms, when a leaf node is split, resulting in the creation of a new leaf node, the leaf’s parent is

updated, and a new entry is created at the parent node that describes the newly created leaf. If there is space in

the non-leaf node, we add a new DCF entry, otherwise the non-leaf node must also be split. This process continues

upward in the tree until the root is either updated or split itself. In the latter case, the height of the tree increases
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by one.

Phase 2: Clustering. After the construction of the DCF tree, the leaf nodes hold the DCF s of a clustering C̃ of

the tuples in T. Each DCF (c) corresponds to a cluster c ∈ C̃, and contains sufficient statistics for computing p(A|c),

and probability p(c). We employ the Agglomerative Information Bottleneck (AIB) algorithm to cluster the DCF s in

the leaves and produce clusterings of the DCF s. We note that any clustering algorithm is applicable at this phase

of the algorithm.

Phase 3: Associating tuples with clusters. For a chosen value of k, Phase 2 produces k DCF s that serve as

representatives of k clusters. In the final phase, we perform a scan over the data set and assign each tuple to the

cluster whose representative is closest to the the tuple.

4.4 Analysis of LIMBO

We now present an analysis of the I/O and CPU costs for each phase of the LIMBO algorithm. In what follows, n is

the number of tuples in the data set, d is the total number of attribute values, B is the branching factor of the DCF

tree, and k is the chosen number of clusters.

Phase 1: The I/O cost of this stage is a scan that involves reading the data set from the disk. For the CPU cost,

when a new tuple is inserted the algorithm considers a path of nodes in the tree, and for each node in the path, it

performs at most B operations (distance computations, or updates), each taking time O(d). Thus, if h is the height

of the DCF tree produced in Phase 1, locating the correct leaf node for a tuple takes time O(hdB). The time for

a split is O(dB2). If U is the number of non-leaf nodes, then all splits are performed in time O(dUB2) in total.

Hence, the CPU cost of creating the DCF tree is O(nhdB + dUB2). As in BIRCH, we observed experimentally that

LIMBO produces compact trees of small height. For LIMBOS , both h and U are bounded.

Phase 2: For values of φ and S that produce clusterings of high quality the DCF tree is compact enough to fit in

main memory. Hence, there is no I/O cost involved in this phase, since it involves only the clustering of the leaf

node entries of the DCF tree. If L is the number of DCF entries at the leaves of the tree, then the AIB algorithm

takes time O(L2d2 log L). In our experiments, L � n, so the CPU cost is low.

Phase 3: The I/O cost of this phase is the reading of the data set from the disk again. The CPU complexity is

O(kdn), since each tuple is compared against the k DCF s that represent the clusters.

16



5 Experimental Evaluation

In this section, we perform a comparative experimental evaluation of the LIMBO algorithms on both real and

synthetic data sets. We compare both versions of LIMBO with other categorical clustering algorithms, including

what we believe to be the only other scalable information-theoretic clustering algorithm COOLCAT [1, 2].

5.1 Algorithms

We compare the clustering quality of LIMBO with the following algorithms.

ROCK Algorithm. ROCK [10] assumes a similarity measure between tuples, and defines a link between two tuples

whose similarity exceeds a threshold θ. The aggregate interconnectivity between two clusters is defined as the sum

of links between their tuples. ROCK proceeds hierarchically, merging the two most interconnected clusters in each

step. Thus, ROCK is not applicable to large data sets. We use the Jaccard Coefficient for the similarity measure as

suggested in the original paper. For data sets that appear in the original ROCK paper, we set the threshold θ to

the value suggested there, otherwise we set θ to the value that gave us the best results in terms of quality. For our

experimentation, we use the implementation of Guha et al. [10].

COOLCAT Algorithm. The approach most similar to ours is the COOLCAT algorithm [1, 2], by Barbará,

Couto and Li. The COOLCAT algorithm is a scalable algorithm that optimizes the same objective function as our

approach, namely the entropy of the clustering. It differs from our approach in that it relies on sampling, and it

is non-hierarchical. COOLCAT starts with a sample of points and identifies a set of k initial tuples such that the

minimum pairwise distance among them is maximized. These serve as representatives of the k clusters. All remaining

tuples of the data set are placed in one of the clusters such that, at each step, the increase in the entropy of the

resulting clustering is minimized. For the experiments, we implement COOLCAT based on the CIKM paper by

Barbarà et al. [2].

STIRR Algorithm. STIRR [9] applies a linear dynamical system over multiple copies of a hypergraph of weighted

attribute values, until a fixed point is reached. Each copy of the hypergraph contains two groups of attribute values,

one with positive and another with negative weights, which define the two clusters. We compare this algorithm with

our intra-attribute value clustering algorithm. In our experiments, we use our own implementation and report results

for ten iterations.
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5.2 Data Sets

We experimented with the following data sets. The first three have been previously used for the evaluation of the

aforementioned algorithms [2, 9, 10]. The synthetic data sets are used both for quality comparison, and for our

scalability evaluation.

Congressional Votes: This relational data set was taken from the UCI Machine Learning Repository.3 It contains

435 tuples of votes from the U.S. Congressional Voting Record of 1984. Each tuple is a congress-person’s vote on

16 issues and each vote is boolean, either YES or NO. Each congress-person is classified as either Republican or

Democrat. There are a total of 168 Republicans and 267 Democrats. There are 288 missing values that we treat as

separate values.

Mushroom: The Mushroom relational data set also comes from the UCI Repository. It contains 8,124 tuples, each

representing a mushroom characterized by 22 attributes, such as color, shape, odor, etc. The total number of distinct

attribute values is 117. Each mushroom is classified as either poisonous or edible. There are 4,208 edible and 3,916

poisonous mushrooms in total. There are 2,480 missing values.

