
Scalable Clustering of Categorical Data and Applications

by

Periklis Andritsos

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2004 by Periklis Andritsos

Abstract

Scalable Clustering of Categorical Data and Applications

Periklis Andritsos

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2004

Clustering is widely used to explore and understand large collections of data. In this

thesis, we introduce LIMBO, a scalable hierarchical categorical clustering algorithm based

on the Information Bottleneck (IB) framework for quantifying the relevant information

preserved when clustering. As a hierarchical algorithm, LIMBO can produce clusterings

of different sizes in a single execution. We also define a distance measure for categorical

tuples and values of a specific attribute. Within this framework, we define a heuristic for

discovering candidate values for the number of meaningful clusters.

Next, we consider the problem of database design, which has been characterized as

a process of arriving at a design that minimizes redundancy. Redundancy is measured

with respect to a prescribed model for the data (a set of constraints). We consider the

problem of doing database redesign when the prescribed model is unknown or incom-

plete. Specifically, we consider the problem of finding structural clues in a data instance,

which may contain errors, missing values, and duplicate records. We propose a set of

tools based on LIMBO for finding structural summaries that are useful in characterizing

the information content of the data. We study the use of these summaries in ranking

functional dependencies based on their data redundancy.

We also consider a different application of LIMBO, that of clustering software arti-

facts. The majority of previous algorithms for this problem utilize structural information

in order to decompose large software systems. Other approaches using non-structural in-

iii

formation, such as file names or ownership information, have also demonstrated merit.

We present an approach that combines structural and non-structural information in an

integrated fashion. We apply LIMBO to two large software systems, and the results

indicate that this approach produces valid and useful clusterings.

Finally, we present a set of weighting schemes that specify objective assignments of

importance to the values of a data set. We use well established weighting schemes from

information retrieval, web search and data clustering to assess the importance of whole

attributes and individual values.

iv

Contents

1 Introduction 1

2 Clustering State of The Art 7

2.1 Problem Definition and Stages . 7

2.2 Data Types and Their Measures . 9

2.2.1 Classification Based on the Domain Size 9

2.2.2 Classification Based on the Measurement Scale 10

2.2.3 The Concepts of Similarity and Dissimilarity 11

2.3 Categorization of Clustering Techniques and Previous Work 14

2.3.1 Basic Clustering Techniques . 15

2.3.2 Clustering Techniques in Data Mining 18

2.4 Clustering Databases with Categorical Data 21

2.4.1 The k-modes Algorithm . 24

2.4.2 The ROCK Algorithm . 26

2.4.3 The STIRR Algorithm . 28

2.4.4 The COOLCAT Algorithm . 31

2.4.5 Discussion . 32

2.5 Conclusions . 34

3 LIMBO Clustering 37

3.1 Introduction . 37

vi

3.2 The Information Bottleneck Method . 40

3.2.1 Information Theory Basics . 40

3.2.2 The Information Bottleneck Method 42

3.2.3 The Agglomerative Information Bottleneck Algorithm 44

3.3 Clustering Categorical Data using the IB Method 47

3.3.1 Relational Data . 47

3.3.2 Market-Basket Data . 49

3.4 LIMBO Clustering . 49

3.4.1 Distributional Cluster Features 50

3.4.2 The DCF Tree . 51

3.4.3 The LIMBO Clustering Algorithm 52

3.4.4 Analysis of LIMBO . 54

3.5 Intra-Attribute Value Distance . 55

3.6 Experimental Evaluation . 58

3.6.1 Algorithms . 58

3.6.2 Data Sets . 59

3.6.3 Quality Measures for Clustering 62

3.6.4 Quality-Efficiency Trade-offs for LIMBO 64

3.6.5 Evaluation of LIMBO . 69

3.6.6 Scalability Evaluation . 79

3.6.7 Information Loss in Higher Dimensions 83

3.7 Estimating k . 83

3.8 Conclusions . 87

4 LIMBO-Based Techniques for Structure Discovery 89

4.1 Introduction . 90

4.2 Related Work . 93

4.3 Clustering and Duplication . 95

vii

4.4 Duplication Summaries . 97

4.4.1 Tuple Clustering . 97

4.4.2 Attribute Value Clustering . 99

4.4.3 Grouping Attributes . 105

4.5 Ranking Dependencies . 107

4.6 Experiments . 110

4.6.1 Small Scale Experiments . 114

4.6.2 Large Scale Experiments . 119

4.7 Conclusions . 124

5 Software Clustering Based on Information Loss 125

5.1 Introduction . 125

5.2 Clustering Using LIMBO . 128

5.2.1 Structural Example . 130

5.2.2 Example Using Non-Structural Information 131

5.3 Experimental Evaluation . 132

5.3.1 Experiments with Structural Information Only 132

5.3.2 Experiments with Non-Structural Information Added 136

5.4 Conclusions . 141

6 Evaluating Value Weighting Schemes in LIMBO 143

6.1 Introduction . 143

6.2 Incorporating Weights . 145

6.2.1 Incorporating Weighting Schemes 146

6.3 Data Weighting Schemes . 149

6.3.1 Mutual Information . 149

6.3.2 Linear Dynamical Systems . 150

6.3.3 TF.IDF . 152

viii

6.3.4 PageRank . 152

6.3.5 Usage Data . 153

6.3.6 Weight Transformations . 154

6.4 Experimental Evaluation . 155

6.4.1 Relational Data Sets . 155

6.4.2 Market-basket Data Sets . 156

6.4.3 Quality Measures for Clustering 157

6.4.4 Relational Data: Results and Observations 157

6.4.5 Market-Basket Data: Results and Observations 160

6.5 Conclusions . 163

7 Conclusions and Future Work 165

7.1 Conclusions . 165

7.2 Future Work . 166

7.2.1 Clustering Numerical And Categorical Data 166

7.2.2 Clustering Categorical Data Streams 167

7.2.3 Evaluating Other Structure Discovery Techniques 169

7.2.4 Clustering and Histograms . 170

7.2.5 Other LIMBO Studies . 170

Bibliography 173

A List of Symbols 189

ix

List of Tables

2.1 Contingency table for two binary objects x̂ and ŷ, where τ = α + β + γ + δ 13

2.2 An instance of the movie database . 22

2.3 Properties of categorical clustering algorithms 35

3.1 An instance of the movie database . 38

3.2 The normalized movie table . 48

3.3 The “director” attribute . 56

3.4 Summary of the data sets used . 61

3.5 Reduction in DCF leaf entries . 66

3.6 Information loss of brute force and LIMBO (φ = 0.0) 70

3.7 Results for real data sets (bold fonts indicate results for LIMBO) 71

3.8 Results for synthetic data sets (bold fonts indicate results for LIMBO) . 72

3.9 Statistics for IL(%) and CU over 100 trials 73

3.10 LIMBO vs COOLCAT on Votes with same number of objects as input to

their corresponding expensive stages . 74

3.11 LIMBO vs COOLCAT on Mushroom with same number of objects as

input to their corresponding expensive stages 74

3.12 Pro-life cluster of the web data set . 76

3.13 Pro-choice cluster of the web data set . 77

3.14 ’Cincinnati’ cluster of the web data set 77

3.15 Bibliography clustering using LIMBO and STIRR 78

xi

3.16 LIMBOφ and LIMBOS quality . 82

4.1 A relation with two heterogeneous clusters 99

4.2 DB2 Sample results of erroneous tuples, for φT = 0.1 (left) and #err.

tuples=5 (right) . 115

4.3 DB2 Sample results of erroneous values, for φT = 0.1 (left) and #Err.

Tuples=10 (right) . 116

4.4 RAD and RT R values for DB2 Sample 119

4.5 Horizontal partitions . 121

4.6 Ranked dependencies for c1. 122

4.7 Ranked dependencies for c2. 123

5.1 Candidate non-structural features . 127

5.2 Example matrix from dependencies in Figure 5.1 129

5.3 Normalized matrix of system features . 130

5.4 Pairwise δI values for vectors of Table 5.3 130

5.5 Normalized matrix after forming cf and cu 131

5.6 Pairwise δI after forming cf and cu . 131

5.7 Non-structural features for the files in Figure 5.1 132

5.8 Normalized matrix of system dependencies with structural and non-structural

features . 132

5.9 (k,MoJo) pairs between decompositions proposed by eight different algo-

rithms and the authoritative decompositions for TOBEY and Linux . . . 135

5.10 Number of clusters and MoJo distance between the proposed and the au-

thoritative decomposition. 139

6.1 Market-basket data . 146

6.2 Market-basket data representation . 146

6.3 Pairwise δI values for vectors of Table 6.2 147

xii

6.4 Data representation with weights . 147

6.5 Pairwise δI values for vectors of Table 6.4 147

6.6 New data representation with weights . 148

6.7 New pairwise δI values for vectors of Table 6.6 148

6.8 Results for relational data sets . 159

6.9 Results for relational data sets with transformed weights (bold fonts show

best results of transformed weights) . 160

6.10 Results for market-basket data sets . 162

6.11 Results for market-basket data sets with transformed weights 163

xiii

List of Figures

2.1 (a) Partitional clustering for k = 2, 3, (b) Hierarchical clustering dendrogram 17

2.2 Overview of ROCK [GRS99] . 27

2.3 Representation of a database in STIRR [GKR98] 30

3.1 Information-theoretic quantities as number of clusters, k, changes. 44

3.2 The AIB algorithm . 46

3.3 A DCF tree with branching factor 6 . 51

3.4 LIMBOφ and LIMBOS execution times (DS5) 65

3.5 LIMBOφ and LIMBOS model sizes over time (DS5) 65

3.6 DS5: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality 67

3.7 Votes: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality 67

3.8 Mushroom: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality . 68

3.9 DS10: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality 68

3.10 Information-theoretic quantities for LIMBOφ as k changes (Votes) 69

3.11 Clustering of web data . 75

3.12 LIMBO clusters of first authors . 79

3.13 STIRR clusters of first authors . 79

3.14 DBLP execution times . 80

3.15 Phase 1 execution times . 81

3.16 Phase 1 leaf entries . 81

3.17 Execution time (m=10) . 82

xiv

3.18 Execution time . 82

3.19 Quantity δImax − δImin for different values of m 83

3.20 I(C;V), H(C|V), and δI(C;V), δH(C|V) for web data as functions of

the number of clusters . 86

3.21 I(C;V), H(C|V), and δI(C;V), δH(C|V) for Votes as functions of the

number of clusters . 86

3.22 I(C;V), H(C|V), and δI(C;V), δH(C|V) for Mushroom as functions of

the number of clusters . 87

4.1 Examples of duplication and redundancy 91

4.2 Example of tuple representation for the relation of Figure 4.1 96

4.3 Example of value representation for the relation of Figure 4.1 97

4.4 Duplication in attribute pairs (A,B) and (B,C) 101

4.5 Matrix N (left) and O (right) for the table in Figure 4.4 101

4.6 Clustered matrix N (left) and O (right) 102

4.7 No perfect correlation of attribute B and C due to value x in the second

tuple . 103

4.8 Matrix N (left) and O (right), (φV = 0.1) 104

4.9 Matrix F before normalization . 107

4.10 Attribute cluster dendrogram . 107

4.11 The Fd-rank algorithm . 109

4.12 DB2 Sample . 111

4.13 DBLP . 112

4.14 DB2 Sample attribute clusters . 117

4.15 DBLP attribute clusters . 120

4.16 Cluster 1 . 121

4.17 Cluster 2 . 121

4.18 Cluster 3 . 121

xv

5.1 Example dependency graph . 129

5.2 LIMBO execution time . 136

5.3 (a) Phase 1, (b) Phase 2, (c) Phase 3 execution times of LIMBO 137

5.4 Lattice of combinations of non-structural features for the Linux system . 138

6.1 Relational data set with its hypergraph 150

6.2 Updating weights in a dynamical system 151

6.3 Votes weights . 158

6.4 Mushroom weights . 158

6.5 DBLP weights . 158

6.6 TOBEY weights . 161

6.7 LINUX weights . 161

6.8 MOZILLA weights . 161

xvi

Chapter 1

Introduction

During a cholera outbreak in London in 1854, John Snow used a special map to plot the

cases of the disease that were reported [Gil58]. A key observation, after the creation of

the map, was the close association between the density of disease cases and a single well

located at a central street. After this, the well pump was removed putting an end to the

epidemic. Associations between phenomena are usually harder to detect, but the above

is a very simple and the first known application of cluster analysis.

Since then, cluster analysis has been widely used in several disciplines, such as statis-

tics, software engineering, biology, psychology and other social sciences, in order to iden-

tify natural groups in large amounts of data. The data sets of interest are becoming larger,

and their dimensionality prevents easy analysis and validation of the results. Clustering

has also been widely addressed by researchers within computer science, and especially the

database community, as indicated by the increase in the number of publications involving

this subject in major conferences.

Data Clustering refers to the specific problem of partitioning a set of objects into a

fixed number of subsets such that the similarity of the objects in each subset is maxi-

mized and the similarity across subsets is minimized. Clustering is regarded as a specific

branch of the Data Mining field. Some of the important requirements that data mining

1

Chapter 1. Introduction 2

algorithms should fulfill are scalability in terms of memory requirements and execution

time, and consistent quality of the results as the size of the input grows. Especially the

scalability requirement distinguishes data mining algorithms from the algorithms used in

Machine Learning.

Most of the clustering algorithms present in the literature focus on data sets where

objects are defined on a set of numerical values. In such cases, the dissimilarity (or

similarity) of objects can be decided using well-studied measures that are derived from

geometric analogies. Special attention should be paid when the data sets to be clustered

contain multiple attributes that describe each object, but where the domains of the

individual attributes are unordered. We term such data sets categorical.

In this thesis, we will first present LIMBO, a scalable algorithm that can be applied

to categorical data. This algorithm is based upon a related machine learning algorithm.

However, existing techniques are not effective when the input data is very large. Our

algorithm scales well with the size of the data, incurring little loss in the quality of

the results. We have applied this algorithm on data organized into database tables as

well as data from the field of Reverse Engineering. Reverse Engineering is the process

of analyzing a subject system in order to identify the system’s components and their

interrelationships, and create representations of the system in another form or at a higher

level of abstraction [CI90]. Our main objective is to find natural groupings of software

artifacts, such as files or functions.

The growth of distributed databases has led to larger and more complex databases

the structure and semantics of which are more difficult to understand. In heterogeneous

applications, data may be exchanged or integrated. This integration may introduce

anomalies such as duplicate records, missing values, or erroneous values. In addition, the

lack of documentation or the unavailability of the original designers can make the task

of understanding the structure and semantics of databases a very difficult one. Using

LIMBO, we explore the benefits of using clustering to identify anomalies as well as the

Chapter 1. Introduction 3

existence of duplicate data values in large data sets and define a set of techniques that

help in the redesign of large integrated sources.

Finally, we evaluate the quality of the LIMBO algorithm when the attributes and/or

individual values have different degrees of influence in the clustering process. The co-

occurrence of values in the data, as well as specific properties they hold, such as depen-

dencies given through a graph structure, may lead to better clustering relative to the

presumption of uniform importance of individual attributes and/or attribute values. We

have explored a number of approaches for assigning importance to values in relational

databases, as well as in data sets from software reverse engineering.

We believe that the field of clustering categorical data and its applications may benefit

from our approach and the techniques we present in this thesis. However, the work

presented here is not complete. Several challenges have appeared through the completion

of this work, and we present our suggestions for future work at the end of the thesis.

More specifically the contributions we make in this thesis are given below.

• Scalable Clustering for Categorical Data.

We introduce LIMBO, a scalable hierarchical categorical clustering algorithm that

builds on the Information Bottleneck (IB) [TPB99] framework for quantifying

the relevant information preserved when clustering. As a hierarchical algorithm,

LIMBO has the advantage that it can produce clusterings of different sizes in a

single execution. We use the IB framework to define a distance measure for cate-

gorical tuples and we also present a novel distance measure for categorical attribute

values. We show how the LIMBO algorithm can be used to cluster both tuples and

attribute values. LIMBO handles large data sets by producing a summary model

of a user-specified size for the data.

• Information-Theoretic Techniques for Structure Discovery in Large Data

Sets.

We consider the problem of doing data redesign in an environment where the pre-

Chapter 1. Introduction 4

scribed model is unknown or incomplete. Specifically, we consider the problem of

finding structural clues in an instance of data, an instance which may contain errors,

missing values, and duplicate records. We propose a set of information-theoretic

techniques for finding structural summaries that are useful in characterizing the

information content of the data, and ultimately useful in database design. We

provide algorithms for creating these summaries over large, categorical data sets.

We study the use of these summaries in a database design task, that of ranking

functional dependencies based on their data redundancy.

• Clustering Using Structural and Non-Structural Software Information.

The majority of the algorithms in the software clustering literature utilize structural

information in order to decompose large software systems, i.e., information derived

from the implementation of a system. Other approaches use non-structural data,

such as the file names or ownership information, and have also demonstrated merit.

However, there is no intuitive way to combine information obtained from these two

different types of techniques. We propose an approach that combines structural and

non-structural information in an integrated fashion using the LIMBO hierarchical

clustering algorithm. Our results indicate that this approach produces valid and

useful clusterings of large software systems, and that LIMBO can be applied to

evaluate the usefulness of various types of non-structural information to the software

clustering process.

• Evaluation of Value Weighting Schemes in Clustering Categorical Data.

We present a set of weighting schemes that allow for an objective assignment of

importance on the values of a data set. We use well established weighting schemes

from information retrieval, web search and data clustering to assess the importance

of whole attributes and individual values. To our knowledge, this is the first work

that considers weights in the clustering of categorical data. We perform cluster-

Chapter 1. Introduction 5

ing in the presence of importance for the values within the LIMBO framework.

Our experiments were performed in a variety of domains, including data sets used

previously in clustering research and three data sets from large software systems.

Thesis Organization

This thesis contains seven chapters. Chapter 2 surveys background material on the

problem of clustering, presenting several existing algorithms used to cluster categorical

data. Chapter 3 presents the foundation of our approach, which is termed Information

Bottleneck, as well as LIMBO, our scalable algorithm for clustering categorical data.

Chapter 4 introduces the set of novel information-theoretic techniques for the discovery

of structure in data sets and our approach for ranking functional dependencies. Chapter 5

presents our results for clustering structural and non-structural software data for the pur-

pose of reverse-engineering. Chapter 6 discusses approaches to finding objective weights

for the importance of attributes and/or attributes values in a data set to be clustered.

Finally, Chapter 7 concludes the thesis and presents directions for future research.

Chapter 2

Clustering State of The Art

In this chapter, we present the state of the art in clustering techniques, mainly from

the data mining point of view. We discuss the steps clustering involves and investigate

advantages and disadvantages of proposed solutions. We focus more on the solutions

that are closer to our research.

2.1 Problem Definition and Stages

There are several definitions for clustering.1 Intuitively, cluster analysis groups data

objects into clusters such that objects belonging to the same cluster are similar, while

those belonging to different ones are dissimilar [JD88]. The notions of similarity and

dissimilarity will become clear in a later section.

Clustering cannot be a one-step process. In one of the seminal texts on Cluster

Analysis, Jain and Dubes divide the clustering process in the following stages [JD88]:

Data Collection : Includes the careful extraction of relevant data objects from the

underlying data sources. In our context, data objects are distinguished by their

individual values for a set of attributes.

1The word “clustering” is used both as a noun and as a verb to mean the process of partitioning.

7

Chapter 2. Clustering State of The Art 8

Initial Screening : Refers to the massaging of data after its extraction from the source,

or sources. This stage is closely connected to a process widely used in Data Ware-

housing, called Data Cleaning [JLVV99].

Representation : Includes the proper preparation of the data in order to become suit-

able for the clustering algorithm. Here, the similarity measure is chosen, the char-

acteristics and dimensionality of the data are examined.

