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Case-Based R13. Case-Based Reasoning
for Biomedical Informatics and Medicine

Periklis Andritsos, Igor Jurisica, Janice I. Glasgow

Case-based reasoning (CBR) is an integral part of
artificial intelligence. It is defined as the process
of solving new problems through their compar-
ison with similar ones with existing solutions.
The CBR methodology fits well with the approach
that healthcare workers take when presented with
a new case, making its incorporation into a clin-
ical setting natural. Overall, CBR is appealing in
medical domains because a case base already ex-
ists, storing symptoms, diagnoses, treatments,
and outcomes for each patient. Therefore, there
are several CBR systems for medical diagnosis and
decision support. This chapter gives an overview
of CBR systems, their lifecycle, and different set-
tings in which they appear. It also discusses major
applications of CBR in the biomedical field, the
methodologies used, and the systems that have
been adopted. Section 13.1 provides the neces-
sary background of CBR, while Sect. 13.2 gives an
overview of techniques. Section 13.3 presents dif-
ferent systems in which CBR has been successfully
applied, and Sect. 13.4 presents biomedical appl-
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ications. A concluding discussion closes the chapter
in Sect. 13.5.

Many areas of bioinformatics have benefited from ar-
tificial intelligence problem-solving techniques. Com-
putational biology approaches have been applied and
offered enormous advances to a wide breadth of
medical applications including diagnosis, prognosis,
etc. [13.1, 2]. These fields are often characterized by
complex data, many unknowns, incomplete theories,
and rapid evolution. In decision-making, reasoning
is often based on experience, rather than on gen-
eral knowledge. In this chapter we consider one
such machine-learning approach, case-based reasoning
(CBR), and discuss how it has been applied to problems
in bioinformatics.

CBR using analogy-based reasoning is a multidis-
ciplinary area of research that deals with the reuse

of experiences, called cases [13.3, 4]. CBR is defined
as a plausible, high-level model for cognitive process-
ing [13.5] as well as a computational paradigm for
problem-solving [13.3]. This paradigm uses a bottom-
up approach by exploiting knowledge gathered after
solving specific problem situations. In contrast, top-
down approaches start with the problem domain theory,
which is usually expressed using a specific language,
e.g., rule-based language, frames, first-order logic, and
semantics networks. In brief, CBR is well suited for
capturing both objective details as well as contextual
ones [13.6].

Our goal is to present the specific challenges in-
volved in analyzing the underlying datasets. Hence, we
will explore CBR techniques as they are applied to im-
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208 Part C Machine Learning Methods for the Analysis, Modeling and Knowledge Discovery from Bioinformatics Data

age data, as well as the diagnosis of diseases using
numerical and textual data.

The rest of this chapter is organized as follows. Sec-
tion 13.1 provides the necessary background of CBR,
while Sect. 13.2 gives an overview of techniques used to

perform feature selection on data to be handled by CBR
systems. Section 13.3 presents different systems in which
CBR has been successfully applied, while Sect. 13.4 fo-
cuses on applications in the biomedical domain. Finally,
Sect. 13.5 presents concluding discussions.

13.1 Case-Based Reasoning

When building a CBR system, one of the fundamen-
tal components is how cases are represented, i. e., the
exemplar solutions that we have stored from previ-
ous experience. These are solutions that will be used
together with the problem description and possibly eval-
uation of the solution. At design time, one must decide
on the following two issues:

1. The model (data structure) used to store the case-
base content,

2. The organization of the case memory.

13.1.1 CBR Content Modeling

Case-base content is usually application dependent.
Typically, there are three main ways to represent the
cases:

1. As a set of features in a vector, usually called the
vector-space model,

2. As text, structured (e.g., inside a database manage-
ment system) or semistructured [e.g., in extensible
markup language (XML) documents],

3. As complex objects, such as graphs.

There are also hybrid approaches that mix, for in-
stance, text-based and vector-based models.

Vector-based modeling is of particular interest since
this is a representation inherent in most machine-
learning techniques, such as feature selection and
extraction as well as clustering and classification meth-
ods [13.7]. Therefore, most CBR systems have adopted
this representation so that these techniques can be ap-
plied on available datasets. Objects in these datasets are
modeled as vectors, and therefore they often need to be
converted into a space where relevant similarity mea-
sures are defined and can be incorporated as part of the
system; For example, one of the typical transformations
of document corpuses into vectors of decimal numbers
(or scores) is done by means of the term-frequency,
inverse document-frequency (tf-idf) weighting method.
This method computes the frequency of a term t in

a document d ∈ D as

tf(x) = ‖t ∈ t ∈ d‖ ,

as well as the inverse document frequency of x in the
corpus D as

idf(x) = log
‖D‖

‖d : t ∈ d‖ .

Then, the tf-idf of term x is defined as tf-idf(x) = tf(x) ×
idf(x), giving higher scores to terms that appear many
times in a document and have a low document fre-
quency, i. e., that are considered highly informative with
respect to others. After computing these scores for each
term inside the documents, we can represent each doc-
ument by means of the tf-idf scores of their terms.

Finally, many CBR approaches view problem-
solving as automatic classification or function approxi-
mation tasks [13.8, 9].