Database and Theory Bibliography. This relational data set contains 8,000 tuples that represent research

papers. About 3,000 of the tuples represent papers from database research and 5,000 tuples represent papers from

theoretical computer science. Each tuple contains four attributes with values for the first Author, second Author,

Conference/Journal and the Year of publication.4 We use this data to test our intra-attribute clustering algorithm.

Synthetic Data Sets. We produce synthetic data sets using a data generator available on the Web.5 This generator

offers a wide variety of options, in terms of the number of tuples, attributes, and attribute domain sizes. We specify

the number of classes in the data set by the use of conjunctive rules of the form (Attr1 = a1 ∧ Attr2 = a2 ∧ . . .) ⇒

Class = c1. The rules may involve an arbitrary number of attributes and attribute values. We name these synthetic

data sets by the prefix DS followed by the number of classes in the data set, e.g., DS5 or DS10. The data sets contain

5,000 tuples, and 10 attributes, with domain sizes between 20 and 40 for each attribute. Three attributes participate

3http://www.ics.uci.edu/∼mlearn/MLRepository.html

4Following the approach of Gibson et al. [9] if the second author does not exist, then the name of the first author is copied instead.

We also filter the data so that each conference/journal appears at least 5 times.
5http://www.datgen.com/

18



in the rules the data generator uses to produce the class labels. Additional larger synthetic data sets are described

in Section 5.6.

Web Data: This is a market-basket data set that consists of a collection of web pages. The pages were collected as

described by Kleinberg [11]. A query is made to a search engine, and an initial set of web pages is retrieved. This

set is augmented by including pages that point to, or are pointed to by pages in the set. Then, the links between

the pages are discovered, and the underlying graph is constructed. Following the terminology of Kleinberg [11] we

define a hub to be a page with non zero out-degree, and an authority to be a page with non zero in-degree.

Our goal is to cluster the authorities in the graph. The set of tuples T is the set of authorities in the graph,

while the set of attribute values A is the set of hubs. Each authority is expressed as a vector over the hubs that

point to this authority. For our experiments, we use the data set used by Borodin et al. [3] for the “abortion” query.

We applied a filtering step to assure that each hub points to more than 10 authorities and each authority is pointed

by more than 10 hubs. The data set contains 93 authorities related to 102 hubs.

All data sets are summarized in Table 4.

Data Set Records Attributes Attr. Values Missing

Votes 435 16 48 288

Mushroom 8,124 22 117 2,480

Bibliographic 8,000 4 9,587 0

Web Data 93 102 102 0

DS5 5,000 10 314 0

DS10 5,000 10 305 0

Table 4: Summary of the data sets used

5.3 Quality Measures for Clustering

Clustering quality lies in the eye of the beholder; determining the best clustering usually depends on subjective

criteria. Consequently, we will use several quantitative measures of clustering performance.
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Information Loss, (IL): We use the information loss, I(A; T ) − I(A; C) to compare clusterings. The lower the

information loss, the better the clustering. For a clustering with low information loss, given a cluster, we can predict

the attribute values of the tuples in the cluster with relatively high accuracy.

Category Utility, (CU): Category utility [12], is defined as the difference between the expected number of attribute

values that can be correctly guessed given a clustering, and the expected number of correct guesses with no such

knowledge. Let C be a clustering. If Ai is an attribute with values vij , then CU is given by the following expression:

CU =
∑

c∈C

|c|

n

∑

i

∑

j

[P (Ai = vij |c)
2 − P (Ai = vij)

2]

Many data sets commonly used in testing clustering algorithms include a variable that is hidden from the

algorithm, and specifies the class with which each tuple is associated. All data sets we consider include such

a variable. This variable is not used by the clustering algorithms. While there is no guarantee that any given

classification corresponds to an optimal clustering, it is nonetheless enlightening to compare clusterings with pre-

specified classifications of tuples. To do this, we use the following quality measures.

Min Classification Error, (Emin): Assume that the tuples in T are already classified into k classes G =

{g1, . . . , gk}, and let C denote a clustering of the tuples in T into k clusters {c1, . . . , ck} produced by a cluster-

ing algorithm. Consider a one-to-one mapping, f , from classes to clusters, such that each class gi is mapped to the

cluster f(gi). The classification error of the mapping is defined as

E =

k
∑

i=1

∣

∣

∣
gi ∩ f(gi)

∣

∣

∣

where
∣

∣gi ∩ f(gi)
∣

∣ measures the number of tuples in class gi that received the wrong label. The optimal mapping

between clusters and classes, is the one that minimizes the classification error. We use Emin to denote the classification

error of the optimal mapping.

Precision, (P), Recall, (R): Without loss of generality assume that the optimal mapping assigns class gi to cluster

ci. We define precision, Pi, and recall, Ri, for a cluster ci, 1 ≤ i ≤ k as follows.

Pi =
|ci ∩ gi|

|ci|
and Ri =

|ci ∩ gi|

|gi|
.

Pi and Ri take values between 0 and 1 and, intuitively, Pi measures the accuracy with which cluster ci reproduces

class gi, while Ri measures the completeness with which ci reproduces class gi. We define the precision and recall of
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the clustering as the weighted average of the precision and recall of each cluster. More precisely

P =

k
∑

i=1

|gi|

|T |
Pi and R =

k
∑

i=1

|gi|

|T |
Ri .

We think of precision, recall, and classification error as indicative values of the ability of the algorithm to reconstruct

the existing classes in the data set.

In our experiments, we report values for all of the above measures. For LIMBO and COOLCAT, numbers are

averages over 100 runs with different (random) orderings of the tuples.

