Constructing Adaptive Configuration Dialogs
using Crowd Data

Saeideh Hamidi
School of Information
Technology
York University
Toronto, Canada
hamidi@yorku.ca

ABSTRACT

As modern software systems grow in size and complexity so
do their configuration possibilities. Users are easy to be con-
fused and overwhelmed by the amount of choices they need
to make in order to fit their systems to their exact needs.
We propose a method to construct adaptive configuration
elicitation dialogs through utilizing crowd wisdom. A set of
configuration preferences in the form of association rules is
first mined from a crowd configuration data set. Possible
configuration elicitation dialogs are then modeled through a
Markov Decision Process (MDP). Association rules are used
to inform the model about configuration decisions that can
be automatically inferred from knowledge already elicited
earlier in the dialog. This way, an MDP solver can search for
elicitation strategies which maximize the expected amount
of automated decisions, reducing thereby elicitation effort
and increasing user confidence of the result. The method is
applied to the privacy configuration of Facebook.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance
and Enhancement—customization and configuration; H.4.2
[Information Systems Applications]: Types of Systems—
decision support

General Terms

Management

Keywords

Software Customization, Crowdsourcing, Markov Decision
Processes, Association Rules Mining, Facebook

1. INTRODUCTION

Modern software systems exhibit functionalities in amounts
and complexities that have never been seen before. As sys-
tems mature and new challenges and opportunities emerge,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

ASE’14, September 15-19, 2014, Vasteras, Sweden.

Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642960.

Periklis Andritsos
Faculty of Business and
Economics
University of Lausanne
Lausanne, Switzerland
periklis.andritsos@unil.ch

Sotirios Liaskos
School of Information
Technology
York University

_ Toronto, Canada
liaskos@yorku.ca

more features are developed and added to an already large
and complex set of existing ones. Users interested to fully
exploit the power of their software are invited to choose the
functions they need and configure them in a way that per-
fectly aligns with their goals, preferences and capabilities
[8]. But as the amount and complexity of functions grows,
so does the space of configuration possibilities. Thus, when
attempting to fit the functionality of their systems to their
unique needs, users, especially novice ones, have to deal with
an increasingly mystifying and overwhelming task.

In this paper, we propose a way to reduce configuration
effort for users by building adaptive configuration dialogs via
utilizing configuration preferences of a crowd. The method
is based on combining association rule mining with Markov
Decision Processes (MDP). Rules that describe combina-
tions of configurations that frequently coincide are first mined
from the crowd configuration data. Then, an MDP model
is constructed in which states correspond to the state of our
knowledge of the preferred configuration, and actions are
configuration questions posed to the users in order to learn
their preferred option for a given variable. User response to
the action naturally triggers transition from a less informed
to a more informed state; but the association rules help us
multiply the amount of knowledge we gain with each answer,
effectively skipping unnecessary questions. By solving the
MDP through rewarding shorter paths towards more con-
figuration knowledge, we are able to minimize the length of
the sequence of questions that are required for a user to have
a complete configuration. We apply our technique on data
collected from the popular social networking system Face-
book where we show that configuration effort is substantially
reduced on average. Moreover, in performance experimen-
tation we show that the solver can handle a useful size of
configuration spaces within practical computation time.

Our contributions include: (a) a systematic way of de-
veloping adaptive configuration elicitation dialogs, (b) min-
imal, on average, length of such dialogs, and (c) a model
based on evidence from existing configurations, potentially
from expert users.

The paper is organized as follows. In Section 2 we present
an overview of the problem. In Section 3 we discuss the
mining of crowd configuration preferences and in Section 4
we offer the details of our solution. We describe our evalu-
ation in Section 5, we survey related work in Section 6 and
we conclude in Section 7.

2. MOTIVATION AND BASIC ASSUMPTIONS

Configuring modern software systems is a process of as-
signing values to a number of parameters that the designers
of the software system avail to users within various configu-
ration facilities, such as “Options”, and “Preference” screens
or configuration files. In more abstract terms, a configura-
tion problem consists of a set V of configuration variables V;
each drawing values o} (options) from a set Ov;.