Clustering Tendency : Checks whether the data in hand has a natural tendency to

cluster or not. This stage is often ignored, especially in the presence of large data

sets.

Clustering Strategy : Involves the careful choice of clustering algorithm and initial

parameters, if any.

Validation : Validation is often based on manual examination and visual techniques.

However, as the amount of data and its dimensionality grow, we may have no means

to compare the results with preconceived ideas or other clusterings.

Interpretation : This stage includes the combination of clustering results with other

studies, e.g., classification, in order to draw conclusions and suggest further analysis.

This list of stages is given for exposition purposes since we do not propose solutions for

each one of them. We mainly address the problem of Clustering Strategy by proposing a

new and scalable algorithm for categorical data, and the problem of Clustering Tendency

by proposing a heuristic for identifying appropriate values for the number of clusters that

exist in a data set. Although we do not introduce new Validation techniques, we use a

large number of measures, already given in clustering research, in order to achieve better

results.

Chapter 2. Clustering State of The Art 9

2.2 Data Types and Their Measures

A database consists of a set of records where each one of them is defined over a set of

attributes. Each attribute has a domain, the set from which it takes its values, called

attribute values or simply values. When we have a fixed number of attributes (often with

different semantics), the records are ordered lists and are called tuples. In other cases,

records are just sets often defined over a different number of values. In clustering, the

objects of analysis are usually the tuples in a data set such as persons, salaries, opinions,

software entities and many others. In the following chapters we also use individual values

or whole attributes as our objects to be clustered. These objects must be carefully pre-

sented in terms of their characteristics, which greatly influences the results of a clustering

algorithm.

A comprehensive categorization of the different types of attributes found in most

data sets provides a helpful means for identifying the differences among data elements.

A detailed taxonomy of the types is presented by Anderberg [And73]. In the following

subsections we present a brief classification based on the Domain Size and the Measure-

ment Scale.

2.2.1 Classification Based on the Domain Size

This classification distinguishes data objects based on the size of their domain, that is,

the number of distinct values the data objects may assume. In the following discussion,

we assume a database D, of n objects. A list of sybmols used in this thesis is given

in Appendix A. If x̂, ŷ and ẑ are three data objects (tuples in this case) belonging

to D, each one of them has the form: x̂ = (x1, x2, . . . , xm), ŷ = (y1, y2, . . . , ym) and

ẑ = (z1, z2, . . . , zm), where m is the dimensionality, while each xi, yi and zi, 1 ≤ i ≤ m,

is a feature, or an attribute of the corresponding object. We have the following main

classes [And73]:

Chapter 2. Clustering State of The Art 10

• An attribute is continuous if, between any two values of the attribute, there exists

an infinite number of values. Examples of such attributes could be the temperature,

colour, or sound intensity.

• An attribute is discrete if the elements of its domain can be put into a one-to-one

correspondence with a finite subset of the positive integers. Examples could be the

number of children in a family or the serial numbers of books.

The class of binary attributes consists of attributes with domains of exactly two discrete

values. They comprise a special case of discrete attributes, and we present as examples

the Yes/No responses to a poll and the Male/Female gender entries of a database of

employees.

2.2.2 Classification Based on the Measurement Scale

This classification distinguishes attributes according to their measurement scales. We can

think of a scale as a way of ordering the data, and, thus, a way to compare the values of a

particular domain. Suppose we have an attribute i and two objects x̂ and ŷ, with values

xi and yi for this attribute, respectively. Then we have the following classes [And73]:

1. A nominal scale distinguishes between categories. This means that for the two

values we can either have xi = yi or xi 6= yi. Nominal-scaled attribute values

cannot be totally ordered. They are just a generalization of binary attributes, with

a domain of more than two discrete values. Examples include the place of birth of

a person and the set of movies currently playing in Toronto.

2. An ordinal scale involves nominal-scaled attributes with the additional feature that

their values can be totally ordered, but differences among the scale points cannot

be quantified. Hence, for the two values, we can either have xi = yi or xi < yi

or xi > yi. Examples include the medals won by athletes (e.g., gold, silver and

bronze).

Chapter 2. Clustering State of The Art 11

3. An interval scale measures values in a linear scale [HK01]. With interval scaling we

can tell not only if one value comes before or after another, but also how far before

or after. If xi > yi, since values are put on a linear scale, we may also say that x̂

is xi − yi units different from ŷ with respect to attribute i. Examples include the

number of years of education for a person or TV channel numbers.

4. A ratio scale is an interval scale with a meaningful zero point. Due to the zero

point, ratios of the values, xi/yi are meaningful. Examples include weight, height

and the number of children in a family.

Nominal- and ordinal-scaled attributes are called qualitative or categorical attributes,

while interval- and ratio-scaled are called quantitative [And73]. It is common that quan-

titative (or numerical) attributes are measured in different units, such as kilograms and

centimeters. To avoid problems that may arise from the existence of these units, standard-

ization of the attributes may be needed in order to perform clustering under a common

measurement unit [HK01]. In this thesis we focus on clustering techniques applied to

categorical data. A more comprehensive definition of categorical data will be given in

Section 2.4.

2.2.3 The Concepts of Similarity and Dissimilarity

When the characteristics of the attributes have been determined, we are faced with the

problem of finding proper ways to decide how far, or how close the data objects are

from one another. The notions of similarity or dissimilarity are employed to help in the

process of classification. These terms are used together with the notion of “measure”,

“index” or “coefficient” [And73, JD88, HK01] in order to quantify the extent to which

pairs of data objects can be deemed as similar or dissimilar. Generally speaking, the

more two objects resemble each other, the larger their similarity is and the smaller their

dissimilarity. Dissimilarity can be measured in many ways and one of them is distance.

Chapter 2. Clustering State of The Art 12

Moreover, distance can be measured using any one of a variety of distance measures. All

measures depend on the type of attributes we are analyzing. For example, with categor-

ical attributes, we cannot use distance measures that require a geometrical orientation

of the data; such data has no such orientation inherent in it.

From all measures, special interest has been given to those called metrics (we usually

encounter distance metrics). Given three data points x̂, ŷ and ẑ, all in D as described at

the beginning of Section 2.2, a distance metric d should satisfy [HK01]:

1. d(x̂, ŷ) ≥ 0: non-negativity;

2. d(x̂, ŷ) = 0 if and only if x̂ = ŷ: identity;

3. d(x̂, ŷ) = d(ŷ, x̂): symmetry;

4. d(x̂, ẑ) ≤ d(x̂, ŷ) + d(ŷ, ẑ): triangle inequality;

Anderberg gives a thorough review of measures and metrics, also discussing their in-

terrelationships [And73]. To avoid any confusion, we shall be using the term measure,

mentioning whether it computes similarity or dissimilarity.

Some indicative metrics used to determine the distance of objects x̂ and ŷ, when they

are defined over numerical attributes (mainly Interval-Scaled) are special cases of the

Minkowski Distance defined as:

d(x̂, ŷ) =
(

m
∑

i=1

|xi − yi|q
)1/q

where q is a positive integer. Thus, we have the following:

• for q = 2, the Euclidean Distance is defined as:

d(x̂, ŷ) =

√

√

√

√

m
∑

i=1

(xi − yi)2

• for q = 1, the Manhattan Distance is defined as:

d(x̂, ŷ) =
m
∑

i=1

|xi − yi|

Chapter 2. Clustering State of The Art 13

• for q →∞, the Maximum Distance is defined as:

d(x̂, ŷ) = maxmi=1 |xi − yi|

Notice that the above metrics cannot be used when we have a combination of numerical

and categorical values.

We now present measures for assessing the similarity of binary valued attributes.

Before doing so, we introduce the concept of contingency tables [HK01]. Such a table is

given in Table 2.1.

ŷ : 1 ŷ : 0

x̂ : 1 α β α + β

x̂ : 0 γ δ γ + δ

α + γ β + δ τ

Table 2.1: Contingency table for two binary objects x̂ and ŷ, where τ = α + β + γ + δ

For objects x̂ and ŷ with only binary values, we denote one of the values by 1 and

the second by 0. Thus, this table contains the following information:

• α is the number of attributes, i, for which xi = yi = 1;

• β is the number of attributes, i, for which xi = 1 and yi = 0;

• γ is the number of attributes, i, for which xi = 0 and yi = 1;

• δ is the number of attributes, i, for which xi = yi = 0;

After that, we have the following metrics to measure similarity:

• Simple Matching Coefficient, defined as:

d(x̂, ŷ) =
α + δ

τ

Chapter 2. Clustering State of The Art 14

• Jaccard Coefficient, defined as:

d(x̂, ŷ) =
α

α + β + γ

Notice that this coefficient disregards the number of 0− 0 matches.

One final note regarding the types of data sets and their handling is that certain

attributes, or all of them, may be assigned weights. Sometimes upon removal of the

measurement units, i.e. after standardization, user’s judgment or understanding of the

problem can be further taken into consideration by assigning weights so that each variable

contributes to the mean, range or standard deviation of the composite in a manner

consistent with her objectives in the analysis [And73]. For example, if she analyzes

a data set of soccer players, she might want to give more weight to a certain set of

attributes, such as the athlete’s height and age, than others, such as the number of

children or cars each of them has. Finally, weights can be used in the distance measure

above. For example, given the Euclidean distance, if each attribute is assigned a weight

wi, 1 ≤ i ≤ m, we then have the weighted Euclidean Distance, defined as:

d(x̂, ŷ) =

√

√

√

√

m
∑

i=1

(

wi(xi − yi)
)2

Attribute value weights will be discussed more in Chapter 6.

2.3 Categorization of Clustering Techniques and Pre-

vious Work

Once we have identified the types of data our data set contains and the measures that

can be applied to them, we need to chose a specific clustering algorithm to produce

groups of similar data. We expect clustering algorithms to produce groups of objects

that satisfy a certain criterion and obey a particular strategy in order to combine (or

Chapter 2. Clustering State of The Art 15

merge) intermediate results. Hence we expect every clustering technique to include three

main components:

1. The measure used to assess similarity or dissimilarity between pairs of objects.

2. The particular strategy followed in order to merge intermediate results. This strat-

egy obviously affects the way the final clusters are produced, since we may merge

intermediate clusters according to the distance of their closest or furthest points,

or the distance of the average of their points.

3. An objective function that needs to be minimized or maximized as appropriate, in

order to produce final results.

Many diverse techniques have appeared in order to discover cohesive groups in large

data sets. In the following two sections, we present the two classical techniques for

clustering.

2.3.1 Basic Clustering Techniques

We distinguish two types of clustering techniques: Partitional and Hierarchical. Their

definitions are as follows [HK01]:

Partitional : Given a database of n objects, a partitional clustering algorithm con-

structs k partitions of the data, so that an objective function is optimized.

One of the issues with such algorithms is their high complexity, as some of them

exhaustively enumerate all possible groupings and try to find the global optimum.

Even for a small number of objects, the number of partitions is huge. That is why

common solutions start with an initial, usually random, partition and proceed with

its refinement. A better practice is to run the partitional algorithm for several

different sets of k initial points (considered as representatives), and keep the result

with the best quality.

Chapter 2. Clustering State of The Art 16

Partitional clustering algorithms try to locally improve a certain criterion. The

majority of them could be considered as greedy algorithms, i.e., algorithms that at

each step choose the best solution and may not lead to optimal results in the end.

The best solution at each step is the placement of a certain object in the cluster

for which the representative point is nearest to the object.

This family of clustering algorithms includes the first ones that appeared in the

Data Mining Community. The most commonly used are k-means [JD88, KR90],

PAM (Partitioning Around Medoids) [KR90], CLARA (Clustering LARge Appli-

cations) [KR90] and CLARANS (Clustering LARge ApplicatioNS) [NH94]. All of

them are applicable to data sets with numerical attributes.

Hierarchical : Hierarchical algorithms create a hierarchical decomposition of the ob-

jects. They are either agglomerative (bottom-up) or divisive (top-down):

(a) Agglomerative algorithms start with each object being a separate cluster itself,

and successively merge groups according to a distance measure. The clustering

may stop when all objects are in a single group or at any other point the user

chooses.

These methods generally follow a greedy bottom-up merging.

(b) Divisive algorithms follow the opposite strategy. They start with one group of

all objects and successively split groups into smaller ones, until each object falls

in one cluster, or until a desired number of clusters is reached. This is similar

to the approach followed by divide-and-conquer algorithms, i.e., algorithms

that, given an instance of the problem to be solved, split this instance into

several, smaller, sub-instances (of the same problem), independently solve each

of the sub-instances and then combine the sub-instance solutions so as to yield

a solution for the original instance.

Chapter 2. Clustering State of The Art 17

Figure 2.1(a) gives an example of two partitional clusterings performed on the same data

set, with different initial parameters. A ‘‘+’’ sign denotes the centre of a cluster, which

in this case is defined as the mean of the values of a particular cluster. At the same time,

Figure 2.1(b) depicts the dendrogram produced by either a divisive or agglomerative clus-

tering algorithm. A dendrogram is a tree structure that depicts the sequence of merges

during clustering together with the corresponding values of distance (or similarity).

Clustering with k=2

Clustering with k=3

A

B

+

+

A

B

+

+ +
C

(a) Partitional

Objects: x y z w

Divisive

Agglomerative

Dendrogram

(b) Hierarchical

Figure 2.1: (a) Partitional clustering for k = 2, 3, (b) Hierarchical clustering dendrogram

Some of the representatives of this family of algorithms are BIRCH (Balanced Itera-

tive Reducing and Clustering using Hierarchies) [ZRL96] and CURE (Clustering Using

REpresentatives) [GRS98]. Both algorithms are applicable to data sets with numerical

attributes.

Partitional and hierarchical methods can be integrated. For example, a result given

by a hierarchical method can be improved via a partitional step, which refines the result

Chapter 2. Clustering State of The Art 18

via iterative relocation of points.

2.3.2 Clustering Techniques in Data Mining

Apart from the two main categories of partitional and hierarchical clustering algorithms,

many other methods have emerged in cluster analysis, and are mainly focused on specific

problems or specific data sets available. We briefly describe some of them below, and

focus on the ones that are suitable for clustering categorical data [HK01]:

Density-Based Clustering : These algorithms group objects according to specific den-

sity objective functions. Density is usually defined as the number of objects in a

particular neighborhood of a data object. In these approaches, a given cluster con-

tinues growing as long as the number of objects in the neighborhood exceeds some

parameter. Representatives are DBSCAN (Density-Based Spatial Clustering of Ap-

plications with Noise [EKSX96], OPTICS (Ordering Points To Identify the Clus-

tering Structure) [ABKS96] and DENCLUE (DENsity-based CLUstEring) [HK98],

Grid-Based Clustering : The main focus of these algorithms is spatial data, i.e.,

data that model the geometric structure of objects in space, their relationships,

properties and operations. The objective of these algorithms is to quantize the

data set into a number of cells and then work with objects belonging to these cells.

They do not relocate points but rather build several hierarchical levels of groups of

objects. In this sense, they are closer to hierarchical algorithms, but the merging of

grids, and consequently clusters, does not depend on a distance measure but it is

decided by a predefined parameter, which is usually based on the number of objects

that fall in a particular cell (or larger area) of the grid. Representatives of this family

are STING (STatistical INformation Grid) [WYM97] WaveCluster [SCZ98] and

CLIQUE (CLustering In QUEst [AGGR98].

Model-Based Clustering : These algorithms select a mathematical model for the data

Chapter 2. Clustering State of The Art 19

and then find values of model parameters that best fit the data. They can be either

partitional or hierarchical, depending on the structure or model they hypothesize

about the data set and the way they refine this model to identify partitionings.

They are closer to density-based algorithms, in that they grow particular clusters

so that the preconceived model is improved. However, they sometimes start with

a fixed number of clusters and they do not all use the same concept of density. A

classical model-based clustering algorithm is the Expectation-Maximization algo-

rithm [BFR99].

Categorical Data Clustering : These algorithms are specifically developed for data

where Euclidean, or other numerically-oriented distance measures are not mean-

ingful. In the literature, we find approaches close to partitional and hierarchical

methods. In the next section, we analyze such algorithms in more detail.

For each category, there exists a plethora of sub-categories, e.g., density-based clus-

tering oriented toward geographical data [SEKX98]. An exception to this is the class

of approaches to handling categorical data. Visualization of such data is not straight-

forward and there is no inherent geometrical structure in them, hence the approaches

that have appeared in the literature mainly use concepts carried by the data, such as

co-occurrences in tuples. On the other hand, data sets that include some categorical

attributes are abundant. Moreover, there are data sets with a mixture of attribute types,

such as the United States Census data set (see http://www.census.gov/) and data sets

used in data integration [MHH+01].

But what makes a clustering algorithm efficient and effective? The answer is not

clear. A specific method can perform well on one data set, but very poorly on another,

depending on the size and dimensionality of the data as well as the objective function

and structures used. Regardless of the method, researchers agree that a good clustering

technique should have the following characteristics [HK01]:

Chapter 2. Clustering State of The Art 20

• Scalability : The ability of the algorithm to perform well with a large number of

data objects (tuples).

• Analyze mixture of attribute types : The ability to analyze dataset with mixtures of

attribute types, as well as homogeneous ones.

• Find arbitrary-shaped clusters : Different types of algorithms will be biased toward

finding different types of cluster structures/shapes and it is not always an easy

task to determine the shape or the corresponding bias. Especially when categorical

attributes are present, it may not be relevant to talk about cluster structures.

• Minimal requirements for input parameters : Many clustering algorithms require

some user-defined parameters, such as the number of clusters, in order to analyze

the data. However, with large data sets and higher dimensionalities, it is desirable

that a method require only limited guidance from the user, in order to avoid biasing

the result.

• Handling of noise: Clustering algorithms should be able to handle deviations, in

order to improve cluster quality. Deviations are defined as data objects that depart

from generally accepted norms of behavior and are also referred to as outliers.

Deviation detection is considered as a separate problem.

• Insensitivity to the order of input records : The same data set, when presented to

certain algorithms in different orders, may lead to dramatically different clusterings.

The order of input mostly affects algorithms that perform only single scan over the

data set, leading to locally optimal solutions at every step. Thus, it is crucial that

algorithms be insensitive to the order of input.

• High dimensionality of data: The number of attributes/dimensions in many data

sets is large, and many clustering algorithms can produce meaningful results only

when the number of dimensions is small (e.g., eight to ten).

Chapter 2. Clustering State of The Art 21

The appearance of a large number of attributes is often termed as the curse of

dimensionality. This has to do with the following [HAK00]:

1. As the number of attributes becomes larger, the space required to store or

represent the data set grows.

2. The distance of a given point from the nearest and furthest neighbor is almost

the same, for a wide variety of distributions and distance functions.

Both of the above factors strongly influence the efficiency of a clustering algorithm,

since it requires more time to process the data, while at the same time the yielding

clusters of very poor quality.

• Interpretability and usability : Most of the time, it is expected that clustering algo-

rithms produce usable and interpretable results. But when it comes to comparing

the results with preconceived ideas or constraints, some techniques fail to be satis-

factory. Therefore, easy to understand results are highly desirable.

Having the above characteristics in mind, we present some of the most important

algorithms that have influenced the clustering community. We will attempt to analyze

them and report which of the requirements they meet or fail to meet.