5.4 Quality-Efficiency trade-offs for LIMBO

In LIMBO, we can control the accuracy of the model (using φ) or the size of the model (using S). Both φ and S

permit a trade-off between the compactness of the model (number of leaf entries in the tree), and the expressiveness

(information preservation) of the summarization it produces. For small values of φ and large values of S, we obtain

a fine grain representation of the data set at the end of Phase 1. However, this results in a tree with a large number

of leaf entries, which leads to a higher computational cost for both Phase 1 and Phase 2 of the algorithm. For large

values of φ and small values of S, we obtain a compact representation of the data set (small number of leaf entries),

which results in faster execution time, at the expense of increased information loss.

We now investigate this trade-off for a range of values for φ and S. We observed experimentally that the

branching factor B does not significantly affect the quality of the clustering. We set B = 4, which results in

manageable execution time for Phase 1. Figure 2 presents the execution times for LIMBOS and LIMBOφ on the

DS5 data set, as a function of φ and S. For φ = 0.25 the Phase 2 time is 210 seconds (beyond the edge of the graph).

The figures also include the size of the tree in KBytes. In this figure, we observe that for small φ and large S the

computational bottleneck of the algorithm is Phase 2. As φ increases and S decreases the time for Phase 2 decreases

in a quadratic fashion. This agrees with the plot in Figure 3, where we observe that the number of leaves decreases

also in a quadratic fashion. Due to the decrease in the size (and height) of the tree, time for Phase 1 also decreases,

however, at a much slower rate. Phase 3, as expected, remains unaffected, and it is equal to a few seconds for all

values of φ and S. For φ ≥ 1.0, and S ≤ 256KB the number of leaf entries becomes sufficiently small, so that the

computational bottleneck of the algorithm becomes Phase 1. For these values the execution time is dominated by
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Votes Mushroom DS5 DS10

LIMBOφ 94.01% 99.77% 98.68% 98.82%

LIMBOS 85.94% 99.34% 95.36% 95.28%

Table 5: Reduction in Leaf Entries

the linear scan of the data in Phase 1.
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Figure 2: LIMBOφ and LIMBOS execution times (DS5)

We now study the change in the quality measures for the same range of values for φ and S. In the extreme cases

of φ = 0.0 and S = ∞, we only merge identical tuples, and no information is lost in Phase 1. LIMBO then reduces

to the AIB algorithm, and we obtain the same quality as AIB. Figures 4 and 5 show the quality measures for the

different values of φ and S. The CU value (not plotted) is equal to 2.51 for S ≤ 256KB, and 2.56 for S ≥ 256KB. We

observe that for φ ≤ 1.0 and S ≥ 256KB we obtain clusterings of exactly the same quality as for φ = 0.0 and S = ∞,

that is, the AIB algorithm. At the same time, for φ = 1.0 and S = 256KB the execution time of the algorithm is

only a small fraction of that of the AIB algorithm, which was a few minutes.

Similar trends where observed for all other data sets. There is a range of values for φ, and S, where the execution

time of LIMBO is dominated by Phase 1, while at the same time, we observe essentially no change (up to the third

decimal digit) in the quality of the clustering. Table 5 shows the reduction in the number of leaf entries for each

data set for LIMBOφ and LIMBOS. The parameters φ and S are set so that the cluster quality is almost identical

to that of AIB (as demonstrated in the tables in Section 5.5). These experiments demonstrate that in Phase 1 we
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Figure 5: LIMBOS Quality (DS5)
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Figure 7: LIMBOφ Quality (Votes)
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Figure 8: LIMBOS Quality (Votes)

can obtain significant compression of the data sets at no expense in the final quality. The consistency of LIMBO can

be attributed in part to the effect of Phase 3, which assigns the tuples to cluster representatives, and hides some of

the information loss incurred in the previous phases. Thus, it is sufficient for Phase 2 to discover k well separated

representatives. As a result, even for large values of φ and small values of S, LIMBO obtains essentially the same

clustering quality as AIB, but in linear time. Similar figures are presented for all other data sets; Figures 6, 7 and 8

for Votes, Figures 9, 10 and 11 for Mushroom and Figures 12, 13 and 14 for DS10.

5.5 Comparative Evaluations

5.5.1 Comparison to Optimal Clustering

To get a better feel of how LIMBO performs on categorical data, we implemented a brute force algorithm (BF), that

tries all possible clusterings and selects the one with the lowest information loss. Note that BF is computationally

23



0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0 

1 

2 

3 

4 

5 

6 

7 

8

Value of φ

N
u

m
b

er
 o

f 
L

ea
f 

E
n

tr
ie

s 
(x

1,
00

0)

CU=1.71 

CU=1.71 

CU=1.71 

CU=1.71 

CU=1.69 

CU=1.62 
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Figure 10: LIMBOφ Qual. (Mush.)
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Figure 11: LIMBOS Qual. (Mush.)
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Figure 12: LIMBOφ L. Entries (DS10)
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Figure 13: LIMBOφ Quality (DS10)
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Figure 14: LIMBOS Quality (DS10)
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feasible only if the number of tuples is quite small. We experimented with data sets of sizes n = 7 and n = 8 and for

all clustering sizes k, 2 ≤ k < n 6. The data sets were produced using the synthetic data generator and they each

contain 5 attributes, each one of them with a domain of size 3. We compared the information loss of the Brute Force

algorithm against that of LIMBOφ for φ = 0.0 (i.e. starting with each tuple in its own cluster). Results are given in

Table 6.

n, k Clusterings BF LIMBO

7,2 63 70% 71%

7,3 301 44% 44%

7,4 350 20% 20%

7,5 140 16% 16%

7,6 21 7% 7%

8,2 127 65% 65%

8,3 966 42% 42%

8,4 1701 35% 37%

8,5 1050 21% 21%

8,6 266 14% 14%

8,7 28 6% 6%

Table 6: Information Loss of Brute Force and LIMBO (φ = 0.0)

With the sole exceptions of (7, 2) and (8, 4), for all other combinations of n, k in Table 6, LIMBO produces a

clustering with information loss equal to the minimum information loss of any k-clustering of the n tuples. These

results are indicative of the ability of the LIMBO algorithm to find an optimal, or nearly optimal clustering for a

fixed k.