Consider a very simple configuration problem from a hy-
pothetical email client program. Among its many configura-
tion variables (e.g. whether to use HTML, what connection
security to apply, whether to include a signature in each
email, etc.), assume that our email program allows the user
to also adjust font size, icon size (for buttons such as “New
E-Mail” and “Reply”) and whether to also display text under
the icons. We denote these variables as Vine, Vico and Vgisp,
respectively. The user can adjust the variables to take val-
ues from the sets: {large, medium, small}, {large icon, small
icon} and {yes, no}, respectively. Thus, using our above
formalization the domain of each variable is as follows:

Ov,,, = {ofgnt, ofnztd, ofrt

Ov,o = {0igi, 05}

Ovy,., = {05e, 076"

Note that although we assume discrete and finite domains
for the variables, continuous variables that often occur in
configuration problems can be appropriately discretized to
fit our framework, by defining intervals and representative
values therein.

A configuration decision is the (human/non-automated)
act of thinking and deciding what option is more suitable
or preferred for a particular variable. In our case, in or-
der to completely solve the configuration problem, our email
client user would need to make three configuration decisions,
thinking and deciding about each variable separately.

Nevertheless, we may also have some crowd configuration
preferences in form or rules available to us. Such rules would
tell us that if the user decides to adjust some of her config-
uration variables in a specific way, then she also wants to
adjust some other configuration variables in another way.
The general form of an association rule is:

Vi, =")YA(Viy =02)AL — (Viy = 0™ A (Vyy =
0N ...

where V;, and V,, are respectively variables on the left-
hand and right-hand side of the rule, and o' and 0" are
arbitrary values drawn from the corresponding domains.

Back to our email client example, we may be aware that
if a user prefers to have large font size, she also likes to have
large icon size. Furthermore, we know that if she likes large
icon size then she also prefers text to not be displayed under
the icon, apparently to save space. Here is how we can write
those rules more formally:

(Vine = 0],"*) — (Vieo = 0i7)

(‘/ico = 0;;3) — (Vdisp = Ozlosp)

Notice now how this knowledge, whenever available, can
help us reduce configuration effort. Recall that in order
to have the complete set configured, the user would nor-
mally need to make three separate decisions. However, if
we assume presence of the association rules we know that
some choices in some variables help us infer choices in other
variables, saving us from making the corresponding config-
uration decisions. Given this, it is easy to see that there
are more efficient and less efficient orderings by which the

configuration decisions can be made. Given the above two
configuration rules, if the user decides about text display
first, then icon size, and finally font size, she will always
have to make three decisions. If, on the contrary, she starts
by deciding what font size she wants, then, depending on
her decision on that, there is a chance that the other two
decisions need not be made but are taken care of by the
rules.

More generally, given a set of configuration variables to
be decided upon, and a set of crowd preference rules among
them, what is the optimal sequence in which potential deci-
sions can be ordered, so that the smallest number of config-
uration decisions is eventually made on average? Knowing
how to compute such a sequence of decisions could be use-
ful for constructing adaptive configuration dialogs in which
users are directed towards making more influential decisions
first, allowing thereby a larger subset of variables to be con-
figured automatically without the need for a human decision.
Such adaptive configuration dialogs can be used when the
entire configuration of some aspect of the system needs to
be addressed, e.g. during installation time. In the rest of
the paper we describe a system that makes this possible.

3. MINING CROWD CONFIGURATION
PREFERENCES

Crowd configuration preferences in our technique come
in the form of association rules [1], which are mined from
a data set with configurations of other users. Association
rules are expressed in the form (X — Y)(c,s), where X
and Y are sets of items that often appear together. The
rule states when X occur, Y occur with certain probabil-
ity ¢, which is referred to as confidence and is used as a
measure of significance of the rule. The level of support s
is another significance measure and denotes the fraction of
instances that have both X and Y. Well studied techniques
for mining association rules exist [7]. At the heart of the
mining process is the calculation of the conditional proba-
bility P(Y|X) which is performed by simply counting how
many of the instances that contain X also contain Y.

In the context of configuration, an association rule cap-
tures the fact that if a user selects a particular combination
of options for a group of variables, she is likely to also se-
lect a certain configuration of options for a different group
of variables. This knowledge comes from a data set of con-
figurations of individual users, which we will call the crowd
data set. In many systems, such as on-line social network-
ing or web-based email systems, such data sets are readily
available to e.g. administrators and owners.