2.4 Clustering Databases with Categorical Data

In this section, we consider databases with attributes whose values are categorical. The

problem of clustering becomes more challenging when the data is categorical, that is,

when there is no inherent distance measure between data values. This is often the case

in many domains where data is described by a set of descriptive attributes, some of which

are neither numerical nor inherently ordered in any way. As a concrete example, consider

a relation that stores information about movies. For the purpose of exposition, a movie

is a tuple characterized by the attributes “director”, “actor/actress”, and “genre”. An

Chapter 2. Clustering State of The Art 22

instance of this relation is shown in Table 2.2. In this setting, it is not immediately ob-

vious what the distance, or similarity, is between the values “Coppola” and “Scorsese”,

or the tuples “Vertigo” and “Harvey”. Categorical data contains values with no inherent

director actor genre

t1 (Godfather II) Scorsese De Niro Crime

t2 (Good Fellas) Coppola De Niro Crime

t3 (Vertigo) Hitchcock Stewart Thriller

t4 (N by NW) Hitchcock Grant Thriller

t5 (Bishop’s Wife) Koster Grant Comedy

t6 (Harvey) Koster Stewart Comedy

Table 2.2: An instance of the movie database

semantics. That is, the choice of a specific data value (perhaps “Coppola” or “F.F.C.” or

“francis ford coppola”) has no inherent semantics. But the fact that “Coppola” is differ-

ent from “Scorsese” is meaningful. Hence, any categorical clustering algorithm should be

generic in that it “... treats data values as essentially uninterpreted objects...” [AHV95].

Genericity can be formalized by stating that the clustering algorithm should produce the

same results with any permutation on the data values [AHV95, Hul84].

Without a clear measure of distance between data values, it is unclear how to define a

measure of the quality of categorical clustering. Before introducing clustering algorithms

for categorical data, we summarize the characteristics of such data in the following list:

• Categorical data have no single ordering: there are several ways in which they can

be ordered, but there is no single one which is more semantically sensible than

others.

• Categorical data can be mapped onto unique numbers and, as a consequence, Eu-

clidean distance could be used to measure their proximities, with questionable

Chapter 2. Clustering State of The Art 23

consequences though.

Notice also that categorical data can be visualized by assuming a specific ordering. One

sensitive point is the second one mentioned in the previous list. Guha et al. give an

example why this entails several dangers [GRS99]: assume a database with objects defined

over the values 1 through 6. The set of objects is: (a) {1, 2, 3, 5}, (b) {2, 3, 4, 5}, (c)

{1, 4}, and (d) {6}.2 These objects could be viewed as vectors of 0’s and 1’s denoting the

presence of the values inside the corresponding objects. The four objects become:

(a) {1, 2, 3, 5} → {1, 1, 1, 0, 1, 0};

(b) {2, 3, 4, 5} → {0, 1, 1, 1, 1, 0};

(c) {1, 4} → {1, 0, 0, 1, 0, 0};

(d) {6} → {0, 0, 0, 0, 0, 1};

Now, using Euclidean distance between objects (a) and (b), we get:

(12 + 02 + 02 + 12 + 02 + 02)1/2 =
√
2

and this is the smallest distance between pairs of objects. Thus, with a centroid-based

hierarchical algorithm, (a) and (b) would be merged first. The centroid of the new cluster

is {0.5, 1, 1, 0.5, 1, 0}. In the following step, (c) and (d) have the smallest distance, and

thus will be merged. However, this corresponds to a merge of object {1, 4} with object

{6}, although the two objects have no values in common, assuming here that matching

based on presence is more important than matching based on absence. After that, we

reach the conclusion that, using a binary mapping of categorical attributes and Euclidean

distance, some objects that should not be in the same cluster end up being together.

It becomes apparent, then, that we need different methods, and especially different

similarity measures, to discover “natural” groupings of categorical data. The follow-

2We consider sets of categorical values, whose identifiers we report.

Chapter 2. Clustering State of The Art 24

ing subsections introduce the most important clustering algorithms on databases with

categorical attributes. For each algorithm, we elaborate on the following issues:

• description of the algorithm;

• measure used to assess similarity or dissimilarity;

• objective function minimized or maximized as appropriate;

• merging strategy followed to produce intermediate clusters;

• computational complexity of the algorithm;

• set of input parameters.

2.4.1 The k-modes Algorithm

The first algorithm oriented toward categorical data sets is an extension to k-means,

called k-modes [Hua98].

Description: The idea is the same as in k-means and the structure of the algorithm

does not change. k-modes partitions a data set into a given number of clusters such that

an objective function is minimized. The differences from the k-means algorithm can be

summarized in the following list:

1. a different distance measure is used;

2. the means are replaced by modes ;

3. a frequency based method is used to update modes.

Distance measure: Given two categorical data objects x̂ and ŷ, their distance is defined

by the following expression:

d(x̂, ŷ) =
n
∑

i=1

δ(xi, yi)

Chapter 2. Clustering State of The Art 25

where

δ(xi, yi) =

0 if xi = yi

1 if xi 6= yi

Intuitively, the above expression counts the number of mis-matches the two data objects

have on their corresponding attributes.

Objective function: The mode of an attribute is the value that appears the most in

this attribute. For example, if the values of a data set are {1, 2, 18, 3, 18} its mode is

the value 18. For a data set of dimensionality n, every cluster c, 1 ≤ c ≤ k, has a mode

defined by a vector Qc = (xc1, x
c
2, . . . , x

c
n) whose entries are the modes of each attribute.

The set of Qc’s that minimize the expression:

E =
k
∑

c=1

∑

x̂∈c

d(x̂, Qc)

is the desired output of the method.

Merging strategy: The algorithm starts with a usually random set of k tuples from

the data set, each one of them being the representative of a cluster. Then, each remain-

ing tuple is compared to the k representatives and placed in the cluster of the closest

representative.

Computational complexity: The algorithm requires a linear number of in-memory

operations and thus can be used for large inputs.

Input parameters: k-modes accepts as input the desired number of clusters, k.

The similarities, in structure and behavior, to k-means are obvious, with k-modes

carrying, unfortunately, all the disadvantages of the former. An interesting extension to

data sets of both numerical and categorical attributes is that of k-prototypes [Hua97]. It

is an integration of k-means and k-modes employing:

• sr: dissimilarity on numeric attributes;

• sc: dissimilarity on categorical attributes;

Chapter 2. Clustering State of The Art 26

• dissimilarity measure between two objects:

sr + γsc

where γ is a weight to balance the two parts and avoid favoring either type of

attribute.

The parameter γ is specified by the user.

2.4.2 The ROCK Algorithm

ROCK (RObust Clustering using linKs) [GRS99] is a hierarchical algorithm for categor-

ical data.

Description: Guha et al. propose a novel approach based on the concept of links be-

tween data objects [GRS99]. This idea helps to overcome problems that arise from the

use of Euclidean metrics over vectors, where each vector represents a tuple in the data

whose entries are identifiers of the categorical values. More precisely, if ni is the number

of objects in cluster Ci, ROCK defines the following:

• two data objects x̂ and ŷ are called neighbors if their similarity exceeds a certain

threshold θ given by the user, i.e., sim(x̂, ŷ) ≥ θ. For the similarity, we may use

any measure that can be applied on such data.

• for two data objects, x̂ and ŷ, we define: link(x̂, ŷ) is the number of common

neighbors between the two objects, i.e., the number of objects to which x̂ and ŷ

are both similar, i.e., their similarity exceeds parameter θ.

• the interconnectivity between two clusters C1 and C2 is given by the number of

cross-links between them, which is equal to
∑

x̂q∈C1,x̂r∈C2
link(x̂q, x̂r).

• the expected number of links in a cluster Ci is given by n
1+2f(θ)
i . In all the experi-

ments presented f(θ) = 1−θ
1+θ

Chapter 2. Clustering State of The Art 27

Similarity measure: In brief, ROCK measures the similarity of two clusters by com-

paring the aggregate interconnectivity of two clusters against a user-specified static in-

terconnectivity model.

Objective function: The maximization of the following expression comprises the ob-

jective of ROCK :

E =
k
∑

i=1

ni ·
∑

x̂q ,x̂r∈Ci

link(x̂q, x̂r)

n
1+2f(θ)
i

Merging strategy: The overview of ROCK is given in Figure 2.2.

Draw Random SampleDATA Cluster Sample with Links Label Data on Disk

Figure 2.2: Overview of ROCK [GRS99]

As we see, a random sample is drawn to be the cluster representatives and a clustering

algorithm (hierarchical) is used to merge clusters. Hence, we need a measure to identify

clusters that should be merged at every step. This measure between two clusters Ci and

Cj is called the goodness measure and is given by the following expression:

g(Ci, Cj) =
link[Ci, Cj]

(ni + nj)1+2f(θ) − n1+2f(θ)
i − n1+2f(θ)

j

where link[Ci, Cj] is now the number of cross-links between clusters:

link[Ci, Cj] =
∑

x̂q∈Ci,x̂r∈Cj

link(x̂q, x̂r)

The pair of clusters for which the above goodness measure is maximum is the best pair

of clusters to be merged.

Computational complexity: The number of in-memory operations of ROCK isO(n2+

nmmma + n2 log n), where: mm is the maximum number of neighbors of a data object

and ma is the average number of neighbors for a data object.

Input parameters: ROCK requires as parameters the number of clusters k and the

value of the similarity threshold θ.

Chapter 2. Clustering State of The Art 28

2.4.3 The STIRR Algorithm

STIRR (Sieving Through Iterated Relational Reinforcement) [GKR98] is one of the most

innovative methods for clustering categorical data sets and differs in spirit from the

previous approaches.

Description: It uses an iterative approach where the values, rather than the tuples,

are the data objects to be clustered. The key features of this approach are summarized

below.

1. There is no a-priori quantization. This means that clustering the categorical data

sets is purely done through their patterns of co-occurrence, without trying to impose

an artificial linear order or numerical structure on them.

2. Viewing each tuple in the database as a set of values, the authors treat the entire

collection of tuples as an abstract set system, or hyper-graph (Figure 2.3).

Similarity measure: There is no mathematical expression to assess the similarity of

values in STIRR. They are considered to be similar if the values with which they appear

together in the database have a large overlap, regardless of the fact that the objects

themselves might never co-occur. For example, car types Civic and Accord are similar

since tuples [Honda,Civic,1998] and [Honda,Accord,1998] have a large overlap, i.e.,

the values Honda and 1998. Generally speaking, the similarity of values is based on the

fact that the sets of items with which they do co-occur have large overlap.

Objective function/strategy: In STIRR, we cannot clearly separate the objective of

the algorithm from the main strategy followed. Spectral methods are used to perform

the clustering. These methods relate “good” partitions of an undirected graph to the

eigenvalues and eigenvectors of certain matrices derived from the graph. STIRR employs

spectral partitioning on hyper-graph clustering using non-linear dynamical systems, and

proposes a weight-propagation method which works roughly as follows:

Chapter 2. Clustering State of The Art 29

• It first seeds a particular item of interest, e.g., Honda, with a small amount of

weight, or alternatively all weights can be initialized to 1;

• This weight propagates to items with which Honda co-occurs frequently;

• These items, having acquired a weight, propagate it further (back to other auto-

mobile manufacturers, perhaps);

• The process iterates until it converges.

We are now ready to present some of the main technical details of the approach. Following

are the descriptions of the concepts used throughout this technique.

Representation : each possible value in each possible attribute is represented by an

abstract node; an example of a data set represented this way, is given in Figure 2.3.

Configuration : the assignment of a weight wv to each node v; we will refer to the

entire configuration as w;

Normalization function N(w) : re-scales weights of the nodes associated with each

attribute, so that their squares add up to 1 and orthonormality is ensured.

Combining Operator
⊕

: this is defined by any of the following:

1. product operator, Π:
⊕

(w1, . . . , wk) = w1w2 . . . wk.

2. addition operator :
⊕

(w1, . . . , wk) = w1 + w2 + . . .+ wk.

3. a generalization of the addition operator that is called the Sp combining rule,

where p is an odd natural number. Sp(w1, . . . , wk) = (wp
1 + . . . + wp

k)
(1/p).

Addition is simply an S1 rule.

4. a limiting version of the Sp rules, which is referred to as S∞. S∞(w1, . . . , wk)

is equal to wi, where wi has the largest absolute value among the weights in

{w1, . . . , wk}.

Chapter 2. Clustering State of The Art 30

Dynamical System : repeated application of a function f on some set of values.

Fixed points : points such that f(u) = u, for all nodes u.

Function f : maps one configuration to another and is defined as follows:

To update wv:

for every tuple τ = {v, u1, . . . , uk−1}, containing v do

xτ ←
⊕

(wu1 , . . . , wuk−1)

wv ←
∑

τ xτ

Figure 2.3: Representation of a database in STIRR [GKR98]

From the above, a choice of S1 for
⊕

involves a linear term for each of the tuples, while

Π and Sp, for p > 1, involve a non-linear one. The latter ones include the potential to

represent co-occurrence in a stronger way.

The paper by Gibson et al. [GKR98] presents some useful theorems from spectral

graph theory, to prove that STIRR converges and moreover gives a result where some

values have negative weights, while others have positive weights. Experimental results

are given: the algorithm is applied to a bibliographical database and database publica-

tions are successfully distinguished from theoretical ones. However, there is no clustering

defined for more than two clusters of values.

Computational complexity: STIRR requires one pass over the data set and a linear

number of in-memory operations, making it suitable for large data sets.

Chapter 2. Clustering State of The Art 31

Input parameters: The initial configuration (weights) is required as well as the com-

bining operator and the stopping criteria.

2.4.4 The COOLCAT Algorithm

The COOLCAT algorithm [BCL02a, BCL02b], by Barbará, Couto and Li is an information-

theoretic algorithm most similar to the algorithm we propose in this thesis.

Description: COOLCAT is very similar in spirit to the k -means algorithm. However,

it includes an initial sampling phase, where the goal is the selection of k appropriate

cluster representatives.

Similarity measure The algorithm uses entropy as the measure to assess similarity of

objects.3

Objective function: The objective function is the minimization of entropy across clus-

ters. Intuitively, entropy is a measure of the uncertainty we have in predicting the values

of a specific random variable. Given the number of clusters to be produced, the objective

of the algorithm is to partition a data set such that the entropy of the resulting clustering

is minimized, or equivalently, the values within clusters can be predicted with maximum

certainty.

Merging strategy: COOLCAT is an algorithm that relies on sampling, and it is non-

hierarchical. Assuming that each attribute exists independently of the others, COOLCAT

defines the entropy of a cluster, and the algorithm starts with a sample of points and,

using a heuristic method, identifies a set of k initial clusters such that their pairwise

entropies are large. It then places all remaining tuples of the data set in clusters such

that the entropy of the whole system is minimized.

Computational complexity: This algorithm requires a single pass over the data and

performs a linear number of in-memory computations.

Input parameters: COOLCAT requires the number of clusters k and the size of the

3More precise information-theoretic definitions are given in the next chapter.

Chapter 2. Clustering State of The Art 32

initial sample as parameters. As it will be seen in the following chapter, through our ex-

perimental evaluation of COOLCAT, the quality of the clustering depends on the choice

of initial sample.

2.4.5 Discussion

Clustering categorical data is a challenging problem, as we already argued. The algo-

rithms we just discussed introduce a variety of methods to tackle this problem and give

different solutions in terms of their performance, with respect to the time it takes for

the algorithms to run when the number of tuples and dimensions change. On the other

hand, quality of clusters produced is measured by the user’s expertise and examination

of the results. Our intention is to compare these categorical clustering algorithms and

stress their advantages and weaknesses.

Hence, we first introduced k-modes and k-prototypes, which first appeared in the

database community, after the observation that means, in the k-means method, could be

replaced bymodes so as to compare categorical attributes. Both k-modes and k-prototypes

are scalable but do not handle outliers well.

The k-modes algorithm is a partitional method. The first, and probably the only,

representative algorithm from the hierarchical family is ROCK. Its novelty is based on

the assumption that an attribute value, in addition to its occurrence, should be examined

according to the number of other attribute values with which it exists. ROCK works

totally differently than k-modes not only because it is hierarchical, but also due to the fact

that it works on samples of the data. It is more scalable than other sampling techniques,

but less than k-modes.

A well presented and novel technique is STIRR, based on the iterative computation of

new weights for the nodes of a graph. The idea is related to the work done by Kleinberg on

discovering authoritative sources on the web [Kle98], however STIRR strongly depends

on the choice of the combining operator,
⊕

and the notion of the iteration function,

Chapter 2. Clustering State of The Art 33

f , which defines a dynamical system. Gibson et al. argue that there has not been

much proved about the behavior of dynamical systems in the literature. They base their

proof of convergence and the discovery of final clusters, on results that come from the

spectral graph theory research area. STIRR gives a result where each value has acquired

either a positive or negative weight, producing just two clusters. The reporting of more

clusters would require a costly post-processing stage. Moreover, choosing different initial

configurations, the authors discovered different partitions of their data set, which leads

to the conclusion that initial weights have an impact on the final result. Note that the

different clusterings could be meaningful, but still they are not the same and cannot be

directly compared with each other. On the other hand, STIRR converges quickly and

identifies clusters in the presence of irrelevant values, i.e., values that co-occur with no

other values [GKR98].

Finally, we presented COOLCAT, an algorithm based on an information-theoretic

quality measure, namely the entropy of a clustering. Algorithmically, it is mostly similar

to the k-modes and k-prototypes algorithms, except for an initial sampling phase to

choose (potential) “good” cluster representatives. However, the algorithm seems to be

sensitive to this sampling phase, since it is possible that outliers get picked as such

representatives. COOLCAT demonstrates linear computational complexity (number of

in-memory operations) in the number of input records and, thus, can be used with large

data sets.

In our opinion, the aforementioned clustering algorithms for categorical data each have

some disadvantages that are difficult to overcome. For example, STIRR is not defined

for clustering tuples and is not able to produce more than two clusters of attribute

values. ROCK is not suitable for large data sets and COOLCAT is sensitive to the

initial sampling process. During our study of these algorithms, we observed no common

quality measure, so comparison of the results each algorithm gives on the same data set

is difficult. In our work, we try to address these issues and provide an intuitive and

Chapter 2. Clustering State of The Art 34

scalable solution to the problem of clustering both tuples and attribute values. Also, we

assess the quality of the results of the other techniques using a variety of measures.

Table 2.3 gives an overview of the features of each algorithm. In our opinion it is

obvious that there is no “optimal solution” for the problem of clustering categorical

data, and the choice of an appropriate algorithm depends on many factors.

2.5 Conclusions

Clustering lies at the heart of data analysis and data mining applications. The ability to

discover highly correlated or co-occurring sets of objects when their number becomes very

large is highly desirable, as data sets grow and their properties and data interrelationships

change. At the same time, it is notable that any clustering is a division of the objects

into groups based on a set of rules – it is neither correct or incorrect [Eve93].

In this chapter, we described the process of clustering from the data mining point of

view. We gave the properties of a “good” clustering technique and the methods used

to find meaningful partitionings. Previous research has emphasized numerical data sets,

and the intricacies of working with large categorical databases has been left to a small

number of alternative techniques.

Our claim is that new research solutions are needed for the problem of clustering

categorical data. In the next chapter, we introduce a new algorithm to cluster categorical

data, and demonstrate its qualitative advantages as well as its efficiency. We also present

the application of this algorithm to the discovery of structure in large categorical data

sets that contain heterogeneous and/or dirty data.

C
h
a
p
t
e
r

2
.

C
l
u
st

e
r
in

g
S
t
a
t
e

o
f

T
h
e

A
r
t

35

Categorical Clustering Methods

Algorithm Input Parameters Optimized For Outlier
Handling

Computational
Complexity
(number of in-memory
operations)

k −modes Number of Clusters Data Sets with Well-separated
Clusters

No O(n)

k − prototypes Number of Clusters Mixed Data Sets No O(n)
ROCK Number of Clusters, Similarity

Threshold
Small Data Sets with Noise Yes O(n2+nmmma+n

2 log n)

STIRR Initial Configuration, Combining
Operator, Stopping Criteria

Large Data Sets with Noise Yes O(n)

COOLCAT Size of Initial Sample, Number of
Clusters

Large Data Sets with Well-
separated Clusters

No O(n)

n=number of objects, k=number of clusters, mm,ma=maximum and average number of neighbors for an object, respectively.