5.5.2 Tuple Clustering

6The total number of clusterings for given values of n and k is equal to the Stirling numbers of second order. Even for n = 20 and

k = 5, this number is equal to approximately 7.5 · 1011.
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Table 7 shows the results for all algorithms on all quality measures for the Votes and Mushroom data sets.

For LIMBOφ, we present results for φ = 1.0 while for LIMBOS, we present results for S = 128K. We can see

that both version of LIMBO have results almost identical to the quality measures for φ = 0.0 and S = ∞, i.e.,

the AIB algorithm. The size entry in the table holds the number of leaves for LIMBO, and the sample size for

COOLCAT. For the Votes data set we use the whole data set as a sample, while for Mushroom we use 1,000 tuples.

As Table 7 indicates, LIMBO’s quality is superior to ROCK, and COOLCAT, in both data sets. In terms of IL,

Votes (2 clusters)

Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S = ∞)[AIB] 384 72.52 0.89 0.87 0.13 2.89

LIMBO (φ = 1.0) 23 72.55 0.89 0.87 0.13 2.89

LIMBO (S = 128KB) 54 72.54 0.89 0.87 0.13 2.89

COOLCAT (s = 435) 435 73.55 0.87 0.85 0.15 2.78

ROCK (θ = 0.7) - 74.00 0.87 0.86 0.16 2.63

Mushroom (2 clusters)

Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S = ∞)[AIB] 8124 81.45 0.91 0.89 0.11 1.71

LIMBO (φ = 1.0) 18 81.45 0.91 0.89 0.11 1.71

LIMBO (S = 128KB) 54 81.46 0.91 0.89 0.11 1.71

COOLCAT (s = 1, 000) 1,000 84.57 0.76 0.73 0.27 1.46

ROCK (θ = 0.8) - 86.00 0.77 0.57 0.43 0.59

Table 7: Results for real data sets

LIMBO created clusters which retained most of the initial information about the attribute values. With respect to

the other measures, LIMBO outperforms all other algorithms, exhibiting the highest CU , P and R in all data sets

tested, as well as the lowest Emin.

We also evaluate LIMBO’s performance on two synthetic data sets, namely DS5 and DS10. These data sets

allow us to evaluate our algorithm on data sets with more than two classes. The results are shown in Table 8.
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DS5 (n=5000, 10 attributes, 5 clusters)

Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S = ∞)[AIB] 5000 77.56 0.998 0.998 0.002 2.56

LIMBO (φ = 1.0) 66 77.56 0.998 0.998 0.002 2.56

LIMBO (S = 1024KB) 232 77.57 0.998 0.998 0.002 2.56

COOLCAT (s = 125) 125 78.02 0.995 0.995 0.05 2.54

ROCK (θ = 0.0) - 85.00 0.839 0.724 0.28 0.44

DS10 (n=5000, 10 attributes, 10 clusters)

Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S = ∞)[AIB] 5000 73.50 0.997 0.997 0.003 2.82

LIMBO (φ = 1.0) 59 73.51 0.994 0.996 0.004 2.82

LIMBO (S = 1024KB) 236 73.52 0.996 0.996 0.004 2.82

COOLCAT (s = 125) 125 74.32 0.979 0.973 0.026 2.74

ROCK (θ = 0.0) - 78.00 0.830 0.818 0.182 2.13

Table 8: Results for synthetic data sets

We observe again that LIMBO has the lowest information loss and produces nearly optimal results with respect to

precision and recall.

For the ROCK algorithm, we observed that it is very sensitive to the threshold value θ and in many cases, the

algorithm produces one giant cluster that includes tuples from most classes. This results in poor precision and recall.

Comparison with COOLCAT. COOLCAT exhibits average clustering quality that is close to that of LIMBO. It

is interesting to examine how COOLCAT behaves when we consider other statistics. In Table 9, we present statistics

for 100 runs of COOLCAT and LIMBO on different orderings of the Votes and Mushroom data sets. We present

LIMBO’s results for φ = 1.0, which are very similar to those for φ = 0.0. For the Votes data set, COOLCAT exhibits

information loss as high as 95.31% with a variance of 12.25%. For all runs, we use the whole data set as the sample

for COOLCAT. For the Mushroom data set, the situation is better, but still the variance is as high as 3.5%. The
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VOTES Min Max Avg V ar

LIMBO (φ = 1.0) IL 71.98 73.29 72.55 0.083

CU 2.83 2.94 2.89 0.0006

LIMBO (S = 128KB) IL 71.98 73.68 72.54 0.08

CU 2.80 2.93 2.89 0.0007

COOLCAT (s = 435) IL 71.99 95.31 73.55 12.25

CU 0.19 2.94 2.78 0.15

MUSHROOM Min Max Avg V ar

LIMBO (φ = 1.0) IL 81.45 81.45 81.45 0.00

CU 1.71 1.71 1.71 0.00

LIMBO (S = 1024KB) IL 81.46 81.46 81.46 0.00

CU 1.71 1.71 1.71 0.00

COOLCAT (s = 1000) IL 81.60 87.07 84.57 3.50

CU 0.80 1.73 1.46 0.05

Table 9: Statistics for IL(%) and CU

sample size was 1,000 for all runs. Table 9 indicates that LIMBO behaves in a more stable fashion over different runs

(that is, different input orders). Notably, for the Mushroom data set, LIMBO’s performance is exactly the same in

all runs, while for Votes it exhibits a very low variance. This indicates that LIMBO is not particularly sensitive to

the input order of data.