Regardless of the case representation, all cases in-
clude the problem description, the solution, and the
outcome. The first refers to the set of features that are
matched when we have a new problem in the system.
This must include all the information needed to first dis-
cover that a case can be successfully reused for solving
a similar problem. The solution models the informa-
tion for which we are searching, e.g., the diagnosis of
a disease or the plan to perform protein crystallization.
Finally, the outcome provides an evaluation of the appli-
cability or quality of the solution for the given problem.

13.1.2 CBR System Lifecycle

The problem-solving cycle of a typical CBR system is
shown in Fig. 13.1.

Retrieve (1)
Given the description of a new problem, the CBR sys-
tem retrieves a set of cases stored in the case base. The
retrieval uses a similarity metric to compare the problem
component of the new case that we are about to build
with the problem descriptions of the cases in the base.
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In a problem where documents are represented as vec-
tors of tf-idf scores, as described above, one common
similarity metric that is used is called cosine similarity
and calculates the angle between corresponding vectors
of documents. Given the tf-idf vectors vi and v j of two
documents di ∈ D and d j ∈ D, respectively, the cosine
similarity, ≈ (vi , v j ) is given by the expression

≈ (vi , v j ) = vi ·v j

‖|vi || · ‖|v j‖| ,

where the nominator is the inner product between the
two document vectors and the denominator the arith-
metic product of their norms. For very large case bases,
other techniques such as indexing and clustering of
cases may need to be incorporated to make this step
more efficient [13.10]. This is useful in particular when
the context does not change. By context we mean the
constraints that are involved in the problem-solving
without intervening in it [13.11].

Reuse (2)
This step includes the testing of the solved case in the
real dataset. Cases can be reused through evaluation
against a domain expert, a simulated model, or known
solutions (test set). In other words, this step is based
on the ability to associate concepts to facts by analogy,
called analogy-based reasoning [13.12]. The similar
cases that are retrieved are reused to build the best so-
lution. This solution could simply be the solution of the
most similar case in the base, or an integration of solu-
tions that are extracted from the retrieved cases to build
a new candidate solution.

Revise (3)
The candidate solution is then adapted to fit any spe-
cific constraints of the current situation; For instance,
an extracted therapy should be adapted for a new patient
suffering from a particular disease.

Review (4)
The solution that the system builds should now be eval-
uated by applying it (or simulating the application) to
the current problem. If we detect failure, we have to
go back and revise the solution or keep the solution as
a negative example for future use [13.13]. The reuse,
revise, and review stages are also called case adapta-
tion [13.5].

Retain (5)
The new case may or may not be added to the case base,
depending on its similarity to existing cases and poten-

New problem

Library of existing
cases

Domain model

Solutions revised

1. Retrieve

3. Revise

Outcome

New case

Cases retrieved

Solutions retrieved

2. Reuse

5. Retain

4. Review

Fig. 13.1 Problem-solving cycle of a CBR system

tial value during problem-solving, since there would be
little or no value to add identical or highly similar cases
to the case base.

13.1.3 Case Maintenance

The last component of the CBR cycle has attracted par-
ticular attention, as unnecessary growth in the size of
the case base may negatively affect its performance.
Case-based maintenance methods have been proposed
in response to this problem through deletions, additions
of selected cases, and merging of similar cases. Yang
and Wu [13.14] introduced a density-based clustering
and information theory-based approach that results in
case bases of smaller sizes where retrieval is guided
by comparing the information contents of new prob-
lems and the clusters built. However, this approach
is moving away from the CBR strategy (lazy learn-
ing) toward traditional machine-learning approaches,
and thus would be applicable in more stable domains.
Lawanna and Daengdej [13.15] give a concise set of
case deletion and addition heuristics. Their heuristics
evaluate the utility of candidate cases by measuring
their coverage and reachability. Coverage is the set of
problems that the case can solve, while reachability is
the set of cases that can be used to provide a solution
for a target problem. Given a value for both mea-
sures, cases are retained or deleted. Finally, Arshadi and
Jurisica [13.16] approach the problem of case mainte-
nance from a machine-learning point of view. The goal
of their method, termed mixture of experts for CBR
(MOE4CBR), is to increase the prediction accuracy of
CBR classifiers in high-dimensional domains by using
a mixture of experts where an ensemble of CBR sys-
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tems is integrated with clustering and feature selection
to improve performance. They employ spectral cluster-
ing to group samples, and each group forms a separate
CBR system. Logistic regression is then applied to se-
lect those features that more accurately predict the class
labels.