Table 2.3: Properties of categorical clustering algorithms

Chapter 3

LIMBO Clustering

In this chapter, we introduce LIMBO, a scalable hierarchical categorical clustering al-

gorithm that builds on the Information Bottleneck (IB) framework for quantifying the

relevant information preserved when clustering. As a hierarchical algorithm, LIMBO has

the advantage that it can produce clusterings of different sizes in a single execution. We

use the IB framework to define a distance measure for categorical tuples and we also

present a novel information-theoretic distance measure for categorical attribute values.

We show how the LIMBO algorithm can be used when the objects to be clustered are

either the tuples of a data set or the values of one of its attributes. Finally, we present

a heuristic for discovering candidate values for the number of meaningful clusters that

exist in a categorical data set.

3.1 Introduction

The definition of clustering assumes that there is some well-defined notion of similarity,

or distance, between data objects. As we saw in the previous chapter, when the objects

are defined by a set of numerical attributes, there are natural definitions of distance

based on geometric analogies. These definitions rely on the semantics of the data values

themselves (for example, the values $100,000 and $110,000 are more similar than $100,000

and $1).

Consider the example from Table 2.2, expanded in Table 3.1 to show two possible

37

Chapter 3. LIMBO Clustering 38

tuple clusterings, C and D. We already stated that in this setting it is not immediately

obvious what the distance, or similarity, is between the values “Coppola” and “Scorsese”,

or the tuples “Vertigo” and “Harvey”. Without a clear measure of distance between data

values, it is unclear how to define a quality measure for categorical clustering. To do this,

we employ mutual information, a measure from information theory. A good clustering

is one where the clusters are informative about the data objects they contain. Since

data objects are expressed in terms of attribute values, we require that the clusters

convey information about the attribute values of the objects in the cluster. That is,

given a cluster, we wish to narrow as much as possible the variety of attribute values

associated with objects of the cluster. The quality measure of the clustering is then the

mutual information of the clusters and the attribute values that occur in the respective

clusters. Since a clustering is a summary of the data, some information is generally lost.

Our objective will be to minimize this loss, or equivalently to minimize the increase in

uncertainty as the objects are grouped into fewer and larger clusters.

director actor genre C D
t1 (Godfather II) Scorsese De Niro Crime c1 d1

t2 (Good Fellas) Coppola De Niro Crime c1 d1

t3 (Vertigo) Hitchcock Stewart Thriller c2 d1

t4 (N by NW) Hitchcock Grant Thriller c2 d1

t5 (Bishop’s Wife) Koster Grant Comedy c2 d2

t6 (Harvey) Koster Stewart Comedy c2 d2

Table 3.1: An instance of the movie database

Consider partitioning the tuples in Table 3.1 into two clusters. Clustering C groups

the first two movies together into one cluster, c1, and the remaining four into another,

c2. Note that cluster c1 preserves all information about the actor and the genre of the

movies it holds. For objects in c1, we know with certainty that the genre is “Crime”,

the actor is “De Niro” and there are only two possible values for the director. Cluster

c2 involves only two different values for each attribute. Any other clustering into two

clusters, will result in greater information loss. For example, in clusteringD, d2 is equally

Chapter 3. LIMBO Clustering 39

as informative as c1, but d1 includes three different actors and three different directors.

So, while in c2 there are two equally likely values for each attribute, in d1 the director is

any of “Scorsese”, “Coppola”, or “Hitchcock” (with respective probabilities 0.25, 0.25,

and 0.50). Similarly, for actor, the value in d is one of “De Niro”, “Stewart” or “Grant”

(with respective probabilities (0.50, 0.25, 0.25).

This intuitive idea was formalized by Tishby, Pereira and Bialek [TPB99]. They

recast clustering as the compression of one random variable into a compact representation

that preserves as much information as possible about another random variable. Their

approach was named the Information Bottleneck (IB) method, and it has been applied to

a variety of different areas. In this chapter, we consider the application of the IB method

to the problem of clustering data sets of categorical data.

We formulate the problem of clustering relations with categorical attributes within

the Information Bottleneck framework, and define dissimilarity between categorical data

objects based on the IB method. Our contributions in this chapter are given in the

following list (and published elsewhere [ATMS04]).

• We propose LIMBO, the first scalable hierarchical algorithm for clustering cate-

gorical data. As a result of its hierarchical approach, LIMBO allows us in a single

execution to consider clusterings of various sizes. The size of the model LIMBO

builds to summarize the data can be controlled to match the space available for

use.

• We take advantage of the hierarchical nature of LIMBO to examine heuristics

for determining the numbers of clusters into which a given data set can be most

naturally partitioned.

• We use LIMBO to cluster both data objects in relational and market-basket data

sets and to cluster attribute values. We define a novel distance measure between at-

tribute values that allows us to quantify the degree of interchangeability of attribute

Chapter 3. LIMBO Clustering 40

values within a single attribute.

• LIMBO builds and efficiently manages summary structures in a single pass over

the data, making it the first scalable clustering algorithm amenable for use on

categorical data streams.

• We empirically evaluate the quality of clusterings produced by LIMBO relative to

other categorical clustering algorithms including the tuple clustering algorithms IB,

ROCK [GRS99], and COOLCAT [BCL02b]; as well as the attribute value clustering

algorithm STIRR [GKR98]. We compare the clusterings based on a comprehensive

set of quality metrics including all metrics used in the evaluation of these related

approaches. We also show that LIMBO is robust to different input orders of data.

3.2 The Information Bottleneck Method

In this section, we review some of the concepts from information theory that will be

used in the rest of the thesis. We also provide an outline of the Information Bottleneck

method, and its application to the problem of clustering.

3.2.1 Information Theory Basics

The following definitions can be found in any information theory textbook, e.g., [CT91].

Let X denote a discrete random variable that takes values over the set X, and let p(x)

denote the probability mass function of X. The entropy H(X) of variable X is defined

by

H(X) = −
∑

x∈X

p(x) log p(x) .

The entropy H(X) can be thought of as a lower bound on the number of bits on average

required to describe the random variable X. Intuitively, entropy captures the “uncer-

tainty” of variable X; the higher the entropy, the lower the certainty with which we can

predict the value of the variable X.

Chapter 3. LIMBO Clustering 41

Now, let X and Y be two random variables that range over sets X and Y respectively,

and let p(x, y) denote their joint distribution and p(y|x) be the conditional distribution of

Y given X. If, for example, X is a random variable representing the movies in Table 3.1,

and Y a random variable representing the director and actor values, then p(x, y) is

the joint distribution of attribute value appearance in tuples. Then conditional entropy

H(Y |X) is defined as

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x)

Given X and Y , an important question that arises is: “to what extent can the value

of one variable be predicted from knowledge of the value of the other variable?”. When

the two variables are independent, no information about one variable can be obtained

through knowledge of the other one. This question has a quantitative answer through

the notion of mutual information, I(X;Y). Mutual information quantifies the amount

of information that the variables hold about each other and is the amount of uncertainty

(entropy) in one variable that is removed by knowledge of the value of the other one.

Specifically, we have

I(X;Y) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x)
p(y)

= H(X)−H(X|Y) = H(Y)−H(Y |X)

Mutual information is symmetric, non-negative and equals zero if and only if X and Y

are independent.

Relative Entropy, or the Kullback-Leibler (KL) divergence, is a standard information-

theoretic measure of the difference between two probability distributions. Given two

Chapter 3. LIMBO Clustering 42

distributions p and q over a set X, the relative entropy is

DKL[p‖q] =
∑

x∈X

p(x) log
p(x)

q(x)
.

Intuitively, the relative entropy DKL[p‖q] is a measure of the redundancy in an encoding

that assumes the distribution q, when the true distribution is p. (Note that relative

entropy is not symmetric with respect to p and q.)

In the remainder of the thesis and for each application of the aforementioned information-

theoretic measure, we will appropriately define variables X and Y .

3.2.2 The Information Bottleneck Method

Clustering problems can be formulated to involve a collection of objects (e.g. customers,

documents) represented as vectors in a feature space.

Let X denote a set of objects that we want to cluster (e.g., customers, tuples in a

relation, web documents), and assume that the elements in X are expressed as vectors

in a feature space Y (e.g., items purchased, words, attribute values, links). That is,

each element of X is associated with a sequence of values from Y. In Section 3.3, we

describe in detail the types of datasets that we consider. Let n = |X| and d = |Y|.

Our data can then be conceptualized as an n × d matrix M , where each row holds the

feature vector of an object in X. Now let X, Y be random variables that range over

the sets X and Y respectively. We normalize matrix M so that the entries of each row

sum up to one. For some object x ∈ X, the corresponding row of the normalized matrix

holds the conditional probability p(Y |X = x). An example of our representation will be

given in Section 3.2.3. The information that one variable contains about the other can

be quantified using the mutual information I(X;Y) measure. Furthermore, if we fix a

value x ∈ X, the conditional entropy H(Y |X = x) gives the uncertainty of a value for

variable Y selected among those associated with the object x.

A k-clusteringCk of the elements ofX partitions them into k clustersCk = {c1, c2, c3, ..., ck},

where each cluster ci ∈ C is a non-empty subset of X such that ci ∩ cj = ∅ for all i, j,

Chapter 3. LIMBO Clustering 43

i 6= j, and ∪ki=1ci = X. Let Ck denote a random variable that ranges over the clusters in

Ck. We define k to be the size of the clustering. When k is fixed or when it is immaterial

to the discussion, we will use C and C to denote the clustering and the corresponding

random variable.

Now, let C be a specific clustering. Giving equal weight to each element x ∈ X, we

define p(x) = 1
n
. Then, for c ∈ C, the elements of X, Y, and C are related as follows:

p(c|x) =

1 if x ∈ c

0 otherwise

p(c) =
∑

x∈c

p(x)

p(y|c) = 1

p(c)

∑

x∈c

p(x)p(y|x) .

We seek clusterings of the elements of X such that, for x ∈ ci, knowledge of the cluster

identity, ci, provides essentially the same prediction of, or information about, the values

inY as does the specific knowledge of x. Just as I(X;Y) measures the information about

the values in Y provided by the identity of a specific element of X, I(C;Y) measures the

information about the values in Y provided by the identity of a cluster in C. The higher

I(C;Y), the more informative the cluster identity is about the values in Y contained

in the cluster. The relationship of all information-theoretic quantities involved in the

clustering are given in Figure 3.1.

In the formalization of Tishby, Pereira and Bialek [TPB99], the problem of clustering

is recast as the problem of compressing variable X while preserving information about

variable Y . Formally, they define clustering as an optimization problem, where, for a

given number k of clusters, we wish to identify the k-clustering that maximizes I(Ck;Y).

Intuitively, in this procedure, the information contained in X about Y is “squeezed”

through a compact “bottleneck” clusteringCk, which is forced to represent the “relevant”

part in X with respect to Y . Tishby et al. [TPB99] prove that, for a fixed number k

of clusters, the optimal clustering Ck partitions the objects in X so that the average

Chapter 3. LIMBO Clustering 44

H(C,Y)
H(C|Y)

H(Y)

H(X,Y)

H(C)

H(Y|X)
H(X)

H(C|Y)

I(C;Y)
H(X|Y)

1 |X|number of clusters, k, in C

H(Y|C)

Figure 3.1: Information-theoretic quantities as number of clusters, k, changes.

relative entropy
∑

c∈Ck,x∈X p(x, c)DKL[p(y|x)‖p(y|c)] is minimized.

3.2.3 The Agglomerative Information Bottleneck Algorithm

Finding the optimal clustering is an NP-complete problem [GJ79]. Slonim and Tishby [ST99]

propose a greedy agglomerative approach, the Agglomerative Information Bottleneck

(AIB) algorithm, for finding an informative clustering.

The algorithm starts with the clustering Cn, in which each object x ∈ X is assigned to

its own cluster. Due to the one-to-one mapping between Cn and X, I(Cn;Y) = I(X;Y);

that is, the clusters in Cn contain the same information about the values in the set Y as

the tuples in X. The algorithm then proceeds iteratively, for n − k steps, reducing the

number of clusters in the current clustering by one in each iteration. At step n−`+1 of the

AIB algorithm, two clusters ci, cj in `-clustering C` are merged into a single component

c∗ to produce a new (`−1)-clustering C`−1. As the algorithm forms clusterings of smaller

Chapter 3. LIMBO Clustering 45

size, the information that the clustering contains about the values in Y decreases; that

is, I(C`−1;Y) ≤ I(C`, Y). The clusters ci and cj to be merged are chosen such that

the information loss in moving from clustering C` to clustering C`−1 is minimized. This

information loss is given by

δI(ci, cj) = I(C`;Y)− I(C`−1;Y)

We can also view the information loss as the increase in the uncertainty. Recall that

I(C;Y) = H(Y) − H(Y |C). Since the value H(Y) is independent of the clustering C,

we have that

δI(ci, cj) = I(C`;Y)− I(C`−1;Y) = H(Y |C`−1)−H(Y |C`)

That is, the information loss measures the decrease in our ability to predict the values

of Y given a cluster in C. Therefore, maximizing the mutual information I(C;Y) is the

same as minimizing the entropy of the clustering H(Y |C).

After merging clusters ci and cj, the new component c∗ = ci ∪ cj has

p(c∗|x) =

1 if x ∈ ci or x ∈ cj
0 otherwise

(3.1)

p(c∗) = p(ci) + p(cj) (3.2)

p(Y |c∗) = p(ci)

p(c∗)
p(Y |ci) +

p(cj)

p(c∗)
p(Y |cj) . (3.3)

Tishby et al. [TPB99] show that

δI(ci, cj) = [p(ci) + p(cj)] ·DJS[p(Y |ci), p(Y |cj)] (3.4)

where DJS is the Jensen-Shannon (JS) divergence, defined as follows. Let pi = p(y|ci)

and pj = p(y|cj), and let

p̄ =
p(ci)

p(c∗)
pi +

p(cj)

p(c∗)
pj

Chapter 3. LIMBO Clustering 46

Input : Probability matrix p(x, y), x ∈ X and y ∈ Y, and number of clusters k.
Output : A k−clustering of X.

Initialization :
- For i = 1 . . . n:

* ci = {xi}
* p(ci) = p(xi)
* p(y|ci) = p(y|xi)

- Cn = {c1, c2, . . . , cn}
- For every q, r = 1 . . . n, with q < r

calculate dq,r = δI(xq, xr)

Main Loop:
- For m = 1 . . . (n− k + 1):

* find {i, j} = argminq,r{dq,r}
* merge {ci, cj} into c∗:
** p(c∗|x) = 1 if x ∈ ci or x ∈ cj
** p(c∗) = p(ci) + p(cj)

** p(Y |c∗) = p(ci)
p(c∗)

p(Y |ci) + p(cj)

p(c∗)
p(Y |cj)

* update C = {C − {ci, cj}} ∪ {c∗}
* update dq,r costs according to c∗

Figure 3.2: The AIB algorithm

denote the weighted average distribution of distributions pi and pj. Then, the DJS

distance is:

DJS[pi, pj] =
p(ci)

p(c∗)
DKL[pi||p̄] +

p(cj)

p(c∗)
DKL[pj||p̄] .

The DJS distance is the average DKL distance of pi and pj from p̄. It is non-negative and

equals zero if and only if pi ≡ pj. It is also bounded above by one, and it is symmetric

in i and j but does not satisfy the triangle inequality. Thus, it is not a metric. We note

that the information loss for merging clusters ci and cj, depends only on the clusters ci

and cj, and not on other parts of the clusterings C` and C`−1. The pseudo-code of the

AIB algorithm is given in Figure 3.2 [ST99].

Chapter 3. LIMBO Clustering 47

3.3 Clustering Categorical Data using the IB Method

In this section, we formulate the problem of clustering categorical data in the context

of the Information Bottleneck method, and we consider some novel applications of the

method. We consider two types of data: relational data and market-basket data.

3.3.1 Relational Data

In this case, the input to our problem is a setT of n tuples onm attributes A1, A2, . . . , Am.

The domain of attribute Ai is the set Vi = {Ai.v1, Ai.v2, . . . , Ai.vdi} so that identical

values from different attributes are treated as distinct values. A tuple t ∈ T consists of

m attribute values, where the value for the ith attribute is taken from the set Vi. Let

V = V1∪· · ·∪Vm denote the set of all possible attribute values. Let d = d1+d2+· · ·+dm
denote the size of V. We represent our data as an n × d binary matrix M , where each

t ∈ T is a d-dimensional row vector in M . If tuple t contains attribute value v, then

M [t, v] = 1, otherwiseM [t, v] = 0. Since every tuple contains one value for each attribute,

each tuple vector contains exactly m 1’s.

Now, let T and V be random variables that range over sets T and V respectively.

Following the formalism of Section 3.2, we can substitute X with T, Y with V, X with

T and Y with V in the corresponding measures and proceed by defining p(t) = 1/n, and

normalizing matrix M so that the tth row holds the conditional probability distribution

p(V |t). Since each tuple contains exactly m attribute values, for some v ∈ V, p(v|t) =

1/m if v appears in tuple t, and zero otherwise. Table 3.2 shows the normalized matrix

M for the movie database example. We use abbreviations for the attribute values. For

example d.H stands for director.Hitchcock. Given the normalized matrix, we can proceed

with the application of the IB method to cluster the tuples in T. Note that matrix M

can be stored as a sparse matrix, so we do not need to materialize all n× d entries.

Our approach merges all attribute values into one variable, without taking into ac-

count the fact that the values come from different attributes. Alternatively, we could

Chapter 3. LIMBO Clustering 48

d.S d.C d.H d.K a.DN a.S a.G g.Cr g. T g.C p(t)
t1 1/3 0 0 0 1/3 0 0 1/3 0 0 1/6
t2 0 1/3 0 0 1/3 0 0 1/3 0 0 1/6
t3 0 0 1/3 0 0 1/3 0 0 1/3 0 1/6
t4 0 0 1/3 0 0 0 1/3 0 1/3 0 1/6
t5 0 0 0 1/3 0 0 1/3 0 0 1/3 1/6
t6 0 0 0 1/3 0 1/3 0 0 0 1/3 1/6

Table 3.2: The normalized movie table

define a random variable for every attribute Ai. We will now show the following:

Theorem 1 Applying the Information Bottleneck method to the case of relational data,
considering all attributes together is equivalent to considering each attribute indepen-
dently.

Proof 1 Let Vi be a random variable that ranges over the set Vi. For some v ∈ Vi,
and some t ∈ T we use p(v|t) to denote the conditional probability p(V = v|t), and
pi(v|t) to denote the conditional probability p(Vi = v|t). Also let p(v) denote p(V = v),
and pi(v) denote p(Vi = v). Since each tuple takes exactly one value in each attribute,
pi(v|t) = 1, if v appears in t, and zero otherwise. We have that p(v|t) = 1

m
pi(v|t), for all

1 ≤ i ≤ m, v ∈ Vi, and t ∈ T. It follows that p(v) = 1
m
pi(v). Furthermore, let c denote

a cluster, and let |c| denote the number of tuples in c. Since p(v|c) = 1
|c|

∑

t∈c p(v|t), and
pi(v|c) = 1

|c|

∑

t∈c pi(v|t), we have that p(v|c) = 1
m
pi(v|c). Now let Ck be a k-clustering,

for 1 ≤ k ≤ n, and let Ck be the corresponding random variable. We have that

H(V) =
1

m

m
∑

i=1

H(Vi) + logm

H(V |Ck) =
1

m

m
∑

i=1

H(Vi|Ck) + logm

I(V ;Ck) =
1

m

m
∑

i=1

I(Vi;Ck) .

Given that T and Cn convey the same amount of information about both V and Vi,
the information loss for some clustering C can be expressed as

I(V ;T)− I(V ;C) =
1

m

m
∑

i=1

(I(Vi;T)− I(Vi;C))

Therefore, minimizing the information loss for variable V is the same as the minimizing
the sum of the information losses for all individual variables Vi.