The performance of COOLCAT appears to be sensitive to the following factors: the choice of representatives,

the sample size, and the ordering of the tuples. After detailed examination we found that the runs with maximum

information loss for the Votes data set correspond to cases where an outlier was selected as the initial representative.

The Votes data set contains three such tuples, which are far from all other tuples, and they are naturally picked

as representatives.7 Reducing the sample size, decreases the probability of selecting outliers as representatives,

however it increases the probability of missing one of the clusters. In this case, high information loss may occur if

7A very recent version of COOLCAT includes a step designed to avoid such selections [1]. We plan to implement this step for future

experiments.
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Sample Size = Leaf Entries = 384

Algorithm IL(%) P R Emin CU

LIMBO 72.52 0.89 0.87 0.13 2.89

COOLCAT 74.15 0.86 0.84 0.15 2.63

Sample Size = Leaf Entries = 27

Algorithm IL(%) P R Emin CU

LIMBO 72.55 0.89 0.87 0.13 2.89

COOLCAT 73.50 0.88 0.86 0.13 2.87

Table 10: LIMBO vs COOLCAT on Votes

COOLCAT picks as representatives two tuples that are not maximally far apart. Finally, there are cases where the

same representatives may produce different results. As tuples are inserted to the clusters, the representatives “move”

closer to the inserted tuples, thus making the algorithm sensitive to the ordering of the data set.

In terms of computational complexity both LIMBO and COOLCAT include a stage that requires quadratic

complexity. For LIMBO this is Phase 2. For COOLCAT this is the step where all pairwise entropies between the

tuples in the sample are computed. We experimented with both algorithms having the same input size for this phase,

i.e., we made the sample size of COOLCAT, equal to the number of leaves for LIMBO. Results for the Votes and

Mushroom data sets are shown in Tables 10 and 11. LIMBO outperforms COOLCAT in all runs, for all quality

measures. The two algorithms are closest in quality for the Votes data set with input size 27, and farthest apart for

the Mushroom data set with input size 275. COOLCAT appears to perform better with smaller sample size, while

LIMBO remains essentially unaffected.

5.5.3 Web Data

Since this data set has no predetermined cluster labels, we use a different evaluation approach. We applied LIMBO

with φ = 0.0 and clustered the authorities into three clusters. (The choice of k is discussed in detail in Section 6.)

The total information loss was 61%. Figure 15 shows the authority to hub table, after permuting the rows so that we

group together authorities in the same cluster, and the columns so that each hub is assigned to the cluster to which
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Sample Size = Leaf Entries = 275

Algorithm IL(%) P R Emin CU

LIMBO 81.45 0.91 0.89 0.11 1.71

COOLCAT 83.50 0.76 0.73 0.27 1.46

Sample Size = Leaf Entries = 18

Algorithm IL(%) P R Emin CU

LIMBO 81.45 0.91 0.89 0.11 1.71

COOLCAT 82.10 0.82 0.81 0.19 1.60

Table 11: LIMBO vs COOLCAT on Mushroom

it has the most links. LIMBO manages to characterize the structure of the web graph. Authorities are clustered in
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Figure 15: Clustering of Web Data

three distinct clusters, such that the ones in the same cluster share many hubs, while the ones in different clusters

have very few hubs in common. The three different clusters correspond to different web communities, and different

viewpoints on the issue of abortion. The first cluster consists of “pro-choice” pages. The second cluster consists of

“pro-life” pages. The third cluster contains a set of pages from cincinnati.com that were included in the data set

by the algorithm that collects the web pages, despite having no apparent relation to the abortion query. A complete

list of the results can be found in Tables 12, 13 and 14. In almost all cases the URLs and Titles of the web pages
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are indicative of their content.

5.5.4 Intra-Attribute Value Clustering

We now present results for the application of LIMBO to the problem of intra-attribute value clustering. For this

experiment, we use the Bibliographic data set. We are interested in clustering the conferences and journals, as well

as the first authors of the papers. We compare LIMBO with STIRR, an algorithm for clustering attribute values.

Following the description of Section 3.3, for the first experiment we set the random variable A′ to range over

the conferences/journals, while variable Ã ranges over first and second authors, and the year of publication. There

are 1,211 distinct venues in the data set; 815 are database venues, and 396 are theory venues.8 Results for φ = 1.0

and S = 5MB are shown in Table 15. LIMBO’s results are superior to those of STIRR with respect to all quality

measures. The difference is especially pronounced in the P and R measures.

We now turn to the problem of clustering the first authors. Variable A′ ranges over the set of 1,416 distinct

first authors in the data set, and variable Ã ranges over the rest of the attributes. We produce two clusters, and we

evaluate the results of LIMBO and STIRR based on the distribution of the papers that were written by first authors

in each cluster. Figures 16 and 17 illustrate the clusters produced by LIMBO and STIRR, respectively. The x-axis

in both figures represents publishing venues while the y-axis represents first authors. If an author has published a

paper in a particular venue, this is represented by a point in each figure. The thick horizontal line separates the

clusters of authors, and the thick vertical line distinguishes between theory and database venues. Database venues

lie on the left of the line, while theory ones on the right of the line.

From these figures, it is apparent that LIMBO yields a better partition of the authors than STIRR. The upper

half corresponds to a set of theory researchers with almost no publications in database venues. The bottom half,

corresponds to a set of database researchers with very few publications in theory venues. Our clustering is slightly

smudged by the authors between index 400 and 450 that appear to have a number of publications in theory. These

are drawn in the database cluster due to their co-authors. STIRR, on the other hand, creates a well separated theory

cluster (upper half), but the second cluster contains authors with publications almost equally distributed between

theory and database venues.