13.1.4 Adaptation of CBR in Medicine

The CBR cycle described above fits well with the ap-
proach that a healthcare worker takes when presented
with a new case, making its incorporation into a clinical
setting natural. Overall, CBR is appealing in medical
domains because a case base already exists, storing
symptoms, diagnoses, treatments, and outcomes for
each patient. Therefore, there are several CBR systems
for medical diagnosis and decision support [13.17–21].
These systems increasingly use knowledge engineer-
ing techniques [13.22]. As more complex domains are
tackled by CBR systems, where representing cases

and adapting the solutions of retrieved cases become
difficult, systematic approaches to CBR development
are needed [13.23, 24]. This is important in these do-
mains because it elucidates knowledge that aids in the
construction of a meaningful case representation, mean-
ingful in the sense that it allows for retrieved cases to
be matched as closely as possible to the target case
in order to reuse their solutions with little adaptation.
CBR still has clear benefits in these domains as long as
the knowledge engineering efforts required to construct
such a case representation are less than what would be
required to construct an entire general model [13.24].
Overall, the effectiveness of CBR depends on the do-
main stability, coverage, as well as the quality and
quantity of cases in a case base. With an increased num-
ber of unique cases, the problem-solving capabilities of
CBR systems may improve at the expense of a decrease
in efficiency. In addition, the scalability of a system
depends on the model used and the similarity-based
retrieval algorithm.

13.2 Feature Selection for CBR

13.2.1 Feature Subset Selection

As one of the key components of CBR, a similarity
measure is used to assess closeness of a given prob-
lem case to cases in the case base, considering any
specific conditions (context). This similarity is com-
puted over sets of features that are considered important
for the problem at hand. The choice of case features
that best distinguish classes of instances has a large
impact on the similarity measure and has become an
important preprocessing step of case-based reasoning
for different domains, termed feature selection [13.25].
Techniques that involve the selection of features ac-
cording to how well they predict given class labels are
called supervised [13.26]. They usually perform an ex-
haustive search of all possible subsets of features, and
therefore proper heuristics may be used to reduce the
complexity. On the other hand, unsupervised techniques
do not incorporate given class labels but instead employ
importance or proximity measures in order to select ap-
propriate sets of features [13.27]

There are two types of feature selectors:

1. Wrapper selectors, which use the learning algorithm
as a black box with the goal of minimizing the fitting
error for a particular problem [13.28], and,

2. Filter selectors, which choose features by evaluat-
ing some preset criteria independent of the learning
algorithm.

In practice, filter selectors have much lower com-
plexity than wrappers, and the features selected often
yield comparable prediction errors [13.29].

13.2.2 Feature Ranking

Several feature selection search algorithms have been
proposed specifically for case-based reasoning, such as
exhaustive search, hill-climbing, and forward sequential
selection [13.30, 31]. Such techniques employ objec-
tive functions that can be used for feature ranking,
such as the tf-idf criterion discussed above, Fisher’s
criterion, t-test, and logistic regression [13.7, 9, 32].
Highly ranked features are deemed more valuable, as
opposed to features that have lower ranks. The latter
ones are of importance in certain domains, such as in
the search for prognostic gene signatures for clinical
outcomes [13.33].

Depending on the application domain, a different
feature selection approach may need to be applied so
that appropriate similarity measures can be employed.
Feature selection is highly dependent upon the type of
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data with which we are dealing. Numerical data stored
as cases of CBR systems have well-defined geometrical
characteristics where similarity measures, such as Eu-
clidean distance, can be applied. On the other hand, in
a text-based CBR system a case includes the informa-
tion extracted from the text. This information comprises
a set of important keywords that can also be ranked us-
ing, for example, the tf-idf score and stored in CBR
cases. This approach usually integrates CBR with in-
formation retrieval [13.34–36] and leverages statistical
information inherent in the documents.

One domain in which we are interested in building
case bases is that of protein–protein interactions (PPI)
from text contained in publication abstracts [13.37]. In
this application, features are keywords that are related
to the way that PPIs are expressed in collections of pa-
pers that deal with specific biological experiments for
their detection. As an input to the system, we use sets
of terms related to PPI experiments, such as mass spec-
trometry. We use clustering to separate the expressions
that are very similar to each other and dissimilar to other
PPI expressions. We finally perform keyword scoring
in order to measure the utility of each keyword using
a scoring function called category utility [13.38, 39].
Intuitively, this function measures the utility of the
individual keywords in the clusters of similar PPI ex-
periments. If we have a corpus D of sentences relevant
to PPIs and a cluster C that has been created from
this corpus, the utility of a keyword k ∈ C is calculated
as [13.40]

CU(k, C) = P(k|C)2 − P(k)2 ,

which calculates the difference between the expectation
of the keyword k when the clustering C is given with its
expectation in the full corpus. Using this measure, the
keywords that are more responsible for the creation of
the cluster will have a higher probability of appearance
in it and, hence, a higher CU score.

More complex objects such as images often re-
quire more advanced preprocessing before storing them
in a CBR. Implicit image features are extracted using

different techniques such as morphological character-
ization that applies image segmentation and feature
extraction to determine and quantify image texture,
distinctive objects contained within images, intensity,
presence or absence of straight lines, light distribution,
dark points, etc. [13.41]. Image and nonimage features
can be combined, and similarity between stored and raw
cases can be measured [13.42]. If the purpose of using
a CBR system is to classify the images, many of the
features can become redundant if they have similar pre-
dictive and expressive power. Hence, the challenge is to
select a minimal number of features from each image.