In our case, to ensure the validity of the rules, we as-
sume that the crowd data set comes from a group of expert
users. Then, when a new and novice user makes use of the
association rule X — Y, she is actually using the left-
hand side of the rule to identify with a subgroup of experts
whose preference with respect to X match. Then she can use
the right-hand side Y as expert advice for configuring the
corresponding variables. Effectively, the result is a recom-
mender system based on association rules. Although there
are different technologies on which a recommender system
can be based [2], association rules have been shown to be
effective [17], and, in our case, allow for interactive on-the-
fly elicitation of the similarity criterion. To construct such
interactions we make use of MDPs as we describe below.

4. FINDING OPTIMAL DECISION
SEQUENCES

4.1 Markov Decision Processes

Markov decision processes (MDP) is a mathematical frame-
work for modeling and solving sequential decision making
and optimization problems under uncertainty [3]. In MDPs
the decision making problem is described by a finite or in-
finite set of states s € S. Each state is a description of the
system at a particular stage and holds all the necessary in-
formation to predict the next state. The information can
be described through a set of variables, each combination
of values of whom uniquely describes each state. At any
state, the decision-making agent chooses an action « from
a set of actions A. Performance of an action has various
possible outcomes, each with a different probability. Such
non-deterministic effects are described by a probability dis-
tribution: for each action a, pf; is defined for every pair of
states s; and s; as the probability of reaching state s; from
s; by taking action a. Thus each action o comes with a
transition matriz containing pf; in its cells.

Furthermore, in MDPs each state has a value and each
action comes at a cost. Functions for reward R : S x S +—
R and cost C : A +— R are used to state the immediate
reward of reaching the new state and the costs associated
with taking the action, respectively. A reward matrix can
be used to represent R, and a table can be used to assign
a cost to each action. The overall utility of the transition is
the reward obtained by attaining the transition minus the
cost incurred by performing the action.

The core problem of MDPs is to find the course of ac-
tion, called optimal policy m that maximizes the cumulative
expected utility of each state. The latter is, roughly, the
result of progressively tallying up the product of probabil-
ity and utility while traversing each sequence of actions and
calculating potential transitions actuated thereby. Optimal
means that there is no other policy that can give the agent
a larger expected cumulative utility. MDP solvers are tools
that allow calculation of optimal policies given a complete
MDP formulation. MDP solvers adopt various algorithms,
primarily Value Iteration (VI), and Policy Iteration (PI); de-
tails on those algorithms are beyond our scope and can be
found in [3].

4.2 Building the MDP

We now present the details of modeling our problem as an
MDP, focusing on each of the elements discussed above.

Variables. In our translation, each variable represents
the state of our knowledge of what option the user wants for
a particular configuration variable. Recall that a configura-
tion problem is a set of configuration variables V; € V each
drawing options o} from a set Oy,. The MDP variables are
exactly the same set V and each variable V; has the same do-
main Oy, but with one important difference: to each domain
©;, containing options 0%, 0%, ... we add an extra option o0}.
This additional option, which we call the “unknown” value,
denotes that we actually don’t know what option the user
prefers for the configuration variable.

Actions. Each action represents a prompt to the user to
make a configuration decision, i.e., a question. This question
is associated with a configuration variable we are interested
in: we ask the user what option she prefers for that vari-

able. We denote that action as V;?, where V; is the variable
in question. In her answer, the user will respond with an
option for that variable. In MDP terms, asking the user a
question and obtaining an answer is an action which causes
the system to transition from one state to another state,
changing the value of the corresponding variable from of
(the “unknown” value) to some other value, based on the
user response.

Rewards and Costs. Each action, i.e., asking a ques-
tion, comes with one (1) unit of cost. This cost is a direct
representation of the effort it takes for a human to think
about the question and make a configuration decision. Fach
transition, on the other hand, comes with as many units of
reward as the number of variables whose preferred option
becomes known. We describe below how this is calculated.

Transition Matrices. Recall now that the transition
matrix for each action V;?7 is an N x N table, where N is
the number of all possible option combinations of variables
Vi, i.e., all possible MDP states. Each cell represents the
probability of transitioning from one state to the other as
an outcome of performance of V;7. In our case, the numbers
are taken from the crowd data set. We particularly measure
the frequency at which a certain answer occurs, given (if ap-
plicable) all previous answers from the user. Subsequently,
in order to take advantage of the association rules and find
decision sequences with better utility, we manipulate the
transition table as follows.

Firstly, let us consider the association rules. Of all the
rules that we may have discovered during the mining phase
we filter those that exceed certain high confidence ¢ and
support s threshold. Then, we perform a preprocessing step
in which we merge rules that have identical left-hand side.