8The data set is pre-classified, so class labels are known.
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(Pro-Life Cluster) 49 web pages

URL Title

http://www.afterabortion.org After Abortion: Information on the aftereffects of abortion

http://www.lifecall.org Abortion Absolutely Not! A Several Sources Prolife Website

http://www.lifeinstitute.org International abortion reports and prolife news

http://www.rtl.org Information at Right to Life of Michigan’s homepage

http://www.silentscream.org Silent Scream Home Page

http://www.heritagehouse76.com Empty title field

http://www.peopleforlife.org Abortion, Life and Choice

http://www.stmichael.org/OCL/OCL.html Orthodox Christians For Life Resource Page

http://www.worldvillage.com/wv/square/chapel/safehaven Empty title field

http://www.prolife.com Pro-Life America

http://www.roevwade.org RoevWade.org

http://www.nrlc.org National Right to Life Organization

http://www.hli.org Human Life International (HLI)

http://www.pregnancycenters.org Pregnancy Centers Online

http://www.prolife.org/ultimate Empty title field

http://www.mich.com/ buffalo Catholics United for Life

http://www.prolife.org Empty title field

http://www.prolife.org/mssl Empty title field

http://www.pfli.org Pharmacists for Life International

http://www.rockforlife.org Rock For Life

http://members.aol.com/nfofl Empty title field

http://www.serve.com/fem4life Feminists For Life of America

http://www.cc.org Welcome to Christian Coalition of America Web site

http://www.cwfa.org Concerned Women for America (CWA)

http://www.prolifeaction.org Pro-Life Action League

http://www.ru486.org The RU-486 Files

http://www.operationrescue.org End Abortion in America

http://www.orn.org Operation Rescue National

http://www.priestsforlife.org Priests for Life Index

http://www.abortionfacts.com Abortion facts and information, statistics, hotlines and helplines

http://www.prolifeinfo.org The Ultimate Pro-Life Resource List

http://www.feministsforlife.org Feminists For Life of America

http://www.marchforlife.org The March For Life Fund Home Page

http://www.bfl.org BFL Home Page

http://www.ppl.org Presbyterians Pro-Life Home

http://www.wels.net/wlfl WELS Lutherans for Life

http://www.lifeissues.org Life Issues Institute, Inc.

http://netnow.micron.net/ rtli Right To Life of Idaho, Inc. Home Page

http://www.ohiolife.org Ohio Right To Life

http://www.wrtl.org Index

http://www.powerweb.net/dcwrl Dodge County Right to Life Home Page

http://www.nccn.net/ voice newvoice

http://www.bethany.org Bethany Christian Services

http://www.prolife.org/LifeAction Empty title field

http://www.ovnet.com/ voltz/prolife.htm Pirate Pete’s Pro-Life page

http://www.prolife.org/cpcs-online Empty title field

http://www.care-net.org Empty title field

http://www.frc.org FAMILY RESEARCH COUNCIL

http://www.ldi.org Life Dynamics

Table 12: Pro-Life Cluster of the Web data set
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(Pro-Choice Cluster) 24 web pages

URL Title

http://www.gynpages.com Abortion Clinics OnLine

http://www.prochoice.org NAF - The Voice of Abortion Providers

http://www.cais.com/agm/main The Abortion Rights Activist Home Page

http://hamp.hampshire.edu/ clpp/nnaf National Network of Abortion Funds

http://www.ncap.com National Coalition of Abortion Providers

http://www.wcla.org Welcome to the Westchester Coalition for Legal Abortion

http://www.repro-activist.org Abortion Access Project

http://www.ms4c.org Medical Students for Choice

http://www.feministcampus.org Feminist Campus Activism Online: Welcome Center

http://www.naral.org NARAL: Abortion and Reproductive Rights: Choice For Women

http://www.vote-smart.org Project Vote Smart

http://www.plannedparenthood.org Planned Parenthood Federation of America

http://www.rcrc.org The Religious Coalition for Reproductive Choice

http://www.naralny.org NARAL/NY

http://www.bodypolitic.org Body Politic Net News Home

http://www.crlp.org CRLP - The Center for Reproductive Law and Policy

http://www.prochoiceresource.org index

http://www.caral.org CARAL

http://www.protectchoice.org Pro-Choice Public Education Project

http://www.agi-usa.org The Alan Guttmacher Institute: Home Page

http://www.ippf.org International Planned Parenthood Federation (IPPF)

http://www.aclu.org/issues/reproduct/hmrr.html Empty title field

http://www.nationalcenter.org The National Center for Public Policy Research

http://wlo.org Women Leaders Online and Women Organizing for Change

Table 13: Pro-Choice Cluster of the Web data set

(’Cincinnati’ Cluster) 20 web pages

URL Title

http://cincinnati.com/traffic Traffic Reports: Cincinnati.Com

http://careerfinder.cincinnati.com CareerFinder: Cincinnati.Com

http://autofinder.cincinnati.com Cincinnati Post and Enquirer

http://classifinder.cincinnati.com Classifieds: Cincinnati.Com

http://homefinder.cincinnati.com HomeFinder: Cincinnati.Com

http://cincinnati.com/freetime Cincinnati Entertainment: Cincinnati.Com

http://cincinnati.com/freetime/movies Movies: Cincinnati.Com

http://cincinnati.com/freetime/dining Dining: Cincinnati.Com

http://cincinnati.com/freetime/calendars Calendars: Cincinnati.Com

http://cincinnati.com Cincinnati.Com

http://cincinnati.com/helpdesk HelpDesk: Cincinnati.Com

http://cincinnati.com/helpdesk/feedback HelpDesk: Cincinnati.Com

http://cincinnati.com/helpdesk/circulation/circulation.html HelpDesk: Cincinnati.Com

http://cincinnati.com/helpdesk/circulation/subscribe.html HelpDesk: Cincinnati.Com

http://cincinnati.com/search Search our site: Cincinnati.Com

http://mall.cincinnati.com Cincinnati.Com Advertiser Index

http://cincinnati.com/advertise The Daily Fix: Cincinnati.Com

http://cincinnati.com/helpdesk/classifieds HelpDesk: Cincinnati.Com

http://cincinnati.com/copyright Cincinnati.Com - Your Key to the City

http://www.gannett.com Gannett home page

Table 14: ’Cincinnati’ Cluster of the Web data set
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Algorithm Leaves IL(%) P R Emin