The following is a list of techniques proposed for
feature extraction in protein crystallization:

• Laplacian pyramid filter [13.43]: The Laplacian
filter is used to decompose the image into three dif-
ferent levels. The Laplacian filter is used to extract
the boundary information and image features. The
multiscale representation is capable of extracting
the following useful features of the image (invariant
to orientation): mean, standard deviation, skew-
ness, kurtosis, energy, entropy, autocorrelation, and
power.• Extraction of contours [13.44]: Using edge-detec-
tion techniques, proper contours are extracted, and
the identification of the type of line segments helps
in the classification of images. Useful features for
which these techniques produce scores are the max-
imum length and number of line segments as well
as the ratio of linear regions.• Texture features [13.45].• Gabor wavelet decompositions for edge detection,
noise filtering, image compression, texture analysis,
and synthesis [13.46].• Fourier and wavelet analysis [13.47].

Feature selection can be an inherent component of
a CBR system, or it can be performed as a preprocessing
step. Systems such as eXiT*CBR [13.48] incorporate
basic preprocessing and feature selection methods to
facilitate experimentation.

13.3 Case-Based Reasoning Systems

Early systems were mainly applied in datasets with
a low number of symbolic attributes that contained
discrete values [13.49]. With richer heterogeneous
real-world data sources available, appropriate treat-
ment and interpretation of large and complex types

of data constitute key issues for developing CBR
systems.

CBR systems are being developed in both indus-
trial and scientific applications. Moreover, a variety of
systems have been developed to solve problems in de-
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sign [13.50], cost estimation [13.51], business process
planning and customer support call-centers [13.52], fi-
nance [13.53], and legal reasoning [13.54]. Most of
the systems follow the standard problem-solving life-
cycle described above. Depending on the data that they
need to handle, they differ in the way they prepro-
cess and store the cases, as well as the algorithmic
approach used to assess the similarity of existing cases
with new problems. Göker et al. [13.49] suggest a soft-
ware engineering methodology for CBR. Similar to
the development of software applications, they propose
a workflow model, and their methodology deems the
user, the organization, and the domain at hand as its
main characteristics, while it provides a classification
of each one.

CBR systems have also been incorporated as
modules within other decision-making processes; For
instance, Ahmed et al. [13.55] describe a system that
uses intelligent agents that deploy CBR systems whose
role is to assist these agents to gain experience by col-
lecting past solved cases and adapt them to the current
context. This enables flexible and modular maintenance
systems where different suppliers can deliver agents that
eventually develop to become experts in specific tasks.
Their framework is geared towards knowledge transfer
in complex technical fields, cost reduction, and faster
response times.

External knowledge is often included in CBR sys-
tems as part of their main knowledge source and can be
used from retrieval to reasoning. D’Aquin et al. [13.56]
have integrated the C-OWL context ontology with
a CBR system. Within this system, semantic relations
between contexts and the associated reasoning mecha-
nisms in a particular problem are reused and shared in
other problems. In a similar fashion, Sauer et al. [13.57]
discuss the advantages of integrating linked open data
(LOD) with a CBR system. In particular they use the
DBpedia ontology to retrieve information and simi-
larities of diseases to be used in a system that is
concerned with the prevention, management, and re-
search of health problems associated with travel, and
covers all medical aspects a traveler has to take care of
before, during, and after a journey. DBpedia elements
are queried and used in the construction of cases as well
as when existing cases are compared against new prob-
lems. Their goal is to achieve better semantic similarity
of the results and simplify the task of manually filling
the case base with existing knowledge.

Case-based reasoning has also been applied to facil-
itate job runtime estimation [13.13, 58]. In this work,
past performance acts as a good indicator for job

scheduling optimization in a grid environment and
a CBR system is used to predict the runtime of long-
term applications in heterogeneous systems. Using the
TA3 CBR system, Xia et al. [13.13] have investigated
job characteristics and ranked them according to their
runtime statistics; i. e., those characteristics with low
runtime standard deviation are ranked higher. In a sim-
ilar fashion they rank machine characteristics and build
cases that are stored in the CBR system. Novel simi-
larity measures for job and machine characteristics are
defined to be used when new runtimes need to be pre-
dicted.

13.3.1 The TA3 CBR System

The last application mentioned above uses the TA3
case-based reasoning system [13.59]. TA3 represents
cases as attribute–value pairs whose domains are de-
fined in what is called a case description. More formally,
a case C is represented as

C = 〈a0 : V0〉, 〈a1 : V1〉, . . . , 〈an : Vn〉 ,

where ai represent attributes and Vi their correspond-
ing values, 0 ≤ i ≤ n. Given this representation, a case
for which we already know the solution is represented
by Csource while a cases that constitutes a new prob-
lem is denoted by Cinput. Finally, a set of source cases
{C1

source, C2
source, . . . , Ck

source} constitutes a case base,
i. e., the search space of cases in the CBR system.

There are three classes of data defined in a case
description:

1. Description: the nonpredictive data,
2. Problem: the predictive data,
3. Solution: the classification, diagnosis, or outcome.