The subsequent steps are best described though reference
to a directed graph. The set of nodes of the graph is the set
of all possible configurations of V; thus, each node is an MDP
state. Edges represent MDP transitions. Initially, we add
only edges to the graph that are one step transitions, i.e.,
transitions from states in which n — 1 variables are known to
states in which n variables are known. Each edge from state
S to state S’ is labeled with a reward value of 1, a cost value
of 1, the probability calculated as above, and the action it
corresponds to.

Subsequently, we update the edges based on association
rules as follows. For each association rule, we find all pairs of
states S and S such that: (a) the left hand side of the rule
satisfies both S and S’, (b) each variable of the right-hand
side of the rule appears (b-i) with all values exactly the same
as in the rule in S" and (b-ii) with all values set to unknown
in S, (c) all other variables not mentioned in the rule are set
to the same values for both S and S’. For each such pair,
we take all edges that are targeting S and we move them so
that they now target S’. Moreover, we increase the reward
of each of those edges by the difference in the number of
unknown variables between S and S’. Intuitively, the rule
causes S to become inaccessible: whenever a user response
leads to S, thanks to the information in the rule, we can
actually “shortcut” to S’, ignoring S. While the cost is the
same, reward increases by the number of unknowns that we
discover by taking the shortcut.

The resulting graph is ready to be transformed into tran-
sition and reward matrices. These are constructed initially
to be zero matrices. Then for each edge labeled with the
action at hand, we set to the corresponding cell the prob-

ability or the reward label of the edge, for transition and
reward matrices, respectively.
The complete algorithm can be seen in Figure 1.

INPUT: a set of configuration variables, a set of association rules
OUTPUT: A Markov Decision Process model
// Build a graph of possible transitions
// Each node represents a state of knowing the option of each variable
For each possible combination of options
Create a node in the graph
// Pre-process rules
For each set m of assoc. rules of the form (L = 1, L — 1y, ..., L = 1,,),
Merge into one rule of the form (L = 7;...%,)
// Add initial links
For each node S
Let N be the number of cases in the crowd data set.
Let ¢(S) be the num. of records in the crowd data set
that satisfy the known part of S.
Let c(0$) be the num. of records in the crowd datas.t. U, = o2
For each variable V, such that I, = of (is unknown) in S
For each possible value 0 of 1,
If og == of then //i.e., circular link
Add an edge e from Sto S
e.reward = —1,e.probability = 1,e.action = V,?
else
For each node S’ that is same as S except for I, = 02
Add an edge e from S to S’
ereward = 0
If (c(S) > 0) then e.probability = ¢(S")/c(S)
else e. probability = c(0%) / N
e.action = V,?
//Update the graph based on association rules
For each association rule (4...1,, = 13...7,), |, 1; of the form V; = o!
For each pair of states S and S’ such that:
{a) variables of I;... 1, have known and same optionsin S and S”
(b) variables of 7;...7, are unknown in state S and known in S’
(c) variables not mentioned have same values in both S and S’
For each incoming edge e to S
Change the destination from Sto S’
e.reward = e.reward + 1
// Transform graph into MDP components
For each action V;? €A
Create an empty transition matrix for 1,7, Ty, ,
Create an empty reward matrix for 1,7, Ry, »
For each edge e in the graph from §; to §; s.t. e.action = V5?
Ty,.li,j] = e.probability
Ry[i,j] = ereward

Figure 1: MDP Construction Algorithm

Solving the MDP. Having constructed the MDP model,
an MDP solver can be used to calculate the optimal policy.
Such policy associates each state of knowing of the so far
acquired (or inferred) configuration values, with an action
that represents the next configuration question to be asked.
An adaptive configuration dialog can, thus, directly incor-
porate the resulting policy in order to decide what the next
configuration question should be based on previous answers
it has received from the user.

S. EVALUATION

In order to evaluate our technique we performed two stud-
ies. The first one is aimed at evaluating the applicability of
the method in a real world system and assessing the de-

gree by which the approach really saves configuration effort.
The second study aims at understanding the size of config-
uration domains our approach can pragmatically cope with.
We present these two studies in the following subsections.

5.1 Case Study: Facebook

5.1.1 Goals and Method

We applied our technique to the privacy configuration of
Facebook. Facebook! is one of the most popular social net-
working systems today with more than 1.28 billion active
users (April 2014). In Facebook, like in other social me-
dia, a user can avail in her personal profile area a variety of
material (photos, text, information etc.) to be viewed and
commented upon by other users who have been given ac-
cess to them. Given that the personal material on Facebook
is often of sensitive nature, how each user can control the
access levels of others to her data is crucial.