Chapter 3. LIMBO Clustering 49

3.3.2 Market-Basket Data

Market-basket data describes a database of transactions for a store, where every tuple

consists of the items purchased by a single customer. It is also used as a term that

collectively describes a data set where the data objects are sets of values of a single

attribute, and each object may contain a different number of values. In the case of

market-basket data, the input to our problem is a set T of n tuples on a single attribute

V , with domain V. Tuple ti contains di values. If d is the size of the domain V, we can

represent our data as an n×d matrix M , where each t ∈ T is a d-dimensional row vector

in M . If tuple t contains attribute value v c(v) times, then M [t, v] = c(v), otherwise

M [t, v] = 0.

Now, let T and V be random variables that range over sets T and V respectively.

For tuple ti ∈ T, 1 ≤ i ≤ n we define

p(ti) = 1/n

p(v|ti) =

c(v)/di if v appears in t c(v) times

0 otherwise
.

We can now define the mutual information I(T ;V) and proceed with the Information

Bottleneck method to cluster the tuples in T.

3.4 LIMBO Clustering

The Agglomerative Information Bottleneck algorithm, described in Section 3.2.3, requires

a number of operations with high computational complexity, namely O(n2d2 log n), which

is prohibitive for large data sets. We now introduce the scaLable InforMation BOttleneck,

LIMBO, algorithm, which uses distributional summaries in order to deal with large data

sets. LIMBO is based on the idea that we do not need to keep whole tuples, or whole

clusters in main memory, but instead, just sufficient statistics to describe them. LIMBO

produces a compact summary model of the data, and then performs clustering on the

Chapter 3. LIMBO Clustering 50

summarized data. In our algorithm, we bound the size of our summary model that

contains the sufficient statistics. We use a B-tree-like indexing structure to efficiently

manage the summary statistics and to reduce the in-memory computation. This data

structure is similar to one used in BIRCH [ZRL96], a clustering algorithm for numerical

data. However, an IB-inspired notion of distance and a novel definition of summaries

to produce the solution, make our approach different. Moreover, in BIRCH, a heuristic

is used to control the accuracy of the summary created. (When a space bound for the

summary is reached, the accuracy threshold is heuristically changed in hopes of reducing

the size of the summary.)

3.4.1 Distributional Cluster Features

We summarize a cluster of tuples in a Distributional Cluster Feature (DCF). We will use

the information in the relevant DCF s to compute the distance between two clusters or

between a cluster and a tuple.

For this section, we shall use T to denote a set of tuples over a set V of attribute

values, and T and V to denote the corresponding random variables. Also let C denote a

clustering of the tuples in T and let C be the corresponding random variable. For some

cluster c ∈ C, the Distributional Cluster Feature (DCF) of cluster c is defined by the

pair

DCF (c) =
(

p(c), p(V |c)
)

where p(c) = n(c)/n is the probability of cluster c, with n(c) being the number of tuples

in c, and p(V |c) is the conditional probability distribution of the attribute values given

the cluster c. We will use DCF (c) and c interchangeably.

If c consists of a single tuple t ∈ T, p(t) = 1/n, and p(V |t) is computed as described

in Section 3.2. For example, in the movie database, for tuple ti, DCF (ti) corresponds

to the ith row of the normalized matrix M in Table 3.2. For larger clusters, the DCF

is computed recursively as follows. Let c∗ denote the cluster we obtain by merging two

Chapter 3. LIMBO Clustering 51

child1 child3child2 child6child1 child3child2 child6

child1 child3child2 child5

prev next prev next

Root Node

Non-leaf node

Leaf node Leaf node

DCF6DCF2DCF1 DCF4DCF2DCF1

DCF5DCF2DCF1 DCF3

DCF6DCF2DCF1 DCF3

{ Data }

Figure 3.3: A DCF tree with branching factor 6

clusters c1 and c2. The DCF of the cluster c∗ is equal to

DCF (c∗) =
(

p(c∗), p(V |c∗)
)

where p(c∗) and p(V |c∗) are computed using Equations 3.2, and 3.3 respectively, where

Y = V .

We define the distance, d(c1, c2), between DCF (c1) and DCF (c2) as the information

loss δI(c1, c2) incurred by merging the corresponding clusters c1 and c2. The distance

δI(c1, c2) is computed using Equation 3.4, where Y = V . The information loss depends

only on the clusters c1 and c2, and not on the clustering C of which they are part.

The DCF s can be stored and updated incrementally. The probability vectors are

stored as sparse vectors. Each DCF provides a summary of the corresponding cluster

that is sufficient for computing the distance between two clusters.

3.4.2 The DCF Tree

The DCF tree is a height-balanced tree as depicted in Figure 3.3. Each node in the

tree contains at most B entries, where B is the branching factor of the tree. Each node

entry stores one DCF . At any point in the construction of the tree, the DCF s at the

leaves define a clustering of the tuples seen so far. Each non-leaf node stores DCF s that

are produced by summarizing the DCF s of its children. The DCF tree is built in a

B-tree-like dynamic fashion. The insertion algorithm is described in detail below. After

Chapter 3. LIMBO Clustering 52

all tuples are inserted into the tree, the DCF tree embodies a compact representation

in which a particular clustering of the data set is summarized by the information in the

DCF s of the leaves.

3.4.3 The LIMBO Clustering Algorithm

The LIMBO algorithm proceeds in three phases. In the first phase, the DCF tree is

constructed to summarize the data. In the second phase, the DCF s of the DCF tree

leaves are merged into new DCF s to produce a chosen number of clusters. In the third

phase, we associate each tuple with the DCF to which the tuple is closest.

Phase 1: Insertion into the DCF tree. Tuples are read and inserted one by one.

Tuple t is converted into DCF (t), as described in Section 3.4.1. Then, starting from the

root, we trace a path downward in the DCF tree. When at a non-leaf node, we compute

the distance between DCF (t) and each DCF entry of the node, finding the closest DCF

entry to DCF (t). We follow the child pointer of this entry to the next level of the tree.

When at a leaf node, let DCF (c) denote the DCF entry in the leaf node that is closest

to DCF (t). DCF (c) is the summary of some cluster c. At this point we need to decide

whether t will be absorbed into the cluster c or not.

In our space-bounded algorithm, an input parameter S controls the maximummemory

size for theDCF tree. Let E be the maximum size of aDCF entry (note that sparseDCF s

may be smaller than E). We compute the maximum number of nodes (N = S/(EB))

and keep a counter of the number of used nodes as we build the tree. If there is an

empty entry in the leaf node that contains DCF (c), then DCF (t) is placed in that entry.

If there is no empty leaf entry and there is sufficient free space, then the leaf node is

split into two leaves. We find the two DCF s in the leaf node that are farthest apart and

we use them as seeds for the new leaves. The remaining DCF s, and DCF (t) are placed

in the leaf that contains the seed DCF to which they are closest. Finally, if the space

bound has been reached, then we compare δI(c, t) with the minimum distance of any two

Chapter 3. LIMBO Clustering 53

DCF entries in the leaf. If δI(c, t) is smaller than this minimum, we merge DCF (t) with

DCF (c); otherwise, the two closest entries are merged and DCF (t) occupies the freed

entry. The space-bounded version of our algorithm is denoted by LIMBOS.

Alternatively, if we wish to control the information that is lost at each merge, rather

than the model size, we use a threshold on the distance δI(c, t) (that is, the information

loss incurred by merging tuple t into cluster c). We merge DCF (t) with DCF (c) only

if δI(c, t) is less than a specified threshold. In this way, we control the information lost

in merging tuple t with cluster c. The selection of an appropriate threshold value will

necessarily be data dependent, and there is a need for an intuitive way of allowing a user

to set this threshold. If the threshold is chosen to be too small, then either the DCF

tree can become huge or else the physical space available will be exhausted. A candidate

guideline for setting the threshold is to choose a value that is a fraction of the average

mutual information between the tuples T and the attribute values V. Within a data

set, every tuple contributes, on “average”, I(V ;T)/n to the mutual information I(V ;T).

We define the clustering threshold to be a multiple φ of this average and we denote the

threshold by τ(φ). That is,

τ(φ) = φ
I(V ;T)

n

We can make a pass over the data, or use a sample of the data, to estimate I(V ;T).

Given a value for φ (0 ≤ φ ¿ n), if a merge incurs information loss more than φ times

the “average” mutual information, then the new tuple is placed in a cluster by itself. Note

that value τ(φ) plays a role that is analogous to the radius of a cluster for numerical

data. In the extreme case φ = 0.0, we prohibit any information loss in our summary and

our algorithm is the same as AIB. Empirically, we have shown that for values of φ close

to 1.0 we obtain a concise and informative summarization. We denote this version of our

algorithm by LIMBOφ and discuss the effect of φ in Section 3.6.4.

When a leaf node is split, resulting in the creation of a new leaf node, the leaf’s

parent is updated, and a new entry is created at the parent node that describes the

Chapter 3. LIMBO Clustering 54

newly created leaf. If there is space in the non-leaf node, we add a new DCF entry,

otherwise the non-leaf node must also be split. This process continues upward in the tree

until the root is either updated or split itself. In the latter case, the height of the tree

increases by one.

Phase 2: Clustering. After the construction of the DCF tree, the leaf nodes hold the

DCF s of a clustering C̃ of the tuples in T. Each DCF (c) corresponds to a cluster c ∈ C̃,

and contains sufficient statistics for computing p(V |c), and probability p(c). We employ

the Agglomerative Information Bottleneck (AIB) algorithm to cluster the DCF s in the

leaves and produce clusterings of the DCF s. The final result is a reduced DCF tree in

which the leaves correspond to clusters of a k-clustering for a chosen value of k.

The time for this phase depends upon the number of clusters in clustering C̃. We

note that any clustering algorithm is applicable at this phase of the algorithm. We assure

that the number of the DCF s in the leaves is sufficiently small that the computation time

of AIB does not dominate the running time of the full algorithm.

Phase 3: Associating tuples with clusters. In the final phase, we perform a scan over

the data set and assign each tuple to the cluster whose cluster descriptor (a corresponding

DCF summary) is closest to the tuple.

3.4.4 Analysis of LIMBO

We now present an analysis of the I/O and CPU costs for each phase of the LIMBO

algorithm. In what follows, n is the number of tuples in the data set, d is the total

number of attribute values, B is the branching factor of the DCF tree, S is the size

of the available memory for the DCF tree in LIMBOS and k is the chosen number of

clusters.

Phase 1: The I/O cost of this stage is a scan that involves reading the data set from

the disk. For the CPU cost, when a new tuple is inserted, the algorithm considers a path

Chapter 3. LIMBO Clustering 55

of nodes in the tree, and for each node in the path, it performs at most B operations

(distance computations, or updates), each taking time O(d). Thus, if h is the height of

the DCF tree produced in Phase 1, locating the correct leaf node for a tuple takes time

O(hdB). The time required for splitting a node is O(dB2). If U is the number of non-leaf

nodes, then all splits are performed in time O(dUB2) in total. Hence, the CPU cost of

creating the DCF tree is O(nhdB + dUB2). We observed experimentally that LIMBO

produces compact trees of small height.

Phase 2: For values of S that produce clusterings of high quality the DCF tree is

compact enough to fit in main memory. Hence, there is no I/O cost involved in this

phase, since it involves only the clustering of the leaf node entries of the DCF tree. If

L is the number of DCF entries at the leaves of the tree, then the AIB algorithm takes

time O(L2d2 logL). In our experiments, L¿ n, so the CPU cost is low.

Phase 3: The I/O cost of this phase is the reading of the data set from the disk again.

The CPU complexity is O(kdn), since each tuple is compared against the k DCF s that

represent the clusters.

In the experimental section (Section 6.4), we show how actual execution times are

distributed among the different phases of our algorithm.

3.5 Intra-Attribute Value Distance

In this section, we propose a novel approach that can be used within LIMBO to quantify

the distance between attribute values of the same attribute. Categorical data is char-

acterized by the fact that there is no inherent distance between attribute values. For

example, in the movie database instance, given the values “Scorsese” and “Coppola”,

it is not apparent how to assess their similarity. Comparing the set of tuples in which

they appear is not useful since every movie has a single director. In order to compare

attribute values, we need to place them within a context. Then, two attribute values are

Chapter 3. LIMBO Clustering 56

similar if the contexts in which they appear are similar. We define the context as the

distribution these attribute values induce on the remaining attributes. For example, for

the attribute “director”, two directors are considered similar if they induce a “similar”

distribution over the attributes “actor” and “genre”.

Formally, let A′ be the attribute of interest, and let A′ denote the set of values of

attribute A′. Also let Ã = A \A′ denote the set of attribute values for the remaining

attributes. For the example of the movie database, if A′ is the director attribute, with

A′ = {d.S, d.C, d.H, d.K}, then Ã = {ac.DN, ac.S, ac.G, g.Cr, g.T, g.C}. Let A′ and Ã

be random variables that range over A′ and Ã respectively, and let p(Ã|v) denote the

distribution that value v ∈ A′ induces on the values in Ã. For some a ∈ Ã, p(a|v) is the

fraction of the tuples in T containing v, that also contain value a. Also, for some v ∈ A′,

p(v) is the fraction of tuples in T that contain the value v. Table 3.3 shows an example

of a table when A′ is the director attribute.

director ac.DN ac.S ac.G g.Cr g.T g.C p(d)

Scorsese 1/2 0 0 1/2 0 0 1/6
Coppola 1/2 0 0 1/2 0 0 1/6

Hitchcock 0 1/3 1/3 0 2/3 0 2/6
Koster 0 1/3 1/3 0 0 2/3 2/6

Table 3.3: The “director” attribute

For two values v1, v2 ∈ A′, we define the distance between v1 and v2 to be the

information loss δI(v1, v2), incurred about the variable Ã if we merge values v1 and v2.

This is equal to the increase in the uncertainty of predicting the values of variable Ã,

when we replace values v1 and v2 with v1 ∨ v2. In the movie example, Scorsese and

Coppola are the most similar directors.1

The definition of a distance measure for categorical attribute values is a contribution

in itself, since it imposes some structure on an inherently unstructured problem. We can

now define a distance measure between tuples as the sum of the distances of the individual

1A conclusion that agrees with a well-informed cinematic opinion.

Chapter 3. LIMBO Clustering 57

attribute values. Another possible application is to cluster intra-attribute values. For

example, in a movie database, we may be interested in discovering clusters of directors

or actors.

Given the joint distribution of random variables A′ and Ã, we can apply the LIMBO

algorithm for clustering the values of attribute A′. Merging two values v1, v2 ∈ A′,

produces a new cluster of values v1 ∨ v2, where p(v1 ∨ v2) = p(v1)+ p(v2), since v1 and v2

never appear together. Also,

p(a|v1 ∨ v2) =
p(v1)

p(v1 ∨ v2)
p(a|v1) +

p(v2)

p(v1 ∨ v2)
p(a|v2) .

The problem of defining a context sensitive distance measure between attribute values

is also considered by Das and Mannila [DM00]. They define an iterative algorithm for

computing the interchangeability of two values. We believe that our approach gives a

natural quantification of the concept of interchangeability. Furthermore, our approach

has the advantage that it allows for the definition of distance between clusters of values,

which can be used to perform intra-attribute value clustering. Gibson et al. [GKR98]

proposed STIRR, an algorithm that clusters attribute values. STIRR does not define a

distance measure between attribute values and, furthermore, is restricted to producing

only two clusters of values (see Section 2.4). Palmer and Faloutsos [PF03] define a

similarity function between categorical values by looking at how they co-occur with other

values. They exploit the duality between random walks on graphs and electrical circuits

to develop their similarity measure. Our work is also complementary to the work on

keyword searching [BHN+02, HP02] where, given a keyword, a set of answers is retrieved.

In our work, we produce sets of similar values, i.e. keywords, of a specific domain,

and hence, given a value from this domain, we may retrieve other similar values from

its cluster. However, we do not deal with keywords from different domains. Further

experimentation is needed to better assess similarities and differences of our approach

relative to the work on keyword searching. Finally, we intend to compare our algorithm

Chapter 3. LIMBO Clustering 58

with the co-clustering approach of Dhillon, Malella and Modha [DMM03], where, given

a data set, its tuples and values are clustered interchangeably so that the information

loss is minimum.

3.6 Experimental Evaluation

In this section, we perform a comparative experimental evaluation of the LIMBO algo-

rithms on both real and synthetic data sets. We compare both versions of LIMBO with

other categorical clustering algorithms, including COOLCAT [BCL02a, BCL02b], which

is the only other scalable information-theoretic clustering algorithm of which we know.

3.6.1 Algorithms

We compare the clustering quality of LIMBO with the following algorithms already pre-

sented in Chapter 1.

ROCK Algorithm [GRS99]. We use the Jaccard Coefficient for the similarity mea-

sure as suggested in the original paper. We remind the reader that ROCK uses θ as

a parameter to assess initial similarity among all pairs of objects. For data sets that

appear in the original ROCK paper, we set the threshold θ to the value suggested there,

otherwise we set θ to the value that gave us the best results in terms of quality. For our

experimentation, we use the implementation of Guha et al. [GRS99].

COOLCAT Algorithm [BCL02b]. COOLCAT differs from our approach in that it

employs sampling, and it is non-hierarchical. COOLCAT starts with a sample of points

and identifies a set of k initial tuples such that the minimum pairwise distance among

them is maximized. These serve as representatives of the k clusters. All remaining tuples

of the data set are then placed in one of the clusters such that, at each step, the increase in

the entropy of the resulting clustering is minimized. For the experiments, we implement

COOLCAT based on the CIKM paper by Barbarà et al. [BCL02b].

Chapter 3. LIMBO Clustering 59

STIRR Algorithm [GKR98]. We compare this algorithm with our intra-attribute

value clustering algorithm. In our experiments, we use our own implementation and

report results for ten iterations, as suggested in the original paper.

LIMBO Algorithm. As already stated in Section 3.4, we have two versions of the

LIMBO algorithm, one that is space-bounded, LIMBOS as well as a version, in which we

control the loss of information at each merge (LIMBOφ). The choice of which version to

use depends on the application we consider. For example, for an application where we

need to control the information content of each cluster produced, we use LIMBOφ. When

we apply the algorithm to a data set under limited memory budget, LIMBOS is more

appropriate. We remind the reader that in the extreme case of φ = 0.0, we prohibit any

information loss in our summary. This is equivalent to setting S = ∞ in LIMBOS. We

discuss the effect of φ and S in Section 3.6.4. Algorithmically, only the merging decision

in Phase 1 differs in the two versions, while all other phases remain the same for both

LIMBOS and LIMBOφ.

In our implementation, we store DCF s as sparse vectors using a sparse vector library

(http://www.genesys-e.org/ublas/).

3.6.2 Data Sets

We experimented with the data sets described below. The first three have been previously

used for the evaluation of the aforementioned algorithms [BCL02b, GKR98, GRS99].

The synthetic data sets are used both for quality comparison, and for our scalability

evaluation.

Congressional Votes: This relational data set was taken from the UCI Machine Learn-

ing Repository.2 It contains 435 tuples of votes from the U.S. Congressional Voting Record

of 1984. Each tuple is a congress-person’s vote on 16 issues and each vote is boolean,

2http://www.ics.uci.edu/∼mlearn/MLRepository.html

Chapter 3. LIMBO Clustering 60

either YES or NO. Each congress-person is classified as either Republican or Democrat.

There are a total of 168 Republicans and 267 Democrats. There are 288 missing values

that we treat as the same value when they belong to the domain of the same attribute

and as different when they belong to the domain of different attributes.

Mushroom: The Mushroom relational data set also comes from the UCI Repository. It

contains 8,124 tuples, each representing a mushroom characterized by 22 attributes, such

as color, shape, odor, etc. The total number of distinct attribute values is 117. Each

mushroom is classified as either poisonous or edible. There are 4,208 edible and 3,916

poisonous mushrooms in total. There are 2,480 missing values that we treat in the same

way as in Votes.

Database and Theory Bibliography. This relational data set contains 8,000 tu-

ples that represent research papers. About 3,000 of the tuples represent papers from

database research and 5,000 tuples represent papers from theoretical computer science.