Focusing on the problem class, attributes are
grouped into categories. The advantage of grouping at-
tributes is that it allows the assignment of different
constraints and priorities depending on the relevance of
an attribute or collection of attributes (i. e., their value
in matching similar cases). During retrieval an explicit
context is used for similarity assessment, and the pro-
cess is guided by incremental transformations of the
context. A context is simply a subset of the problem part
of the case description with constraints applied to the
attribute–value pairs. More formally, a context T is de-
fined by a finite set of attributes and related constraints
on their values

T = 〈a0 : CV0〉, 〈a1 : CV1〉, . . . ,
〈am : CVm〉 ,
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Fig. 13.2 The E4CBR system (after [13.8])

where ai denotes the attributes and CVi is the set of
values that the attribute can have. This minimizes the
effect that irrelevant or less relevant attributes may have
when trying to match similar cases. Category member-
ship can be assigned either by an expert with domain
knowledge of the relevance of different attributes or by
a machine-learning approach.

The retrieval process uses modified nearest-
neighbor matching: predictive attributes are grouped
to allow different priorities and constraints, an explicit
context is used during similarity assessment, and the
retrieval algorithm is guided by incremental transfor-
mations of the context. A context is simply a subset of
the problem part of the case description with constraints
applied to the attribute–value pairs.

The flexible nature of TA3 lies in the fact that
retrieval strategies can be dynamically defined for a par-
ticular domain and the specific application. The system
also includes a genetic algorithm for knowledge discov-
ery purposes; given two or more test sets representing
different classes of cases, this functionality maximizes
the distances between different classes and minimizes
the distances within the same class. The distance be-
tween two cases is defined as the amount of relaxations
needed to make the two cases similar. The information
gained by this process may not only determine previ-
ously unknown relations in the data, but may provide
a new context with which to guide the retrieval process
with greater prediction accuracy.

The TA3 system uses a structured query language
(SQL) database to store the case base and thus han-
dles very large inputs; For instance, it is being used
to store and analyze protein crystallization experiments.
There are 12 000 experiments, each of which has 9216
attributes, and the data are derived from 110, 592, 000
images. The repository grows at a rate of 200 exper-
iments per month [13.41]. Before TA3 can suggest
crystallization strategies for a new protein, we need to

compute 12 375 features from the images and classify
them into 10 categories [13.60].

Finally, the TA3 system can also be used as a classi-
fier. The attribute–value pairs can be accompanied by
class labels, and nearest-neighbor techniques can be
modified to classify new cases. To extend the capabil-
ities of CBR, Arshadi and Jurisica [13.8] implemented
E4CBR, where an ensemble of CBR classifiers is com-
bined with clustering and feature selection. A set of case
features is selected first, and then clustering of the cases
into disjoint groups is employed, where each group of
cases forms the case base of one of the member classi-
fiers (Fig. 13.2). In each case base a subset of features
is locally selected individually. To predict the label of
an unseen case, each classifier in the ensemble provides
a prediction, and the aggregation component of E4CBR
combines the predictions by weighting each classifier
using a CBR approach; a classifier with more cases
similar to the test case receives a higher weight.

Similarly, Spasic et al. [13.61] have proposed
MaSTerClass, a system that classifies terms by using
natural-language processing (NLP) to perform fea-
ture selection, comparison of terms, and classification
in order to update existing semantic networks with
new terms. More precisely, they used a string-based
similarity measure called edit distance (ED) to find
similarities between individual terms and keyphrases.
Intuitively, ED counts the insertions, deletions, and up-
dates that should be performed to convert one string (or
keyphrase) to another [13.7]. In addition to ED, they in-
corporate a tree similarity measure to take into account
the similarity of corresponding terms in a semantic hi-
erarchy or ontology. This measure is defined as

ts(C1, C2) = 2 · common(C1, C2)

depth(C1)+depth(C2)
,

where C1 and C2 are the two given concepts, while
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• common(C1, C2) denotes the number of common
concepts in the paths from the root to C1 and C2

• depth(Ci ) denotes the number of concepts from the
root to Ci , i = 12.

13.4 Case-Based Reasoning in Biomedicine

CBR systems in health science include systems with
tasks in diagnosis (SHRINK [13.62], Protos [13.63],
CASEY [13.64], MEDIC [13.65], BOLERO [13.66]),
assessment test planning and clinical research planning
(MNAOMIA [13.67]), tutoring (CADI [13.68]), and im-
age analysis (MacRad [13.69], ImageCreek [13.70]).

Nilsson and Sollenborn provide a classification of
developments in systems applied in the medical do-
main, according to their purpose [13.71]. They observe
that the majority of these systems belong to the ar-
eas of diagnosis, classification, and planning. At the
same time, systems such as TA3, which we described
in Sect. 13.3.1, are domain independent and may be ap-
plied in the medical domain.

13.4.1 The eXit*CBR System

Several domain-independent CBR systems have been
proposed, including eXiT*CBR [13.48]. eXiT*CBR is
a framework that supports the development and exper-
imentation with CBR systems in general. The system
supports a classification component tailored to diag-
nostic tasks. According to the authors, the advantage
of using eXiT*CBR lies in the fact that it is modular
and helps the user to preprocess the data and visualize
the results of different parameter settings. The system
includes the following components:

• Experiment interpreter: This is the core of the
framework that interprets a configuration file given
by the user and applies one of the two methods
that the system currently supports: batch processing
and cross-validation. In the first method the inter-
preter reads a set of training data, generates a case
base, and uses a different test dataset to obtain the
results. Results are interpreted according to a per-
formance measure given as input by the user. The
cross-validation method performs multiple runs of
a CBR configuration with different datasets (split
into training and test data). The performance of the
system is averaged at the end of the processing.• Preprocessor: The system accepts a configuration
file and the type of preprocessing to be performed.
Currently, it supports discretization, normalization,
and feature selection.