The system offers a set of configuration variables that the
users can configure in order to meet their privacy needs.
These variables are configured using the traditional approach:
a set, of default options is set upon creation of a new account,
and users can adjust them by going through a set of config-
uration screens, where the variables are presented together
with possible options; the latter displayed in form of list-
boxes or other menus.

In our study, we isolate a set of nine (9) Facebook config-
uration variables. As of April 2014 (Facebook configuration
screens change frequently) the configuration items for this
study were located under the following three sections: Gen-
eral Privacy, Timeline & Tagging, and Friend List Related.
The domain of settings (i.e., the set of possible values) for
theses configurations vary from static options to customized
dynamic lists.

We acquire a data set containing the configurations of
these variables as they have been set by forty-five (45) users.
The users are undergraduate students of the School of Infor-
mation Technology, York University, attending the last au-
thor’s class on Human Computer Interaction; the users are
given bonus marks for participation. To collect the data, the
users simply take screenshots of the configuration screens
that contain the variables in question with their present
configuration and send them over to the researchers — af-
ter erasing any personal information that may exist in those
screenshots. The result is a data set amenable to association
rule mining and complete application of our framework.

5.1.2 Results

The questions we aim at answering in this study are: (a)
do any association rules of substantial significance emerge?
(b) how much configuration effort on average does our tech-
nique save? (c) what is the average accuracy of the auto-
mated inference that our technique implies?

With regards to question (a), we mined the association
rules in our data using Weka?. We used different thresholds
for significance as well as support. By setting significance
threshold to 90% and support to 10%, we acquire 738 asso-
ciation rules. If we set maximum significance (100%) then
Weka outputs as many as 675 association rules. If we in-
crease the support level to 15% we can still retrieve 165

"http:/ /www.facebook.com
Zhttp://www.cs.waikato.ac.nz/ml/weka/index.html

rules. The above means that association rules exist to a
significant extend in our data set.

With respect to configuration effort — question (b) above
— if each of the users had followed our technique to config-
ure their system they would have taken on average 6.6 steps
(max 9, min 4); compared to 9 that it takes to configure
without assistance. This means that at least two configu-
ration options on average (27.7%) would be decided auto-
matically. Although, in general, effort savings is bound to
depend on the amount and quality of correlations within the
data set, we find that our result constitutes good evidence
of the practicality of our technique.

In terms of evaluation question (c), i.e., the accuracy of
configuration predictions, we conducted the experiment with
confidence and support thresholds 100% and 15%, respec-
tively. The 9-fold cross validation shows a precision of 75%
in the recommended items, calculated as explained above.
The fact that this precision score is away from values such
as 50% or lower, tells us that the configuration agent per-
forms sensible decisions based on the data and not e.g. ran-
domly /arbitrarily. This offers us some confidence of the san-
ity of the approach.

5.2 Performance

In the second study we investigate how the performance
of the MDP solver varies as the number of configuration
items and hence state space increases. In the absence of
an actual configuration data set of sufficient size for our
performance experiments, and without visible loss of gener-
alizability, we chose to use a publicly available benchmark
data-set for association rules. Thus, we used UCI KDD'’s
archived Mushrooms dataset®, which has been shown to gen-
erate long patterns with high confidence. In its full size, the
Mushrooms dataset is a multivariate dataset that contains
8416 instances with 23 categorical attributes and domain
size ranging from 2 to 12 categorical values. In the context
of software configuration we use this data set as if it were a
complete configuration data set: we assume each attribute to
be one configuration variable and each value a configuration
option. Consecutively, each instance hypothetically stands
for the configuration values chosen by a user. The MDP
solver we chose is the “Markov Decision Processes (MDP)
Toolbox” offered by MathWorks Inc?. We run the MDP
toolbox in Matlab R2012b. The input to the MDP solver is
sparse matrices that are generated by our Java program and
are based on the extracted association rules from Weka. The
experiment was conducted on a Core(TM) i5 CPU M450
2.40 GHz with 4.00 GB RAM under Windows 7.