LIMBO (φ = 1.0) 47 94.01 0.90 0.90 0.11

LIMBO (S = 5MB) 16 94.02 0.90 0.89 0.12

STIRR - 98.01 0.56 0.55 0.45

Table 15: Bib clustering using LIMBO & STIRR
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Figure 16: LIMBO clusters of first authors
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Figure 17: STIRR clusters of first authors

5.6 Scalability Evaluation

In this section, we study the scalability of LIMBO algorithm, and we investigate how the parameters of LIMBO

affect the execution time. We study the execution time of both LIMBOφ and LIMBOS. We consider four data sets

of size 500K, 1M , 5M , and 10M , each containing 10 clusters and 10 attributes with 20 to 40 values each. The first

three data sets are samples of the 10M data set.

For LIMBOS, the size and the number of leaf entries of the DCF tree, at the end of Phase 1 is controlled by

the parameter S. For LIMBOφ we study Phase 1 in detail. As we vary φ, Figure 18 demonstrates that the execution

time for Phase 1 decreases at a steady rate for values of φ up to 1.0. For 1.0 < φ < 1.5, execution time drops

significantly. This decrease is due to the reduced number of splits and the decrease in the DCF tree size. In the same

plot, we show some indicative sizes of the tree demonstrating that the vectors that we maintain remain relatively

sparse. The average density of the DCF tree vectors, i.e., the average fraction of non-zero entries remains between
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41% and 87%. Figure 19 plots the number of leaves as a function of φ.9 We observe that for the same range of

values for φ (1.0 < φ < 1.5), LIMBO produces a manageable DCF tree, with a small number of leaves, leading to

fast execution time in Phase 2. Furthermore, in all our experiments the height of the tree was never more than 11,

and the occupancy of the tree, i.e., the number of occupied entries over the total possible number of entries, was

always above 85.7%, indicating that the memory space was well used.
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Figure 18: Phase 1 execution times
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Figure 19: Phase 1 leaf entries

Thus, for 1.0 < φ < 1.5, we have a DCF tree with manageable size, and fast execution time for Phase 1 and 2.

For our experiments, we set φ = 1.2 and φ = 1.3. For LIMBOS we use buffer sizes of S = 1MB and S = 5MB. We

now study the total execution time of the algorithm for these parameter values. The graph in Figure 20 shows the

execution time for LIMBOφ and LIMBOS on the data sets we consider. In this figure, we observe that execution time

scales in a linear fashion with respect to the size of the data set for both versions of LIMBO. We also observed that

the clustering quality remained unaffected for all values of φ and S, and it was the same across the data sets (except

for IL in the 1M data set, which differed by 0.01%). Precision (P ) and Recall (R) were 0.999, and the classification

error (Emin) was 0.0013, indicating that LIMBO can produce clusterings of high quality, even for large data sets.

In our next experiment, we varied the number of attributes, m, in the 5M and 10M data sets and ran both

LIMBOφ, with φ = 1.2, and LIMBOS, with a buffer size of 5MB. Figure ?? shows the execution time as a function

number of attributes, for different data set sizes. In all cases, execution time increased linearly. Table 16 also presents

9The y-axis of Figure 19 has a logarithmic scale.
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Figure 20: Execution time (m=10)
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LIMBOφ,S IL(%) P R Emin CU

m = 5 49.12 0.991 0.991 0.0013 2.52

m = 10 60.79 0.999 0.999 0.0013 3.87

m = 20 52.01 0.997 0.994 0.0015 4.56

Table 16: LIMBOφ and LIMBOS quality

the quality results for all values of m for both LIMBO algorithms. The quality measures are essentially the same for

different sizes of the data set.

Finally, we varied the number of clusters from k = 10 up to k = 50 in the 10M data set, for φ = 1.2 and

S = 5MB. As expected from the analysis of LIMBO in Section 4.4, the number of clusters affected only Phase 3.

Recall from Figure 2 in Section 5.4 that Phase 3 is a small fraction of the total execution time. Indeed, as we increase

k from 10 to 50, we observed just 1.1% increase in the execution time for LIMBOφ, and just 2.5% for LIMBOS.

6 Estimating K

Identifying automatically an appropriate number of clusters in a data set is an important aspect of the clustering

problem. In most cases, there is no single correct answer. In this section, we discuss some information-theoretic

measures that can be used in hierarchical algorithms to identify the most “natural” clustering sizes for a given data

set.
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The first measure we consider is the rate of change of mutual information, δI(A; Ck) = I(A; Ck+1) − I(A; Ck).

Thinking in reverse, δI(A; Ck) captures the amount of information we gain if we break up a cluster in two, to move

from a clustering of size k to a clustering of size k + 1. For small values of k, breaking up the clusters results in

large information gains. As k increases, the information gain decreases. An appropriate value for k is when the gain

δI(A; Ck) becomes sufficiently small. This has also been discussed by Slonim and Tishby [14].