• Postprocessor: This module starts when the CBR
engine has finished and involves the application of
performance measures that the user is interested
in. It also specifies the type of visualization to
be used for interpreting the results. Default visu-
alization involves receiver operating characteristic
(ROC) curves for the diagnosis system, while it can
also calculate an area under curve (AUC) value. The
latter measures the accuracy under a ROC curve
value and assesses the accuracy of the results. The
closer the results are to a value of 1.0, the better the
accuracy is.

The system can also assist in the generation of datasets,
which can be created according to different user prefer-
ences.

13.4.2 Diagnosis with CBR Systems

Other CBR frameworks that have been used in the medi-
cal domain are jCOLIBRI [13.72] and MyCBR [13.73].
The former is similar to eXiT*CBR in that it is mod-
ular, but instead of configuration files, it incorporates
an ontology to be used in the different phases of CBR.
The ontology has been developed as a plug-in to the
PROTEGE (http://protege.stanford.edu/) editor for on-
tologies. In this system, ontologies are used to define
properties of the features to be used.

The eXiT*CBR tool has been used in a breast can-
cer diagnosis scenario. Data from patients and healthy
population are stored in a database. The 1199 attributes
represent habits, such as smoker or not, sport activ-
ities and eating, disease characteristics, such as type
and size of tumor, as well as the gynecological his-
tory of the women involved. The authors describe
their experiments with the eXiT*CBR tool when it is
given different input parameters, such as the number of
cases to be retrieved or the number of attributes to be
used [13.48]. They also demonstrate how small changes
in the initial configuration and preprocessing help in
rapid visualization and assessment of the results.

Breast cancer decision support has also been ad-
dressed in the KASIMIR system [13.74]. The focus of
this work is a methodology that adopts knowledge from
experts. The authors describe adaptation patterns such
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as cases of inapplicable decisions and consequences of
particular decisions. They also take into account miss-
ing data during the retrieval phase. Clusters also help in
the discovery of patterns, and they have been used in re-
cent work on the diagnosis of melanoma by Armengol
[13.75]. In this work explanations produced by the sys-
tem are used to describe clusters and these explanations
become part of the system’s domain theory, which can
be valuable to domain experts.

The TA3 CBR system has been used in two medical
diagnostic case studies, one in attention-deficit hyper-
activity disorder (ADHD) and one in stroke diagnosis.
ADHD is a problem with symptoms of inattentiveness,
overactivity, impulsivity, or a combination thereof. It is
a neuropsychiatric disorder that appears in both children
and adults of different ages. One of the problems with
ADHD is the lack of objective tests for its proper diag-
nosis. Brien et al. [13.20] have tackled this problem by
proposing a methodology that incrementally improves
a CBR system, namely the TA3 system that we de-
scribed above.

Standard diagnoses of ADHD usually include in-
terviews with parents and teachers as well as rating
scales of hyperactivity and impulsivity, clinical history,
cognitive assessments, and neurological examinations.
When other disorders are present, diagnosis of ADHD
becomes harder and the aforementioned tests less ac-
curate. Therefore, their validity and reliability are
questionable.

Brien et al. explore a very specific symptom that can
lead to more accurate diagnosis of ADHD, that of sac-
cadic eye movement. Saccades are rapid movements of
the eye that bring new visual targets onto the fovea of
the retina. They take place either consciously or auto-
matically as a response to stimuli that appear in front of
the person. ADHD can be diagnosed through saccadic
eye movements since the regions in the brain responsi-
ble for controlling them are well understood and related
to the regions that cause ADHD. The data collected
for each subject in the saccade tasks include the diag-
nosis group (ADHD or control), any drugs that were
used, the age, sex, handedness, hyperactivity, impul-
sivity, and saccadic reaction time (SRT) [13.20]. Two
particular tasks, i. e., the prosaccade and antisaccade
tasks, have been used to investigate whether the eye
movement was performed voluntarily or as a response
to stimuli. In both tasks the subjects are looking at fixed
objects called fixation points (FP). A new visual tar-
get (T) appears to the left or right side of the fixation
point, and the subject is asked to look toward the target
(prosaccade) or away from it (antisaccade). The sac-

Description

Problem

Solution

Priority 0

Subject code:  aba
Handedness:  10

Age:  8

Diagnosis:  ADHD

Task variables

Sex:  Male

Hyperactivity:  87
Impulsivity:  76

Anti/Gap/Left

Anti/Gap/Right

Anti/Over/Left

Anti/Over/Right

Pro/Gap/Left

Pro/Gap/Right

Pro/Over/Left

Pro/Over/Right

363.00

458.00

351.67

483.33

338.00

343.06

431.50

471.24

39.35

50.01

42.07

44.50

59.82

58.70

46.88

44.73

93.33

75.76

77.78

62.50

12.50

5.88

3.45

9.38

0.00

12.50

16.67

0.00

7.14

9.38

7.14

0.00

Task Mean
SRT (ms)

CV Dir. error
(%)

Exp.
(%)

Fig. 13.3 Example case description from model 1. SRT =
Saccadic reaction time. CV = coefficient of variation in
SRT. Dir. error = percentage of direction error. Exp. = per-
centage of express saccades. Anti = antisaccade task. Pro
= prosaccade task. Over = overlap condition. Gap = gap
condition (after [13.20])

cadic reaction time (SRT) is measured during these tests
and compared against controls to make a more objective
decision about ADHD.