To test the performance of the MDP solver for various
numbers of configuration items, we randomly choose a sub-
set of varying numbers of attributes in the dataset. For each
subset of attributes, we extract the top 500 (wrt. support)
association rules with confidence 100%; support was ranging
from 36% to 11%. In Figure 2, the time to solve the policy is
given with respect to the number of states, expressed as the
number of equivalent binary configuration variables. Specif-
ically, N binary variables generate a space of 3V states, and,
as such, if M are the states, the equivalent binary variables
are logs(M). Note that the base is 3 instead of 2, because we
add one more value (the “unknown” value) in the domain.

3https:/ /archive.ics.uci.edu/ml/datasets/Mushroom
“http://www.mathworks.com/matlabcentral /fileexchange/
25786-markov-decision-processes—mdp-toolbox

MDP solving time vs. # of variables

time (s)
60,000
50,000
40,000
30,000 Facebook Privacy
Options
20,000
10,000
0 L
4] 8 10 12 14

-10,000
Number of Configuration Variables (Binary Equivalent)

Figure 2: MDP Performance vs. Problem Size

6. RELATED WORK

The problem of configuring existing systems has been stud-
ied from a variety of angles. Wendy E. Mackay offers one
of the earliest and most influential empirical studies on the
problem from a Human Computer Interaction viewpoint [14].
Among other things, she finds that one of the factors that
actually trigger customization effort is observing other users
achieving it. In the Internet era, 23 years later, this seems
to support a vision for crowdsourcing configuration. For
example, a technique for allowing users help each other in
performing complex computer tasks based on capturing in-
teractions and uploading them to a repository for reuse by
non-expert users has been proposed [10]. Our proposal dif-
fers in many regards including increased automation and
probabilistic reasoning.

Viewing software customization as a requirements prob-
lem has also been attempted. Use of goal models [15] has
been proposed to connect high-level user goals with low-
level software configurations [12]. Elsewhere, declarative ap-
proaches to configuration have been put forth [11] where
preference specification [13] replaces the manipulation of
configuration variables. Nevertheless, for these approaches
to be applicable, both the goal models and their mapping to
software variability must be pre-established by experts.

In the area of Recommender Systems (RS), conversing ap-
proaches for eliciting user preference and utility have been
proposed. Boutilier et al. explore different interactive elici-
tation strategies for optimally applying the minimax regret
criterion to elicit utility in a configuration problem [4]. Sim-
ilarly, Stolze and Strobel present a technique for finding the
optimal question and answer path towards recommending a
product [19]. As opposed to ours, both approaches are based
on utility estimation, the latter also focusing on commodity
selection rather than configuration.

Efficient decision making for configuration is also relevant
in Software Product Line (SPL) Engineering where a set of
variation points needs to be managed and bound to derive
individual SPL members [18]. In DecisionKing for example
[6], hierarchies of questions are defined and integrated with
asset models to facilitate product derivation. Feature mod-
els are often the basis for interactive configuration based on
automated reasoning tools, such as constraint [21] or SAT
[9] solvers. Ways to optimize the order of the variability

binding process based on measures of selectivity of features
have also been proposed [5, 16]. Our technique differs from
those in that (a) we use crowd data to infer constraints,
(b) we use probabilities to predict likely answers to ques-
tions. Work that uses probability from crowd data has been
proposed but for purposes different to ours, e.g. to detect
misconfigurations over an observed configuration and a set
of suspected sick ones [20]; an important difference from our
case is that we do not have prior classifications of configu-
rations.

7. CONCLUDING REMARKS

As modern software systems increase in size and complex-
ity, the process of configuring them becomes more cumber-
some and difficult to organize. We presented a method for
designing adaptive software configuration dialogues through
utilizing configurations from a crowd of existing users. As-
sociation rule mining is used to identify configuration pat-
terns which are then used to inform the construction of an
MDP model, so that the latter computes optimal policies to
be used for designing the elicitation dialogs. Our contribu-
tions include that (a) we address the problem of systemati-
cally designing adaptive configuration elicitation dialogs, (b)
we minimize the average dialogue length and (c) we utilize
crowd wisdom for model construction.

The main item in our future research agenda is to address
the scalability limit of the current approach. Firstly, we plan
to study ways to encode the configuration problem so that
the current technique is applicable to larger variable sets.
One possibility is to break large configuration problems into
smaller ones based on configuration aspects, i.e., subsets of
configuration variables that are conceptually coherent. The
privacy configurations of Facebook, which are of an appli-
cable size, offer a good example of such an aspect. Other
possibilities include merging variables and making domains
coarser. Secondly, we plan to investigate ways to depart
from MDPs and either introduce simplifications that are
less computationally hard or use formalizations for which
more efficient solvers exist. For example, by formalizing the
problem as a Boolean satisfiability one would allow utiliza-
tion of today’s very efficient SAT solvers. While outputs
of such approaches would likely disregard the probabilistic
aspect and would probably be insensitive to user answers,
they may turn out to offer a good enough solution for larger
problems.