Each tuple contains four attributes with values for the first Author, second Author,

Conference/Journal and the Year of publication.3 We use this data to test our value

clustering algorithm by attempting to cluster conferences and journals according to the

database or theoretical computer science areas.

Synthetic Data Sets. We produce synthetic data sets using a data generator available

on the Web.4 This generator offers a wide variety of options, in terms of the number of

tuples, attributes, and attribute domain sizes. We specify the number of classes in the

data set by the use of conjunctive rules of the form (Attr1 = a1 ∧ Attr2 = a2 ∧ . . .) ⇒

Class = c1. The rules may involve an arbitrary number of attributes and attribute

values. We name these synthetic data sets by the prefix DS followed by the number of

classes in the data set, e.g., DS5 or DS10. The data sets contain 5,000 tuples, and 10

3Following the approach of Gibson et al. [GKR98], if the second author does not exist, then the name
of the first author is copied instead. We also filter the data so that each conference/journal appears at
least 5 times.

4http://www.datgen.com/

Chapter 3. LIMBO Clustering 61

attributes, with domain sizes between 20 and 40 for each attribute. Three attributes

participate in the rules the data generator uses to produce the class labels. Additional

larger synthetic data sets are described in Section 3.6.6.

Web Data: This is a market-basket data set that consists of a collection of web pages.

The pages were collected as described by Kleinberg [Kle98]. A query is made to a search

engine, and an initial set of web pages is retrieved. This set is augmented by including

pages that point to, or are pointed to by pages in the set. Then, the links between the

pages are discovered, and the underlying graph is constructed. Following the terminology

of Kleinberg [Kle98], we define a hub to be a page with non-zero out-degree, and an

authority to be a page with non-zero in-degree.

Our goal is to cluster the authorities in the graph. The set of objects T is the set

of authorities in the graph, while the set of attribute values A is the set of hubs. Each

authority is expressed as a vector over the hubs that point to this authority. For our

experiments, we use the data set used by Borodin et al. [BRRT01] for the “abortion”

query. We applied a filtering step to assure that each hub points to more than 10

authorities and each authority is pointed to by more than 10 hubs. The data set contains

93 authorities related to 102 hubs.

All data sets are summarized in Table 3.4.

Data Set Records Attributes Attr. Values Missing

Votes 435 16 48 288
Mushroom 8,124 22 117 2,480

Bibliographic 8,000 4 9,587 0
Web Data 93 102 102 0

DS5 5,000 10 314 0
DS10 5,000 10 305 0

Table 3.4: Summary of the data sets used

Chapter 3. LIMBO Clustering 62

3.6.3 Quality Measures for Clustering

Clustering quality lies in the eye of the beholder; determining the best clustering usually

depends on subjective criteria. Consequently, we will use several plausible quantitative

measures of clustering performance that are likely to match well with the subjective

clustering quality in various situations.

Many data sets commonly used in testing clustering algorithms include a variable

that is hidden from the algorithm, and specifies the class with which each tuple is as-

sociated. All data sets we consider include such a variable. This variable is not used

by the clustering algorithms. While there is no guarantee that any given classification

corresponds to an optimal clustering, it is nonetheless enlightening to compare cluster-

ings with pre-specified classifications of tuples. To do this, we use the Min Classification

Error, and Precision and Recall measures described below.

Information Loss, (IL): We use the information loss, I(V ;T) − I(V ;C) to compare

clusterings. The lower the information loss, the better the clustering. For a clustering

with low information loss, given a cluster, we can predict the attribute values of the

tuples in the cluster with relatively high accuracy.

Category Utility, (CU): Category utility [GC85] is defined as the difference between

the expected number of attribute values that can be correctly guessed given a cluster-

ing, and the expected number of correct guesses with no such knowledge. Let C be

a clustering. If Ai is an attribute with values vij, then CU is given by the following

expression:

CU =
∑

c∈C

|c|
n

m
∑

i

|Vi|
∑

j

[P (Ai = vij|c)2 − P (Ai = vij)
2]

Min Classification Error, (Emin): Assume that the tuples in T are already classified

into k classes G = {g1, . . . , gk}, and let C denote a clustering of the tuples in T into k

clusters {c1, . . . , ck} produced by a clustering algorithm. Consider a one-to-one mapping,

Chapter 3. LIMBO Clustering 63

f , from classes to clusters, such that each class gi is mapped to the cluster f(gi). The

classification error of the mapping is defined as

E =
k
∑

i=1

∣

∣

∣
gi ∩ f(gi)

∣

∣

∣

|T |

where
∣

∣

∣
gi ∩ f(gi)

∣

∣

∣
measures the number of tuples in class gi that received the wrong label.

The optimal mapping between clusters and classes, is the one that minimizes the classifi-

cation error. We use Emin to denote the fraction of tuples mislabelled under the optimal

mapping.

Precision, (P), Recall, (R): Without loss of generality assume that the optimal map-

ping assigns class gi to cluster ci. We define precision, Pi, and recall, Ri, for a cluster ci,

1 ≤ i ≤ k as follows.

Pi =
|ci ∩ gi|
|ci|

and Ri =
|ci ∩ gi|
|gi|

.

Pi and Ri take values between 0 and 1. Intuitively, Pi measures the accuracy with

which cluster ci reproduces class gi, while Ri measures the completeness with which ci

reproduces class gi. We define the precision and recall of the clustering as the weighted

averages of the precision and recall over all classes. More precisely

P =
k
∑

i=1

|gi|
|T |Pi and R =

k
∑

i=1

|gi|
|T |Ri .

We think of precision, recall, and classification error as indicative values of the ability of

the algorithm to reconstruct the indicated classes in the data set.

In our experiments, we report values for all of the above measures. For LIMBO and

COOLCAT, the numbers are averages over 100 runs with different (random) orderings of

the tuples. Our main results are averages over the 100 runs, but we also present statistics

on the variability among the 100 runs.

Chapter 3. LIMBO Clustering 64

3.6.4 Quality-Efficiency Trade-offs for LIMBO

In LIMBO, we can control the information loss during merges (using φ) or the size of the

model (using S). Both φ and S permit a trade-off between the compactness of the model

(number of leaf entries in the tree), and the expressiveness (information preservation) of

the summarization it produces. For small values of φ and large values of S, we obtain a

fine grain representation of the data set at the end of Phase 1. However, this results in a

tree with a large number of leaf entries, which leads to a higher computational cost for

both Phase 1 and Phase 2 of the algorithm. For large values of φ and small values of S,

we obtain a compact representation of the data set (small number of leaf entries), which

results in a smaller execution time, at the expense of increased information loss.

We now investigate this trade-off for a range of values for φ and S. Using a range

for the values of B from B = 2 up to B = 50, we observed experimentally that the

branching factor B does not significantly affect the quality of the clustering. We set

B = 4, which results in an acceptable execution time for Phase 1. Figure 3.4 presents

the execution times for LIMBOS and LIMBOφ on the DS5 data set, as a function of φ

and S. For φ = 0.25 the Phase 2 time is 210 seconds (beyond the edge of the graph).

The figures also include the size of the tree in KBytes, which was measured by a scan

of the tree upon completion of Phase 1. In this figure, we observe that for small φ and

large S the computational bottleneck of the algorithm is Phase 2. As φ increases and S

decreases the time for Phase 2 decreases in a quadratic fashion. This agrees with the plot

in Figure 3.6(a), where we observe that the number of leaves decreases also in a quadratic

fashion. Due to the decrease in the size (and height) of the tree, time for Phase 1 also

decreases, however, at a much slower rate. Phase 3, as expected, remains unaffected,

and it is only a few seconds for all values of φ and S. For φ ≥ 1.0, and S ≤ 256KB the

number of leaf entries becomes sufficiently small that the computational bottleneck of

the algorithm becomes Phase 1. For these values the execution time is dominated by the

linear scan and insertion time of the data in Phase 1.

Chapter 3. LIMBO Clustering 65

0 0.25 0.5 0.75 1 1.25
0

10

20

30

40

50

60

70

Value of φ

Ti
m

e
(s

ec
)

Phase1
Phase2
Phase3

918KB

553KB

316KB
145KB 25KB

64 256 1024 5120
0

10

20

30

40

50

60

70

Buffer Size, S, (KB)

Ti
m

e
(s

ec
)

41KB 108KB

270KB

513KB
Phase1
Phase2
Phase3

Figure 3.4: LIMBOφ and LIMBOS execution times (DS5)

In addition to Figure 3.4, we produced the graph of Figure 3.5. This graph shows the

size of the tree produced by LIMBO in Phase 2 and the corresponding time for clustering

the leaves of this tree. The graph demonstrates that, for a given buffer size, LIMBOS

requires up to 20% more time than LIMBOφ. This can be attributed to the difference

in the merging strategies used when new tuples are converted into DCF s and need to

be placed or merged in a leaf entry. LIMBOS performs more comparisons among leaf

entries than LIMBOφ.

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Time (sec)

S
iz

e
(K

B
)

LIMBO
φ

LIMBO
S

Figure 3.5: LIMBOφ and LIMBOS model sizes over time (DS5)

We now study the change in the quality measures for the same range of values for

φ and S. In the extreme cases of φ = 0.0 and S = ∞, we only merge identical tuples,

Chapter 3. LIMBO Clustering 66

Votes Mushroom DS5 DS10
LIMBOφ 94.01% 99.77% 98.68% 98.82%
LIMBOS 85.94% 99.34% 95.36% 95.28%

Table 3.5: Reduction in DCF leaf entries

and no information is lost in Phase 1. LIMBO then reduces to the AIB algorithm, and

we obtain the same quality as AIB. Figures 3.6(b) and 3.6(c) show the quality measures

for the different values of φ and S. The CU value (not plotted) is equal to 2.51 for

S ≤ 256KB, and 2.56 for S > 256KB. We observe that for φ ≤ 1.0 and S > 256KB, we

obtain clusterings of exactly the same quality as for φ = 0.0 and S = ∞, that is, the

same clusterings as produced by the AIB algorithm. At the same time, for φ = 1.0 and

S = 256KB the execution time of the algorithm is only a small fraction of that of the

AIB algorithm, which was a few minutes.

Similar observations hold for all other data sets. There is a range of values for φ and

S where the execution time of LIMBO is dominated by Phase 1, while at the same time,

we observe essentially no change (up to the third decimal digit) in the quality of the

clustering. Table 3.5 shows the reduction in the number of leaf entries for each data set

for LIMBOφ and LIMBOS. The numbers are computed using the expression:

n− e
n
· 100%

where n is the number of tuples and e the number of DCF leaf entries. The parame-

ters φ and S are set so that the cluster quality is almost identical to that of AIB (as

demonstrated in the tables in Section 3.6.5). These experiments demonstrate that in

Phase 1 we can obtain significant compression of the data sets at no expense in the final

quality of clustering. The consistency of LIMBO can be attributed in part to the effect

of Phase 3, which assigns the tuples to cluster representatives, and recovers some of the

information loss accepted in the previous phases. Thus, it is sufficient for Phase 2 to

discover k well separated representatives. As a result, even for large values of φ and

small values of S, LIMBO obtains essentially the same clustering quality as AIB. Similar

Chapter 3. LIMBO Clustering 67

0 0.25 0.5 0.75 1 1.25 1.5
0

1

2

3

4

5

Value of φ

N
u

m
b

e
r

o
f

L
e
a
f

E
n

tr
ie

s
 (

x
1
0
0
0
)

CU=2.56

CU=2.56

CU=2.56
CU=2.56

CU=2.56
CU=2.29

CU=0.00

(a)

0 0.25 0.5 0.75 1 1.25 1.5

0.0

0.2

0.4

0.6

0.8

1.0

Value of φ

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(b)

64 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Buffer Size, S, (KB)

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(c)

Figure 3.6: DS5: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

Value of φ

N
u

m
b

e
r

o
f

L
e
a
f

E
n

tr
ie

s

CU=2.91

CU=2.91

CU=2.90
CU=2.83

CU=0.00

CU=2.91

CU=2.91

CU=2.91

CU=2.91

(a)

0 0.5 1 1.5 2 2.5
0.0

0.2

0.4

0.6

0.8

1.0

Value of φ

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(b)

8 50 100 150 200 250 300 350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0

Buffer Size, S, (KB)
Q

u
a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(c)

Figure 3.7: Votes: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality

figures are presented for all other data sets; Figures 3.7(a), 3.7(b) and 3.7(c) for Votes,

Figures 3.8(a), 3.8(b) and 3.8(c) for Mushroom and Figures 3.9(a), 3.9(b) and 3.9(c) for

DS10. As a general observation, these graphs show that for LIMBOφ, it appears that

φ ≤ 1.0 is always a good choice.. For data sets with small number of clusters φ = 1.25

or φ = 1.5 are also acceptable choices. On the other hand, for LIMBOS it can be seen

that S = 250KB is the safest choice with a minor loss in the quality.

Finally, the graphs of the information-theoretic quantities involved in the clustering

of Votes with LIMBOφ (φ = 0.0) are given in Figure 3.10.5 Similar graphs are observed

for all other data sets.

5We give the graphs in two separate figures to increase their readability.

Chapter 3. LIMBO Clustering 68

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

1

2

3

4

5

6

7

8

Value of φ

N
u

m
b

er
 o

f
L

ea
f

E
n

tr
ie

s
(x

1,
00

0)

CU=1.71

CU=1.71

CU=1.71

CU=1.71

CU=1.69

CU=1.62

(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0.0

0.2

0.4

0.6

0.8

1.0

Value of φ

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(b)

8 50 100 150 200 250 300 350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0

Buffer Size, S, (KB)

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(c)

Figure 3.8: Mushroom: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality

0 0.25 0.5 0.75 1 1.1 1.25
0

1

2

3

4

5

Value of φ

N
u

m
b

e
r

o
f

L
e
a
f

E
n

tr
ie

s
 (

x
1
,0

0
0
)

CU=2.83

CU=0.00

CU=2.83

CU=2.83

CU=2.83
CU=2.83

(a)

0 0.25 0.5 0.75 1 1.1 1.25
0.0

0.2

0.4

0.6

0.8

1.0

Value of φ

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(b)

50 100 150 200 250 300 350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0

Buffer Size, S, (KB)

Q
u

a
li
ty

 M
e
a
s
u

re
s

Information Loss (IL)
Precision (P)
Recall (R)
Class. Error (E

min
)

(c)

Figure 3.9: DS10: (a) Leaf entries, (b) LIMBOφ quality, (c) LIMBOS quality

Chapter 3. LIMBO Clustering 69

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of Clusters, k

I(C;V)

H(C)H(T)

H(C|V)

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of Clusters, k

I(C;V)

H(T)

H(V)

H(V|C)

H(C;V)

Figure 3.10: Information-theoretic quantities for LIMBOφ as k changes (Votes)

3.6.5 Evaluation of LIMBO

Comparison to Optimal Clustering

To get a better feel for how LIMBO performs on categorical data, we implemented a

brute force algorithm (BF), that generates all possible clusterings and selects the one

with the lowest information loss. Note that BF is computationally feasible only if the

number of tuples is quite small. We experimented with data sets of sizes n = 7 and

n = 8 and for all clustering sizes k, 2 ≤ k < n 6. The data sets were produced using the

synthetic data generator and they each contain five attributes, each one of them with a

domain of size three. We compared the information loss of the Brute Force algorithm

against that of LIMBOφ for φ = 0.0 (i.e., starting with each tuple in its own cluster).

Results are given in Table 3.6.

The combinations of n, k did not contain clusterings with the same information loss.

For all these combinations in Table 3.6, LIMBO produces a clustering with information

loss equal to the minimum information loss (the numbers agreed even in more significant

6The total number of clusterings for given values of n and k is equal to the Stirling number of second
order. Even for n = 20 and k = 5, this number is equal to approximately 7.5 · 1011.

Chapter 3. LIMBO Clustering 70

n, k Clusterings BF LIMBO

7,2 63 74% 74%
7,3 301 46% 46%
7,4 350 21% 21%
7,5 140 16% 16%
7,6 21 7% 7%
8,2 127 65% 65%
8,3 966 45% 45%
8,4 1701 39% 39%
8,5 1050 21% 21%
8,6 266 16% 16%
8,7 28 9% 9%

Table 3.6: Information loss of brute force and LIMBO (φ = 0.0)

digits than the ones presented in Table 3.6).These results are indicative of the ability of

the LIMBO algorithm to find an optimal clustering when the number of tuples is small.

Tuple Clustering

Table 3.7 shows the results for all algorithms on all quality measures for the Votes and

Mushroom data sets. For LIMBOφ, we present results for φ = 1.0 while for LIMBOS, we

present results for S = 128K, since that is enough space for LIMBOS to match the quality

of AIB. We can see that both versions of LIMBO have results almost identical to the

quality measures for φ = 0.0 and S =∞, i.e., the AIB algorithm. The size entry in the

table holds the number of DCF entries in all leaf nodes for LIMBO, and the sample size

for COOLCAT. For the Votes data set, we use the whole data set as a sample, while for

Mushroom, we use 1,000 tuples. As Table 3.7 indicates, LIMBO’s quality is superior to

ROCK and COOLCAT for both data sets. In terms of information loss, LIMBO created

clusters which retained most of the initial information about the attribute values. With

respect to the other measures, LIMBO outperforms all other algorithms, exhibiting the

highest CU , P and R in all data sets tested, as well as the lowest Emin.

We also evaluate LIMBO’s performance on two synthetic data sets, namely DS5 and

DS10. These data sets allow us to evaluate our algorithm on data sets with more than

Chapter 3. LIMBO Clustering 71

Votes (2 clusters)
Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S =∞)[AIB] 384 72.52 0.89 0.87 0.13 2.89
LIMBO (φ = 1.0) 23 72.55 0.89 0.87 0.13 2.89
LIMBO (S = 128KB) 54 72.54 0.89 0.87 0.13 2.89
COOLCAT (s = 435) 435 73.55 0.87 0.85 0.15 2.78
ROCK (θ = 0.7) - 74.00 0.87 0.86 0.16 2.63

Mushroom (2 clusters)
Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S =∞)[AIB] 8124 81.45 0.91 0.89 0.11 1.71
LIMBO (φ = 1.0) 18 81.45 0.91 0.89 0.11 1.71
LIMBO (S = 128KB) 54 81.46 0.91 0.89 0.11 1.71
COOLCAT (s = 1, 000) 1,000 84.57 0.76 0.73 0.27 1.46
ROCK (θ = 0.8) - 86.00 0.77 0.57 0.43 0.59

Table 3.7: Results for real data sets (bold fonts indicate results for LIMBO)

two classes. The results are shown in Table 3.8. We observe again that LIMBO has the

lowest information loss and produces nearly optimal results with respect to precision and

recall.

For the ROCK algorithm, we observed that it is very sensitive to the threshold value,

θ, and in many cases, the algorithm produces one giant cluster that includes tuples from

most classes. This results in poor precision and recall.

Comparison with COOLCAT

COOLCAT exhibits average clustering quality, as indicated by the P and R measures,

that is close to that of LIMBO. It is interesting to examine how COOLCAT behaves when

we consider other statistics. In Table 3.9, we present statistics for 100 runs of COOLCAT

and LIMBO on different orderings of the Votes and Mushroom data sets. We present

LIMBO’s results for φ = 1.0, which are very similar to those for φ = 0.0. For the

Votes data set, COOLCAT exhibits information loss as high as 95.31% with a variance

of 12.25%. For all runs, we use the whole data set as the sample for COOLCAT.