The mutual information I(A; C) captures the coherence of the clusters, that is, how similar the tuples within

each cluster are. For a good clustering, we require that the elements within the clusters be similar, but also that

the elements across clusters be dissimilar. We capture the dissimilarity across clusters in the conditional entropy

H(C|A). Intuitively, H(C|A) captures the purity of the clustering. For a clustering C with very low H(C|A), for each

cluster c in C, there exists a set of attribute values that appear almost exclusively in the tuples of cluster c. The lower

the H(C|A), the purer the clusters. H(Ck|A) is minimized for k = 1, where H(Ck|A) = 0. An appropriate value for

k is when H(Ck|A) is sufficiently low, and k > 1. Furthermore, the value δH(Ck |A) = H(Ck+1|A) − H(Ck|A) gives

the increase in purity when merging two clusters to move from a clustering of size k +1 to one of size k. High values

of δH(Ck|A) mean that the two merged clusters are similar. Low values imply that the two merged clusters that are

dissimilar. The latter case suggests k + 1 as a candidate value for the number of clusters.

We propose a combination of these measures, as a way of identifying the appropriate number of clusters. When

the number of clusters in not known in advance we run Phase 2 of the LIMBO algorithm up to k = 1. While we

run the AIB algorithm in Phase 2, we keep track of the mutual information I(A; Ck), and the conditional entropy

H(Ck|A). Observing the behavior of these two measures, will hopefully provide us with candidate values for k, for

which we run Phase 3 of LIMBO. Our case is best illustrated with the Web data set. Figure 22 presents the plots for

H(Ck|A), I(Ck |A) (left), and δH(Ck|A), δI(A; Ck) (right) for the Web data. From the plots we can conclude that for

k = 3, both δI(A; Ck) and H(Ck|A) are sufficiently close to zero, which means that the clustering is both pure and

informative. This becomes obvious when looking at the clustering of Web data in Figure 15. Note that δH(C2|A)

is very low, which means that producing a 2-clustering will result in merging two dissimilar clusters. Similar curves

for the Votes are given in Figure 23 and for the Mushroom data set in Figure 24.

For the Votes data set, the δI(A; Ck) curve clearly suggests k = 2 as the right number of clusters. The H(Ck|A)

measure is not equally informative since it increases steadily for increasing k. For k = 6, δH(Ck|A) takes a value
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close to zero. When the AIB algorithm moves from 7 to 6 clusters, it merges two highly dissimilar clusters. This

suggests k = 7 as a candidate value for the number of clusters. This value was also examined in the evaluation of

the COOLCAT algorithm [1].

For the mushroom data set, the δI(A; Ck) curve does not give a clear indication of what the right number of

clusters is. The H(Ck |A) and δH(Ck |A) curves demonstrate that we have very low improvement in purity when we

move from 3 to 2 clusters. In fact, after careful examination of the corresponding curves for the individual attributes,

we observed that for some attributes, δH(Ck|Ai) is close, or equal to zero for k = 2. Therefore, the two clusters

that are merged when moving from a 3-clustering to a 2-clustering are completely separated with respect to these

attributes. This suggest k = 3 as candidate for the number of clusters. Looking at the clusterings we observed

that generating 3 clusters results in breaking up the cluster that contained mostly poisonous mushrooms in the

2-clustering. Interestingly, the class of poisonous mushrooms is the concatenation of two classes: “poisonous” and

“not recommended” mushrooms. Therefore, k = 3 is a valid candidate for the clustering size. Another possible

number of clusters suggested by the curves is k = 8.
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Figure 22: I(C; A), H(C|A), and δI(C; A), δH(C|A) for Web Data

7 Other Related Work

CACTUS, [7], by Ghanti, Gehrke and Ramakrishnan, uses summaries of information constructed from the data set

that are sufficient for discovering clusters. The algorithm defines attribute value clusters with overlapping cluster-
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Figure 23: I(C; A), H(C|A), and δI(C; A), δH(C|A) for Votes

projections on any attribute. This makes the assignment of tuples to clusters unclear.

Our approach is based on the Information Bottleneck (IB) Method, introduced by Tishby, Pereira and Bialek [16].

The Information Bottleneck method has been used in an agglomerative hierarchical clustering algorithm [14] and

applied to the clustering of documents [15]. Recently, Slonim and Tishby [13] introduced the sequential Information

Bottleneck, (sIB) algorithm, which reduces the running time relative to the agglomerative approach. However, it

depends on an initial random partition and requires multiple passes of the data for different initial partitions. In the

future, we plan to experiment with sIB in Phase 2 of LIMBO.

Finally, another algorithm that uses an extention to BIRCH [17] is given by Chiu, Fang, Chen, Wand and

Jeris [4]. Their approach assumes that the data follows a multivariate normal distribution. The performance of the

algorithm has not been tested on categorical data sets.

8 Discussion and Future Work

We have evaluated the effectiveness of LIMBO in trading off either quality for time or quality for space to achieve

compact, yet accurate, models for small and large categorical data sets. We have shown LIMBO to have advantages

over other information theoretic clustering algorithms including AIB (in terms of scalability) and COOLCAT (in

terms of clustering quality and parameter stability). We have also shown advantages in quality over other scalable
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Figure 24: I(C; A), H(C|A), and δI(C; A), δH(C|A) for Mushroom

and non-scalable algorithms designed to cluster either categorical tuples or values. With our space-bounded version

of LIMBO (LIMBOS), we can build a model in one pass over the data in a fixed amount of memory while still

effectively controlling information loss in the model. These properties make LIMBOS amenable for use in clustering

streaming categorical data [?] and are properties that have been exploited in recent proposals for clustering streaming

numerical data [?]. We are currently evaluating the performance of LIMBO on streaming data. Finally, we plan to

apply LIMBO as a data mining technique to schema discovery [?].

References
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