8. REFERENCES

(1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data (SIGMOD’93), 1993.
[2] X. Amatriain, A. Jaimes, N. Oliver, and J. M. Pujol. Data
mining methods for recommender systems. In
Recommender Systems Handbook, pages 39—71. Springer,
2011.
[3] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research, 1999.
C. Boutilier, R. Patrascu, P. Poupart, and D. Schuurmans.
Constraint-based optimization and utility elicitation using
the minimax decision criterion. Artificial Intelligence,
170(8-9):686-713, 2006.
[5] S. Chen and M. Erwig. Optimizing the product derivation
process. In Proc. of the 15th International Software
Product Line Conference (SPLC’11), pages 35-44, 2011.

[4

[6] D. Dhungana, P. Griinbacher, and R. Rabiser.
DecisionKing: A flexible and extensible tool for integrated
variability modeling. In Proc. of the 1st International
Workshop on Variability Modelling of Software-intensive
Systems (VAMoS’07), pages 119-128, 2007.

J. Hipp, U. Giintzer, and G. Nakhaeizadeh. Algorithms for

association rule mining—a general survey and comparison.

ACM SIGKDD Ezplorations Newsletter, 2(1):58-64, 2000.

B. Hui, S. Liaskos, and J. Mylopoulos. Requirements

analysis for customizable software: a goals-skills-preferences

framework. In Proc. of the 11th IEEE Requirements

Engineering Conference, pages 117-126, 2003.

[9] M. Janota, G. Botterweck, and J. Marques-Silva. On lazy
and eager interactive reconfiguration. In Proc. of the 8th
International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS’14), pages 81-88,
2013.

[10] N. Kushman and D. Katabi. Enabling
configuration-independent automation by non-expert users.
In Proc. of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2010), pages
223-236, 2010.

[11] S. Liaskos, S. M. Khan, M. Litoiu, M. D. Jungblut,

V. Rogozhkin, and J. Mylopoulos. Behavioral adaptation of
information systems through goal models. Information
Systems, 37(8):767-783, 2012.

[12] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and
S. Easterbrook. Configuring common personal software: a
requirements-driven approach. In Proc. of the 13th IEEE
International Requirements Engineering Conference
(RE’05), pages 9-18, 2005.

[13] S. Liaskos, S. A. Mcllraith, S. Sohrabi, and J. Mylopoulos.
Representing and reasoning about preferences in
requirements engineering. Requirements Engineering,
16(3):227-249, Sept. 2011.

[14] W. E. Mackay. Triggers and barriers to customizing
software. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI’91), pages 153-160,
1991.

[15] J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu.
Exploring alternatives during requirements analysis. IEEE
Software, 18(1):92-96, Jan 2001.

[16] A. Nohrer and A. Egyed. Optimizing user guidance during
decision-making. In Proc. of the 15th International
Software Product Line Conference (SPLC’11), pages
25-34, 2011.

[17] J. J. Sandvig, B. Mobasher, and R. Burke. Robustness of
collaborative recommendation based on association rule
mining. In Proc. of the 2007 ACM Conference on
Recommender Systems (RecSys’07), pages 105-112, 2007.

[18] K. Schmid, R. Rabiser, and P. Griinbacher. A comparison
of decision modeling approaches in product lines. In Proc.
of the 5th Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS’11), pages 119-126,
2011.

[19] M. Stolze and M. Strobel. Utility-based decision tree
optimization: A framework for adaptive interviewing. In
User Modeling 2001, volume LNCS 2109, pages 105-116.
2001.

[20] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang. Automatic misconfiguration troubleshooting with
PeerPressure. In Proc. of the 6th Symposium on Operating
System Design and Implementation (OSDI 2004), pages
245-258, 2004.

[21] J. White, B. Dougherty, D. C. Schmidt, and D. Benavides.
Automated reasoning for multi-step feature model
configuration problems. In Proc. of the 13th International
Software Product Line Conference (SPLC ’09), pages
11-20, 2009.

[7

8