For the Mushroom data set, the situation is better, but still the variance in informa-

tion loss is as high as 3.5%. The sample size was 1,000 for all runs. Table 3.9 indicates

Chapter 3. LIMBO Clustering 72

DS5 (n=5000, 10 attributes, 5 clusters)
Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S =∞)[AIB] 5000 77.56 0.998 0.998 0.002 2.56
LIMBO (φ = 1.0) 66 77.56 0.998 0.998 0.002 2.56
LIMBO (S = 1024KB) 232 77.57 0.998 0.998 0.002 2.56
COOLCAT (s = 125) 125 78.02 0.995 0.995 0.05 2.54
ROCK (θ = 0.0) - 85.00 0.839 0.724 0.28 0.44

DS10 (n=5000, 10 attributes, 10 clusters)
Algorithm size IL(%) P R Emin CU

LIMBO (φ = 0.0,S =∞)[AIB] 5000 73.50 0.997 0.997 0.003 2.82
LIMBO (φ = 1.0) 59 73.51 0.994 0.996 0.004 2.82
LIMBO (S = 1024KB) 236 73.52 0.996 0.996 0.004 2.82
COOLCAT (s = 125) 125 74.32 0.979 0.973 0.026 2.74
ROCK (θ = 0.0) - 78.00 0.830 0.818 0.182 2.13

Table 3.8: Results for synthetic data sets (bold fonts indicate results for LIMBO)

that LIMBO behaves in a more stable fashion than COOLCAT over runs with different

input orders. Notably, for the Mushroom data set, LIMBO’s performance is exactly the

same in all runs, and for Votes the variability in performance is very small. This indicates

that LIMBO is insensitive to the input order of data.

The performance of COOLCAT appears to be sensitive to the following factors: the

choice of representatives, the sample size, and the ordering of the tuples. After detailed

examination, we found that the runs with maximum information loss for the Votes data

set correspond to cases where COOLCAT selected an outlier as an initial representative.

The Votes data set contains three such tuples, which are far from all other tuples, and

they are naturally picked as representatives.7 Reducing the sample size decreases the

probability of selecting outliers as representatives, however it increases the probability of

missing one of the clusters. In this case, high information loss may occur if COOLCAT

picks as representatives two tuples that are not maximally far apart. Finally, there are

cases where the same representatives may produce different results under different input

orderings. As tuples are inserted to the clusters, the representatives “move” closer to the

7A newer version of COOLCAT includes a step designed to avoid such selections [BCL02a]. We plan
to implement this step for future experiments.

Chapter 3. LIMBO Clustering 73

VOTES Min Max Avg V ar

LIMBO (φ = 1.0) IL 71.98 73.29 72.55 0.083
CU 2.83 2.94 2.89 0.0006

LIMBO (S = 128KB) IL 71.98 73.68 72.54 0.08
CU 2.80 2.93 2.89 0.0007

COOLCAT (s = 435) IL 71.99 95.31 73.55 12.25
CU 0.19 2.94 2.78 0.15

MUSHROOM Min Max Avg V ar

LIMBO (φ = 1.0) IL 81.45 81.45 81.45 0.00
CU 1.71 1.71 1.71 0.00

LIMBO (S = 1024KB) IL 81.46 81.46 81.46 0.00
CU 1.71 1.71 1.71 0.00

COOLCAT (s = 1000) IL 81.60 87.07 84.57 3.50
CU 0.80 1.73 1.46 0.05

Table 3.9: Statistics for IL(%) and CU over 100 trials

inserted tuples, thus making the algorithm sensitive to the ordering of the data set.

In terms of in-memory operations, both LIMBO and COOLCAT include a stage that

requires a quadratic number of them. For LIMBO this is Phase 2. For COOLCAT this

is the step where all pairwise entropies between the tuples in the sample are computed.

We experimented with both algorithms having the same input size for this phase, i.e.,

we made the sample size of COOLCAT equal to the number of DCF leaf entries. leaves

for LIMBO. Results for the Votes and Mushroom data sets are shown in Tables 3.10

and 3.11. LIMBO outperforms COOLCAT in all runs, for all quality measures. The two

algorithms are closest in quality for the Votes data set with input size 27, and farthest

apart for the Mushroom data set with input size 275. COOLCAT appears to perform

relatively better with the smaller sample size, while LIMBO’s performance is essentially

unaffected by the choice of input size.

Web Data

Since this data set has no predetermined cluster labels, we use a different evaluation

approach. We applied LIMBO with φ = 0.0 and clustered the authorities into three

clusters. (The choice of k is discussed in detail in Section 3.7.) The total information

Chapter 3. LIMBO Clustering 74

Sample Size = Leaf Entries = 384
Algorithm IL(%) P R Emin CU

LIMBO 72.52 0.89 0.87 0.13 2.89
COOLCAT 74.15 0.86 0.84 0.15 2.63

Sample Size = Leaf Entries = 27
Algorithm IL(%) P R Emin CU

LIMBO 72.55 0.89 0.87 0.13 2.89
COOLCAT 73.50 0.88 0.86 0.13 2.87

Table 3.10: LIMBO vs COOLCAT on Votes with same number of objects as input to
their corresponding expensive stages

Sample Size = Leaf Entries = 275
Algorithm IL(%) P R Emin CU

LIMBO 81.45 0.91 0.89 0.11 1.71
COOLCAT 83.50 0.76 0.73 0.27 1.46

Sample Size = Leaf Entries = 18
Algorithm IL(%) P R Emin CU

LIMBO 81.45 0.91 0.89 0.11 1.71
COOLCAT 82.10 0.82 0.81 0.19 1.60

Table 3.11: LIMBO vs COOLCAT on Mushroom with same number of objects as input
to their corresponding expensive stages

Chapter 3. LIMBO Clustering 75

loss was 61%. Figure 3.11 shows the authority to hub table, after permuting the rows so

that we group together authorities in the same cluster, and the columns so that each hub

is assigned to the cluster to which it has the most links. LIMBO manages to characterize

0 20 40 60 80 100
0

20

40

60

80

Hubs

A
u

th
o

ri
ti

e
s

Figure 3.11: Clustering of web data

the structure of the web graph. Authorities are clustered in three distinct clusters, such

that the ones in the same cluster share many hubs, while the ones in different clusters

have very few hubs in common. The three different clusters correspond to different

web communities, and different viewpoints on the issue of abortion. The first cluster

(authorities 70 to 93) consists of “pro-choice” pages. The second cluster (authorities 21

to 69) consists of “pro-life” pages. The third cluster (authorities 1 to 20) contains a

set of pages from cincinnati.com that were included in the data set by the algorithm

that collects the web pages, despite having no apparent relation to the abortion query.

We supplement the visual evidence of Figure 3.11 by some quantitative evidence: for

the authorities in a cluster, we calculate the percentage of their hub linkages that are to

hubs with the majority of the linkages to authorities in the same cluster. Hence, for the

“pro-choice” cluster this percentage is 95.59%, for the “pro-life” cluster it is 95.55% and

for the cincinatti.com cluster it is 100%. A complete list of the results can be found

in Tables 3.12, 3.13 and 3.14. In almost all cases the URLs and Titles of the web pages

Chapter 3. LIMBO Clustering 76

(Pro-Life Cluster) 49 web pages
URL Title

http://www.afterabortion.org After Abortion: Information on the aftereffects of abortion
http://www.lifecall.org Abortion Absolutely Not! A Several Sources Prolife Website

http://www.lifeinstitute.org International abortion reports and prolife news
http://www.rtl.org Information at Right to Life of Michigan’s homepage

http://www.silentscream.org Silent Scream Home Page
http://www.heritagehouse76.com Empty title field
http://www.peopleforlife.org Abortion, Life and Choice

http://www.stmichael.org/OCL/OCL.html Orthodox Christians For Life Resource Page
http://www.worldvillage.com/wv/square/chapel/safehaven Empty title field

http://www.prolife.com Pro-Life America
http://www.roevwade.org RoevWade.org
http://www.nrlc.org National Right to Life Organization
http://www.hli.org Human Life International (HLI)

http://www.pregnancycenters.org Pregnancy Centers Online
http://www.prolife.org/ultimate Empty title field
http://www.mich.com/ buffalo Catholics United for Life

http://www.prolife.org Empty title field
http://www.prolife.org/mssl Empty title field

http://www.pfli.org Pharmacists for Life International
http://www.rockforlife.org Rock For Life
http://members.aol.com/nfofl Empty title field
http://www.serve.com/fem4life Feminists For Life of America

http://www.cc.org Welcome to Christian Coalition of America Web site
http://www.cwfa.org Concerned Women for America (CWA)

http://www.prolifeaction.org Pro-Life Action League
http://www.ru486.org The RU-486 Files

http://www.operationrescue.org End Abortion in America
http://www.orn.org Operation Rescue National

http://www.priestsforlife.org Priests for Life Index
http://www.abortionfacts.com Abortion facts and information, statistics, hotlines and helplines
http://www.prolifeinfo.org The Ultimate Pro-Life Resource List

http://www.feministsforlife.org Feminists For Life of America
http://www.marchforlife.org The March For Life Fund Home Page

http://www.bfl.org BFL Home Page
http://www.ppl.org Presbyterians Pro-Life Home

http://www.wels.net/wlfl WELS Lutherans for Life
http://www.lifeissues.org Life Issues Institute, Inc.

http://netnow.micron.net/ rtli Right To Life of Idaho, Inc. Home Page
http://www.ohiolife.org Ohio Right To Life
http://www.wrtl.org Index

http://www.powerweb.net/dcwrl Dodge County Right to Life Home Page
http://www.nccn.net/ voice newvoice
http://www.bethany.org Bethany Christian Services

http://www.prolife.org/LifeAction Empty title field
http://www.ovnet.com/ voltz/prolife.htm Pirate Pete’s Pro-Life page
http://www.prolife.org/cpcs-online Empty title field

http://www.care-net.org Empty title field
http://www.frc.org FAMILY RESEARCH COUNCIL
http://www.ldi.org Life Dynamics

Table 3.12: Pro-life cluster of the web data set

are indicative of their content.

The information loss of ROCK and COOLCAT was 72% and 67%, respectively.

Intra-Attribute Value Clustering

We now present results for the application of LIMBO to the problem of intra-attribute

value clustering. For this experiment, we use the Bibliographic data set. We are interested

in clustering the conferences and journals, as well as the first authors of the papers. We

compare LIMBO with STIRR, an algorithm for clustering attribute values.

Following the description of Section 3.5, for the first experiment we set the random

variable A′ to range over the conferences/journals, while variable Ã ranges over first and

second authors, and the year of publication. There are 1,211 distinct publication venues

Chapter 3. LIMBO Clustering 77

(Pro-Choice Cluster) 24 web pages
URL Title

http://www.gynpages.com Abortion Clinics OnLine
http://www.prochoice.org NAF - The Voice of Abortion Providers

http://www.cais.com/agm/main The Abortion Rights Activist Home Page
http://hamp.hampshire.edu/ clpp/nnaf National Network of Abortion Funds

http://www.ncap.com National Coalition of Abortion Providers
http://www.wcla.org Welcome to the Westchester Coalition for Legal Abortion

http://www.repro-activist.org Abortion Access Project
http://www.ms4c.org Medical Students for Choice

http://www.feministcampus.org Feminist Campus Activism Online: Welcome Center
http://www.naral.org NARAL: Abortion and Reproductive Rights: Choice For Women

http://www.vote-smart.org Project Vote Smart
http://www.plannedparenthood.org Planned Parenthood Federation of America

http://www.rcrc.org The Religious Coalition for Reproductive Choice
http://www.naralny.org NARAL/NY

http://www.bodypolitic.org Body Politic Net News Home
http://www.crlp.org CRLP - The Center for Reproductive Law and Policy

http://www.prochoiceresource.org index
http://www.caral.org CARAL

http://www.protectchoice.org Pro-Choice Public Education Project
http://www.agi-usa.org The Alan Guttmacher Institute: Home Page
http://www.ippf.org International Planned Parenthood Federation (IPPF)

http://www.aclu.org/issues/reproduct/hmrr.html Empty title field
http://www.nationalcenter.org The National Center for Public Policy Research

http://wlo.org Women Leaders Online and Women Organizing for Change

Table 3.13: Pro-choice cluster of the web data set

(’Cincinnati’ Cluster) 20 web pages
URL Title

http://cincinnati.com/traffic Traffic Reports: Cincinnati.Com
http://careerfinder.cincinnati.com CareerFinder: Cincinnati.Com
http://autofinder.cincinnati.com Cincinnati Post and Enquirer
http://classifinder.cincinnati.com Classifieds: Cincinnati.Com
http://homefinder.cincinnati.com HomeFinder: Cincinnati.Com
http://cincinnati.com/freetime Cincinnati Entertainment: Cincinnati.Com

http://cincinnati.com/freetime/movies Movies: Cincinnati.Com
http://cincinnati.com/freetime/dining Dining: Cincinnati.Com
http://cincinnati.com/freetime/calendars Calendars: Cincinnati.Com

http://cincinnati.com Cincinnati.Com
http://cincinnati.com/helpdesk HelpDesk: Cincinnati.Com

http://cincinnati.com/helpdesk/feedback HelpDesk: Cincinnati.Com
http://cincinnati.com/helpdesk/circulation/circulation.html HelpDesk: Cincinnati.Com
http://cincinnati.com/helpdesk/circulation/subscribe.html HelpDesk: Cincinnati.Com

http://cincinnati.com/search Search our site: Cincinnati.Com
http://mall.cincinnati.com Cincinnati.Com Advertiser Index

http://cincinnati.com/advertise The Daily Fix: Cincinnati.Com
http://cincinnati.com/helpdesk/classifieds HelpDesk: Cincinnati.Com

http://cincinnati.com/copyright Cincinnati.Com - Your Key to the City
http://www.gannett.com Gannett home page

Table 3.14: ’Cincinnati’ cluster of the web data set

Chapter 3. LIMBO Clustering 78

in the data set; 815 are database venues, and 396 are theory venues.8 Results for φ = 1.0

and S = 5MB are shown in Table 3.15. LIMBO’s results are superior to those of STIRR

with respect to all quality measures. The difference is especially pronounced in the P

and R measures.

Algorithm Leaves IL(%) P R Emin

LIMBO (φ = 1.0) 47 94.01 0.90 0.90 0.11
LIMBO (S = 5MB) 16 94.02 0.90 0.89 0.12
STIRR - 98.01 0.56 0.55 0.45

Table 3.15: Bibliography clustering using LIMBO and STIRR

We now turn to the problem of clustering the first authors. Variable A′ ranges over

the set of 1,416 distinct first authors in the data set, and variable Ã ranges over the rest

of the attributes. We produce two clusters, and we evaluate the results of LIMBO and

STIRR based on the distribution of the papers that were written by first authors in each

cluster. Figures 3.12 and 3.13 illustrate the clusters produced by LIMBO and STIRR,

respectively. The x-axis in both figures represents publishing venues while the y-axis

represents first authors. If an author has published a paper in a particular venue, this

is represented by a point in each figure. The thick horizontal line separates the clusters

of authors, and the thick vertical line distinguishes between theory and database venues.

Database venues lie on the left of the line, while theory venues lie on the right of the line.

From these figures, it is apparent that LIMBO yields a better partition of the authors

than STIRR. The upper half corresponds to a set of theory researchers with almost no

publications in database venues. The bottom half, corresponds to a set of database re-

searchers with very few publications in theory venues. Our clustering is slightly smudged

by the authors between index 400 and 450 that appear to have a number of publications

in theory. These are drawn into the database cluster due to their co-authors. STIRR,

8The data set is pre-classified, so class labels are known.

Chapter 3. LIMBO Clustering 79

100 200 300 400

200

400

600

800

1000

1200

1400

Conferences/Journals

F
ir

st
 A

u
th

o
rs

Database Theory

Figure 3.12: LIMBO clusters of first au-
thors

100 200 300 400

200

400

600

800

1000

1200

1400

Conferences/Journals

F
ir

st
 A

u
th

o
rs

Database Theory

Figure 3.13: STIRR clusters of first au-
thors

on the other hand, creates a well separated theory cluster (upper half), but the second

cluster contains authors with publications almost equally distributed between theory and

database venues. We supplement the visual evidence of Figures 3.12 and 3.13 by some

quantitative evidence: for the first author in a cluster, we calculate the percentage of

the venues that are to authors in the same cluster. Hence, for LIMBO this percentage

is 77.13% in the database cluster and 96.34% in the theory cluster while for STIRR it is

1.66% in the database cluster and 91.95% in the theory.

3.6.6 Scalability Evaluation

In this section, we study the scalability of LIMBO algorithm, and we investigate how

the parameters of LIMBO affect the execution time. First we consider a sample of

the DBLP data set. The DBLP data set was created from the XML file found at

http://dblp.uni-trier.de/xml/. It contains 50,000 tuples, 13 attributes and 57,187

attribute values. More details on the creation of this sample are given in Chapter 4.

To study the scalability using DBLP, we created samples of 10,000, 20,000, 30,000 and

40,000 tuples from the initial data set and ran LIMBOφ with φ = 1.0. Figure 3.14 shows

that the execution time increases linearly as the size of the data set increases.

Chapter 3. LIMBO Clustering 80

10000 20000 30000 40000 50000
0

500

1000

1500

2000

2500

Number of Tuples

T
im

e
 (

s
e

c
)

Figure 3.14: DBLP execution times

Next, we study the execution time of both LIMBOφ and LIMBOS. We consider four

data sets of size 500K, 1M , 5M , and 10M , each containing 10 clusters and 10 attributes

with 20 to 40 values each (there were no missing values). All data sets were created with

the synthetic data set generator. The first three data sets are samples of the 10M data

set.

For LIMBOS, the size and the number of leaf entries of the DCF tree at the end

of Phase 1 is controlled by the parameter S. For LIMBOφ, we study Phase 1 in detail.

As we vary φ, Figure 3.15 demonstrates that the execution time for Phase 1 decreases

at a steady rate for values of φ up to 1.0. For 1.0 < φ < 1.5, execution time drops

significantly. This decrease is due to the reduced number of splits and the decrease in the

DCF tree size. In the same plot, we show some indicative sizes of the tree demonstrating

that the vectors that we maintain remain relatively sparse. The average density of the

DCF tree vectors, i.e., the average fraction of non-zero entries remains between 41%

and 87%. Figure 3.16 plots the number of leaf entries as a function of φ.9 We observe

that for φ > 1.0 LIMBO produces a manageable DCF tree, with fewer than 11,000 leaf

entries, leading to fast execution time in Phase 2. Furthermore, in all our experiments

9The y-axis of Figure 3.16 has a logarithmic scale.

Chapter 3. LIMBO Clustering 81

the height of the tree was never more than 11, and the occupancy of the tree, i.e., the

number of occupied entries over the total possible number of entries, was always above

85.7%, indicating that the memory space was well used.

0 0.5 0.75 1 1.11.21.3 1.5
0

5000

10000

15000

Value of φ

T
im

e
 (

s
e

c
)

500K
1M
5M
10M

520MB
340MB

154MB

50MB

250MB 189MB
84MB

28MB

183MB 44MB 22MB 8MB

Figure 3.15: Phase 1 execution times

0 0.5 0.75 1 1.1 1.3 1.5
10

0

10
2

10
4

10
6

10
8

Value of φ
N

u
m

b
e

r
o

f
L

e
a

f
E

n
tr

ie
s

500K
1M
5M
10M

Figure 3.16: Phase 1 leaf entries

Thus, for 1.0 < φ < 1.5, we have a DCF tree with manageable size, and fast execution

time for Phases 1 and 2. For our experiments, we set φ = 1.2 and φ = 1.3. For LIMBOS

we use buffer sizes of S = 1MB and S = 5MB. We now study the total execution

time of the algorithm for these parameter values. The graph in Figure 3.17 shows the

execution time for LIMBOφ and LIMBOS on the data sets we consider. In this figure, we

observe that execution time scales in a linear fashion with respect to the size of the data

set for both versions of LIMBO. We also observed that the clustering quality remained

unaffected for all values of φ and S, and it was the same across the data sets (except for

information loss in the 1M data set, which differed by 0.01%). Precision (P) and Recall

(R) were 0.999, and the classification error (Emin) was 0.0013, indicating that LIMBO

can produce clusterings of high quality, even for large data sets.