An example of the results from the TA3 system is
given in Fig. 13.3.

The data used involve saccadic eye movement from
adults and children. In both categories, measurements
of people with ADHD are compared against controls,
and the accuracy of the results is 72% for children and
76% for adults. The results of the overall study using
TA3 are comparable to those of the continuous perfor-
mance test (CPT) [13.76], the most objective clinical
laboratory test for assessing attention and vigilance.

In the diagnosis and prognosis of stroke, con-
ventional assessment techniques are carried out by
clinicians, who attempt to measure the degree of im-
pairment with subjective measures. Normally, an early
diagnosis is made by assessing the symptoms, review-
ing medical history, conducting tests to confirm the
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occurrence of a brain attack, and measuring the de-
gree of impairment. Conventional stroke assessment
scales convert motor status to a score in an ordinal
(nonnumeric) scale. Typically, each patient performs
a certain task where the main emphasis is laid on task
completion rather than specific details. Therefore it is
a nonqualitative scoring. In qualitative scoring, other
factors are considered as well, such as measurement
of the amount of assistance required, alteration in the
normal (gross) position, and time utilized to complete
a test.

CBR can be used to create a repository of data
from stroke patients who have an explicit diagnosis
and prognosis and are receiving subsequent rehabili-
tation. For a new stroke patient, whose diagnosis is
yet to be confirmed and who has an indefinite prog-
nosis, CBR retrieves similar cases from the case base,
which may provide useful information to the clinicians,
hence facilitating them in reaching a potential solu-
tion for stroke diagnosis [13.21]. The work by Baig
exploits data that are collected via the kinesiological
instrument for normal and altered reaching movement
(KINARM) [13.77], a robotic device that monitors and
manipulates upper body movements. It records quan-
tifiable kinetic/kinematic measures, such as reaction
time, velocity, joint torque, and hand trajectories of
both stroke and control subjects for specific motor and
sensory tasks. The stroke diagnosis framework involv-
ing KINARM and the TA3 CBR systems is shown
in Fig. 13.4. After collecting stroke patient data using
KINARM, the data are preprocessed to find errors and
perform feature selection using data mining through the
WEKA tool [13.78]. WEKA also classifies the data into
three contexts, A, B, and C, which are defined on dif-

Database
Data
preprocessing

KINARM data

Stroke diagnosis/
prognosis support

Apply case-
based reasoning

Case base
Case
#n

Fig. 13.4 CBR system for stroke patient data

ferent sets of attributes and will be used for retrieval.
The data are then stored in a persistent database man-
agement system from which cases of known problems,
symptoms, and outcomes are extracted and passed to
the TA3 CBR system. The final stage is the decision re-
garding the stroke diagnosis and prognosis of patients.
A detailed list of all the attributes used in the case base
can be found in [13.21].

Given a new problem (data from a new patient) the
case is first classified into one of the three contexts and
then compared against the known cases. The main ob-
jectives when experimenting with stroke data and the
CBR system are:

• To differentiate a stroke subject from a control,• To classify the type of stroke as hemorrhagic or
ischemic,• To classify the stroke subject as right-brain affected
or left-brain affected,• To determine the prognosis of a stroke patient in
terms of affected vascular territory and identify the
lesion location.

The evaluation of the system showed good performance
in terms of sensitivity (51%), specificity (98%), and
accuracy (82%) [13.21]. A sensitivity of 100% would
mean that the test recognizes all sick people as such,
whereas a specificity of 100% would mean that the test
recognizes all healthy people as healthy.

13.4.3 Medical Imaging and CBR Systems

All the aforementioned systems handle textual and nu-
merical data in medical diagnosis applications. CBR
systems have also been found useful at handling bioin-
formatics data that have been produced as the result
of image analysis. Tasks such as interpretation, classi-
fication of images, and planning of experiments have
been guided by their use; For example, the ImageCreek
system [13.70] dealt with the problem of image in-
terpretation. More precisely, this system was used to
interpret computer tomography (CT) images, which can
then be used in disease diagnosis. The ImageCreek sys-
tem includes two case-base reasoners, one for segment
identification, called Segment ImageCreeek, and one
for image interpretation, called Wholistic ImageCreeek.
This image segment-based CBR system has been used
in a study of abdominal CT images that come with a set
of hypotheses. The system uses these hypotheses to in-
terpret new images or, according to domain expertise,
change the existing ones.
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Protein
crystallization

database

Record results of
new experience

1. New problem:
P.I. of individual

case

4. Solution: Both
successful and failed
crystallization recipes

are evaluated

2. Retrieve nearest-
neighbor cases

(according to P.I.)

3. Adapt previous
solutions to new

problem

Fig. 13.5 Case-based planning of pro-
tein crystallization (P.I. – precipitation
index)

13.4.4 Protein Crystallization Planning
with CBR

Images are also useful for understanding how proteins
acquire their three-dimensional structure, and protein
crystallization techniques assist in this task. The frag-
ile nature of crystals as well as the many environmental
factors make the process of protein crystallization in-
herently difficult. Therefore, attempting to crystallize
a protein without a proven protocol can be challenging
and time consuming. CBR systems have been proposed
to aid in the planning of protein crystallization experi-
ments, since one of the difficulties in planning crystal
growth experiments is that the history of experiments is
not well known [13.80].

Figure 13.5 illustrates the process of using a CBR
system in the planning of protein crystallization experi-
ments, where solubility experiments give a quantitative
score of similarity for the proteins. Hence, planning
strategies that are used in one protein could also be ap-

C G P Ph X

X

G

C PPh

1400
1200
1000
800
600
400
200

0

Fig. 13.6 Image analysis and clas-
sification (for explanation see text,
after [13.79])

plied to another. New crystallization problems can then
be approached by execution and analysis of a set of
precipitation reactions, followed by automated identi-
fication of similar proteins and analysis of the recipes
used to crystallize them (that is, crystal growth method,
temperature and pH ranges, concentration of a protein,
crystallization agent, etc.) [13.79].

Case retrieval involves a modified k-nearest-
neighbor similarity matching that compares the precipi-
tation indexes of an existing case with a new problem
that is given as input [13.79, 81]. Adaptation follows
as a next step, and previous solutions are modified
to address the new problem. Combined with domain
knowledge, the system acts both as an adviser to the
crystallographer by suggesting parameter settings for
further experiments, as well as an evaluator of potential
experiments that the user might propose. The adaptation
module constitutes a dynamic process that evolves over
time as new knowledge becomes available. Once a plan
(in the form of a set of experiments) has been derived
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Table 13.1 Domain-independent CBR systems

System Case representation Preprocessing New case processing

TA3 Attribute–value pairs Feature selection k-NNa search

eXiT*CBR CSVb files of attribute Discretization, normalization, Case classification

descriptions and weights feature selection
a k-NN: k-nearest neighbor; b CSV: comma-separated values

Table 13.2 Different biomedical tasks in CBR systems

Condition/experiment Type System Case comparison

Breast cancer Diagnosis
Prognosis

eXiT*CBR,
KASIMIR

Preclassified cases are compared with new ones

ADHD Diagnosis TA3 Similarity of saccade eye movement measurements

Stroke Diagnosis TA3 Similarity of kinetic/kinematic measures from KINARM

Image analysis Segmentation ImageCreek Existing CT scan hypotheses compared against new

Protein crystallization Planning TA3 k-NN compares precipitation indexes of existing/new cases

and executed for a novel protein, the results are recorded
as a new case that reflects this experience. Cases with
both positive and negative outcomes are equally valu-
able for future decision-making processes and are also
required for the application of data-mining techniques
to the case base.

Figure 13.6 shows example results of image analysis
and classification. After performing image segmenta-
tion, multiple classes of crystallization results can be
detected. The figure demonstrates example images that
have been classified as crystal (X), phase separation

(Ph), precipitate (P), clear (C), and gel (G). The corre-
sponding contour images have been utilized to compute
the Euler number, which, in turn, has been utilized to
cluster similar images. The bar graph also shows that
crystal and phase separation overlap, but can be sepa-
rated from clear drops and precipitates. The results have
been shown to have 89% accuracy [13.79, 82].

Finally, for a summary of the two main domain-
independent CBR systems discussed, as well as the
different biomedical cases where they are being used,
see Tables 13.1 and 13.2.

13.5 Conclusions

This chapter presents an overview of CBR systems and
their use. We discuss their architecture and the process
they follow to solve new problems as well as the chal-
lenges involved. Especially in healthcare applications,
CBR systems can help solving problems that would oth-
erwise be too difficult to manage using other methods
and techniques.

The systems and applications we review illustrate
the different roles that CBR systems can play, from
diagnosis and prognosis of diseases to image classifi-
cation and experiment planning. CBR systems can play
a significant role in supporting medical decisions nowa-
days. As the available real-life datasets appear in many
different sources and formats, such as data coming from
sensors, image, and video as well as data related to
semantic properties of entities, e.g., ontologies, CBR
systems have been adapted to fit these diverse needs.
New data characteristics call for new data preprocessing

techniques, new proximity measures, as well as aggre-
gation and evaluation of results.

Due to the size and heterogeneity of data sources,
there is a trend for integration of CBR systems with ex-
isting knowledge discovery tools in order to improve
the data quality of the cases and their efficiency. Re-
cently CBR has been used in text mining, information
retrieval, and natural-language processing. There are
also problems in which CBR integrates existing seman-
tic information as part of the domain, which can help
address entity resolution problems as well as semantic
similarity among new and past experiences.

Finally, new CBR systems facilitate experimen-
tation with different datasets and parameter settings,
which allow more effective quality assessment of the
results. Combined with advanced visualization tech-
niques, CBR systems can improve healthcare delivery
by optimizing decision-support processes.
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