In our next experiment, we varied the number of attributes, m, in the 5M and 10M

data sets and ran both LIMBOφ, with φ = 1.2, and LIMBOS, with a buffer size of 5MB.

Figure 3.18 shows the execution time as a function of the number of attributes, for

Chapter 3. LIMBO Clustering 82

0 0.5 1 5 10
0

2000

4000

6000

8000

10000

12000

14000

Number of Tuples (x 1M)

T
im

e
 (

s
e

c
)

φ=1.3
φ=1.2
S=1MB
S=5MB

Figure 3.17: Execution time (m=10)

5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Attributes (m)

T
im

e
 (

s
e

c
)

10M, S=5MB
10M, φ=1.2
5M, S=5MB
5M, φ=1.2

Figure 3.18: Execution time

LIMBOφ,S IL(%) P R Emin CU
m = 5 49.12 0.991 0.991 0.0013 2.52
m = 10 60.79 0.999 0.999 0.0013 3.87
m = 20 52.01 0.997 0.994 0.0015 4.56

Table 3.16: LIMBOφ and LIMBOS quality

different data set sizes. In all cases, execution time increased linearly with the number

of attributes. Table 3.16 also presents the quality results for all values of m for both

LIMBO algorithms. The quality measures (except for CU) are essentially the same for

different sizes of the data set. (The CU measure is not normalized and consequently

tends to be larger for data sets with more attributes.)

Finally, we varied the number of clusters from k = 10 up to k = 50 in the 10M data

set, for φ = 1.2 and S = 5MB. As expected from the analysis of LIMBO in Section 3.4.4,

the number of clusters affected the execution time only in Phase 3. Recall from Figure 3.4

in Section 3.6.4 that Phase 3 is a small fraction of the total execution time. Indeed, as

we increase k from 10 to 50, we observed just 1.1% increase in the execution time for

LIMBOφ, and just 2.5% for LIMBOS in the total execution time of all phases of the

algorithm.

Chapter 3. LIMBO Clustering 83

3.6.7 Information Loss in Higher Dimensions

As a final experiment, we investigate the effect of increasing dimensionality for the

LIMBO clustering algorithm. Our experiment is similar in spirit to the one presented by

Hinneburg, Aggarwal and Keim [HAK00] for numerical data. We constructed a synthetic

data set of 1000 tuples and dimensionality ranging from 1 up to 200 attributes, each one

having up to 15 values in its domain.

We calculated all pairwise distances using the expression δI of Equation 3.4. The plot

of Figure 3.19 depicts the quantity δImax− δImin for each dimensionality m. Figure 3.19

0 50 100 150 200
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m

IL
m

ax
−

IL
m

in

1000 tuples

Figure 3.19: Quantity δImax − δImin for different values of m

shows that the difference between the maximum and minimum values of δI becomes

smaller and smaller as dimensionality grows in a nearly monotonic fashion. This result

agrees with the one given by Hinneburg et al. for the Lp metrics when p ≥ 3 [HAK00],

indicating that information loss entails the same problems incurred by other metrics used

for numerical data when dimensionality grows.

3.7 Estimating k

Automatically identifying an appropriate number of clusters in a data set is an important

aspect of the clustering problem. In most cases, there is no single correct answer. In this

Chapter 3. LIMBO Clustering 84

section, we discuss some information-theoretic measures that can be used in hierarchical

algorithms to identify the most “natural” clustering sizes for a given data set.

The first measure we consider is the rate of change of mutual information, δI(V ;Ck) =

I(V ;Ck+1)−I(V ;Ck). Thinking in reverse, δI(V ;Ck) captures the amount of information

we gain if we break a cluster in two, to move from a clustering of size k to a clustering

of size k + 1. For small values of k, breaking up the clusters results in large information

gains. As k increases, the information gain decreases. An appropriate value for k is when

the gain δI(V ;Ck) becomes sufficiently small as k increases. This has also been discussed

by Slonim and Tishby [ST99].

The mutual information I(V ;C) captures the coherence of the clusters, that is, how

similar the tuples within each cluster are. For a good clustering, we require that the

elements within the clusters be similar, but also that the elements across clusters be dis-

similar. We capture the dissimilarity across clusters in the conditional entropy H(C|V).

Intuitively, H(C|V) captures the purity of the clustering. For a clustering C with very

low H(C|V), for each cluster c in C, there exists a set of attribute values that appear

almost exclusively in the tuples of cluster c. The lower the H(C|V), the purer the clus-

ters. The value of H(Ck|V) is minimized for k = 1, where H(Ck|V) = 0. An appropriate

value for k is when H(Ck|V) is sufficiently low, and k > 1. Furthermore, the value

δH(Ck|V) = H(Ck|V)−H(Ck−1|V) gives the increase in purity when merging two clus-

ters to move from a clustering of size k to one of size k − 1. High values of δH(Ck|V)

mean that the two merged clusters are similar. Low values imply that the two merged

clusters are dissimilar. The latter case suggests k as a candidate value for the number

of clusters. We do not have an automatic way of determining how small the value of

δH(Ck|V) should be in order to choose a k value and, hence, we use the minimum value

of δH(Ck|V) and other values that are close to it.

We propose a combination of these measures, as a way of identifying the appropriate

number of clusters. When the number of clusters in not known in advance, we run Phase

Chapter 3. LIMBO Clustering 85

2 of the LIMBO algorithm up to k = 1, keeping a record of the DCF leaf entries for

each value of k in the range of interest. We also keep track of the mutual information

I(V ;Ck), and the conditional entropy H(Ck|V). Observing the behavior of these two

measures, provides us with candidate values for k, for which we run Phase 3 of LIMBO,

using the corresponding set of leaf entries. We illustrate this procedure using the Web

data set. Figure 3.20 presents the plots for H(Ck|V), I(Ck|V) (left), and δH(Ck|V),

δI(V ;Ck) (right) for the Web data. From the plots, we can conclude that for k = 3,

both δI(V ;Ck) and H(Ck|V) are sufficiently close to zero to mean that the clustering

is both pure and informative. This becomes obvious when looking at the clustering of

Web data in Figure 3.11. Note that δH(C2|V) is very low, which means that producing

a 2-clustering will result in merging two dissimilar clusters.

Similar curves for the Votes data set are given in Figure 3.21 and for the Mushroom

data set in Figure 3.22. For the Votes data set, the δI(V ;Ck) curve clearly suggests

k = 2 as the right number of clusters. The H(Ck|V) measure is not equally informative

since it increases steadily for increasing k. For k = 7, δH(Ck|V) takes a value close to

zero. When the AIB algorithm moves from 7 to 6 clusters, it merges two highly dissimilar

clusters. This suggests k = 7 as a candidate value for the number of clusters. This value

was also examined in the evaluation of the COOLCAT algorithm [BCL02a].

For the mushroom data set, the δI(V ;Ck) curve does not give a clear indication of

what the right number of clusters is. The H(Ck|V) and δH(Ck|V) curves demonstrate

that we have very low improvement in purity when we move from 3 to 2 clusters. In fact,

after careful examination of the corresponding curves for the individual attributes, we

observed that for some attributes, δH(Ck|Vi) is close, or equal to zero for k = 3. There-

fore, the two clusters that are merged when moving from a 3-clustering to a 2-clustering

are completely separated with respect to these attributes. This suggest k = 3 as candi-

date for the number of clusters. Looking at the clusterings we observed that generating

3 clusters results in breaking up the cluster that contained mostly poisonous mushrooms

Chapter 3. LIMBO Clustering 86

in the 2-clustering. Interestingly, the class of poisonous mushrooms is the concatenation

of two classes: “poisonous” and “not recommended” mushrooms. Therefore, k = 3 is a

valid candidate for the clustering size. Another possible number of clusters suggested by

the curves is k = 8.

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

I(C;V)
H(C|V)

1 2 3 4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

k

δ(H(C|V))
δ(I(C;V))

Figure 3.20: I(C;V), H(C|V), and δI(C;V), δH(C|V) for web data as functions of the
number of clusters

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

k

I(C;V)
H(C|V)

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

k

δ(H(C|V))
δ(I(C;V))

Figure 3.21: I(C;V), H(C|V), and δI(C;V), δH(C|V) for Votes as functions of the
number of clusters

Chapter 3. LIMBO Clustering 87

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

k

I(C;V)
H(C|V)

1 2 3 4 5 6 7 8 9
0

5

10

15

k

δ(H(C|V))
δ(I(C;V))

Figure 3.22: I(C;V), H(C|V), and δI(C;V), δH(C|V) for Mushroom as functions of
the number of clusters

3.8 Conclusions

In this chapter, we presented LIMBO, a scalable hierarchical clustering algorithm and

evaluated its effectiveness in trading off either quality for time or quality for space to

achieve compact, yet accurate, models for small and large categorical data sets. We have

shown LIMBO to have advantages over other information theoretic based clustering al-

gorithms, including AIB (in terms of scalability) and COOLCAT (in terms of clustering

quality and parameter stability). We have also shown advantages in quality over other

scalable and non-scalable algorithms designed to cluster either categorical data objects

or values. LIMBO builds a model in one pass over the data in a fixed amount of memory,

while keeping information loss in the model close to the minimum possible. In addition,

to the best of our knowledge, LIMBO is the only scalable categorical clustering algo-

rithm that is hierarchical. Using its compact summary model, LIMBO efficiently builds

clusterings for a large range (typically hundreds) of values of k. Furthermore, we are also

able to produce statistics that let us directly compare clusterings and select appropriate

values for the number of clusters, k.

Chapter 4

LIMBO-Based Techniques for
Structure Discovery

Database design has been characterized as a process of arriving at a design that maxi-

mizes the information content of each piece of data (or equivalently, one that minimizes

redundancy). Information content (or redundancy) is measured with respect to a pre-

scribed model for the data, a model that is often expressed as a set of constraints. In this

chapter, we consider the problem of doing database redesign in an environment where

the prescribed model is unknown or incomplete. Specifically, we consider the problem

of finding structural clues in an instance of data, an instance which may contain errors,

missing values, and duplicate records. We propose a set of information-theoretic tech-

niques for finding structural summaries that are useful in characterizing the information

content of the data, and ultimately useful in database design. We provide algorithms

for creating these summaries over large, categorical data sets us. We study the use of

these summaries in one specific physical design task, that of ranking functional depen-

dencies based on their data redundancy. We show how our ranking can be used by a

database designer tool to acquire hints about the structure of the data and potentially

derive meaningful vertical decompositions of a relation. We present an evaluation of the

approach on real data sets. The results of this chapter have been published in a series of

papers [AFF+02, MA03, AM03, AMT04].

89

Chapter 4. LIMBO-Based Techniques for Structure Discovery 90

4.1 Introduction

The growth of distributed databases has led to larger and more complex databases, the

structure and semantics of which are increasingly difficult to understand. In heteroge-

neous applications, data may be exchanged or integrated. This integration may introduce

anomalies such as duplicate records, missing values, or erroneous values. In addition, the

lack of documentation or the unavailability of the original designers can make the task

of understanding the structure and semantics of databases a very difficult one.

No matter how carefully a database was designed initially, there is no guarantee that

the data semantics are preserved as it evolves over time. It is usually assumed that

the schema and constraints are trustworthy, which means that they provide an accurate

model of the time-invariant properties of the data. However, in both legacy databases

and integrated data this may not be a valid assumption. Hence, we may need to redesign

a database to find a model (a schema and constraints) that better fit the current data.

In this chapter, we consider the problem of mining a database instance for structural

clues that may help a designer in identifying a better database design. Our work is

in the spirit of several recent approaches that propose tools to help an analyst in the

process of understanding and cleaning a database [DJMS02, RH01]. However, while these

approaches focus on providing data summaries that help in the process of integration

[RH01] or querying [DJMS02], we focus on data summaries that reveal information about

the database design and its information content.

To approach this problem, it is important to understand what makes a database de-

sign good. Database design has been characterized as a process of arriving at a design

that maximizes the information content of each piece of data (or equivalently, one that

minimizes redundancy) [AL03]. In other cases, a good database design is the one that

assures better performance given a specific workload [PA04]. In our work, information

content (or redundancy) is measured with respect to a prescribed model for the data, a

model that is often expressed as a set of constraints or dependencies. In their recent work,

Chapter 4. LIMBO-Based Techniques for Structure Discovery 91

Arenas and Libkin presented information-theoretic measures for comparing database de-

signs [AL03]. Given a schema and a set of constraints, the information content of a design

is precisely characterized. Their approach has the benefit that it permits two designs for

the same database to be compared directly.

However, to characterize the information content, it was necessary to have a prescribed

model, that is, a fixed set of constraints. Consider the following example.

Director Actor Genre
t1 Coppola Grant Thriller
t2 Coppola DeNiro Thriller
t3 Scorsese Grant Thriller

Figure 4.1: Examples of duplication and redundancy

Clearly, there is considerable duplication of values in this instance. However, what

we consider to be redundant will depend on the constraints expressed on the schema. If

the functional dependency Actor → Genre holds, then the value Thriller in tuple t3

is redundant. That is, if we remove this value from the third tuple, it could be inferred

from the information in the first tuple. However, the value Thriller in the second tuple

is not redundant. If we lose this value, we will not know the Genre of this tuple. So

while the value Thriller is duplicated in t2, it is not redundant. But if we change the

constraints and, instead of Actor → Genre, we have the dependency Director → Genre,

then the situation is reversed. The value Thriller is redundant in t2, but the one in t3

is not.

Understanding redundancy is at the heart of database design. In this work, we con-

sider how to summarize the potential redundancy in an instance. At their core, our tech-

niques find duplicate or similar values. However, unlike techniques based on counting

(for example, frequent item-set mining [AIS93]), we use information-theoretic cluster-

ing techniques to identify and summarize the information content of a database in the

presence of duplicate or similar values.

Our contributions are the following.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 92

• We propose a set of information-theoretic techniques that use clustering to discover

duplicate records, sets of correlated attribute values, and groups of attributes that share

such values.

• We provide a set of efficient algorithms that can be used to identify duplication in

large, categorical data sets. Our algorithms are based on LIMBO and generate compact

summaries of the data that can be used by an analyst to identify errors or to understand

the information content of a data set.

• We present several applications of our summaries to the data quality problems of dupli-

cate elimination and the identification of anomalous values. We also present applications

to the database design problems of horizontally partitioning an integrated or overloaded

relation and to ranking functional dependencies based on their information content. For

the latter application, we show how our techniques can be used in combination with a

dependency miner to help understand and use discovered dependencies.

Horizontal and Vertical Decompositions

The problem of the decomposition of database relations has been studied extensively

in the past. It has been argued that the decomposition of a relation [De 87]:

1. reduces the redundancy of the relation (same information does not get repeated);

2. speeds-up query answering (the stored relations are of smaller size);

3. improves the understanding of the data.

Decomposition, however, is mostly done in a vertical fashion, which means that given

a set of functional dependencies the decomposed relations satisfy some semantic con-

straints. Vertical decomposition highly depends on the presence of functional dependen-

cies to separate independent pieces of information.

De Bra and Paredaens [DP83a, DP83b] introduced a normal form based on the notion

of horizontal decomposition. This decomposition serves as exception handlers, in that it

Chapter 4. LIMBO-Based Techniques for Structure Discovery 93

separates the tuples of a relation so that a number of them satisfy a set of functional

dependencies and the rest of the tuples do not. They argue that it is more of a techni-

cal need to use horizontal decompositions since information (tuples) that do not satisfy

certain constraints can be stored separately or hidden from users. This decomposition

produces smaller relations that are potentially easier to understand. However, a horizon-

tal decomposition cannot be performed without the existence of functional dependencies.

Horizontal decompositions have been used in different work. For example, Chan

et al. [CDF+82] use horizontal decompositions within a system that supports a more

semantically rich database language called ADAPLEX. In order to achieve better inter

and intra entity type information grouping, they store homogeneous sets of tuples from

database relations into separate tables. Their main objective is to facilitate the querying

of these tables.

In real life, it may be the case that functional dependencies do not hold in a database

over time as new tuples are inserted or relations are integrated. In such situations,

vertical and horizontal decompositions may not be the suitable approach in order to

separate the different types of information present in a relation. In this thesis, we use

a clustering approach in order to identify and separate duplicate information in a data

set and potentially re-design (decompose) it. We complement the work of decomposing

a relation based on functional dependencies in that our technique allows for a ranking of

these dependencies.

4.2 Related Work

Our work is motivated by two independent lines of work. The first on data quality

browsers, such as Potter’s Wheel [RH01] and Bellman [DJMS02]. The second on the

information-theoretic foundation of data design [AL03, DR00].

Data browsers aim to help an analyst understand, query, or transform data. In ad-

dition to sophisticated visualization techniques (and adaptive query or transformation

Chapter 4. LIMBO-Based Techniques for Structure Discovery 94

processing techniques [RH01]), they employ a host of statistical summaries to permit

real-time browsing. In our work, we consider the generation of summaries that could be

used in a data browser for database (re)design. These summaries complement the sum-

maries used in Bellman, where the focus is on identifying co-occurrence of values across

different relations (to identify join paths and correspondences between attributes of dif-

ferent relations). Instead, we present a set of techniques for identifying and summarizing

various forms of duplication within a relation.

Arenas and Libkin provide information-theoretic measures for comparing database

designs [AL03]. Given a schema and a set of constraints, the information content of a

design is precisely characterized. The measures used are computationally infeasible and

they rely on having a clean instance that conforms to a specified set of constraints. Our

techniques are based on an efficient information-theoretic clustering approach. Because

we are using unsupervised learning, we are able to create informative summaries even

without an accurate model (set of constraints) for the data.

Constraint or dependency mining is a related field of study where the goal is to find

all dependencies that hold on a given instance of the data (that is, all dependencies

that are not invalidated by the instance). Such approaches include the discovery of

functional [SF93, HKPT99, WGR01] and multi-valued [SF00] dependencies. Our work

complements this work by providing a means of characterizing the redundancy captured

by a dependency. We have found that constraint miners reveal hundreds or thousands

of potential (approximate) dependencies when they are run on large, real data sets.

Our work helps a data analyst understand and quickly identify interesting dependencies

within these large sets. For our work, interesting are the dependencies which, if used in

a potential decomposition remove a great deal of redundancy from a relation.

The importance of automated data design and redesign tools has been recognized

in reports on the state of database research. Yet, the advances that have been made

in this area are largely limited to physical design tools that help tailor a design to best

Chapter 4. LIMBO-Based Techniques for Structure Discovery 95

meet the performance characteristics of a workload [RD02, ACN01]. Cluster Analysis has

been used for vertical partitioning [HS75, NCWD84, NR89], however these techniques

partition the attributes of a relation based only on their usage in workload queries and

not the data. On the other hand, fractured mirrors [RD02] store different versions of the

same database, which are combined during query optimization. This technique is also

based on the usage of the attributes in queries.

Finally, our work complements work on duplicate elimination [HS95, SE00, SB02]. We

propose a technique to identify duplicates based on the information content of tuples.

Our approach does not consider how to identify or use distance functions for measuring

the difference between values (which is the main focus of related work in this area). Value

differences are due to the representation of the same entity in different ways. For example,

the values F.F. Coppola and F. Coppola correspond to the same director. Differences

also appear due to data entry errors. An example would be the values Scorsese and

Scorcese.

4.3 Clustering and Duplication

Schemas, like structured query languages that use them, treat data values largely as

uninterpreted objects. This property has been called genericity [AHV95] and is closely

tied to data independence, the concept that schemas should provide an abstraction of

a data set that is independent of the internal representation of the data. That is, the

choice of a specific data value (perhaps “Pat” or “Patricia”) has no inherent semantics

and no influence on the schema used to structure director values. The semantics captured

by a schema are independent of such choices. For query languages, genericity is usually

formalized by saying that a query must commute with all possible permutations of data

values (where the permutations may be restricted to preserve a distinguished set of

constants) [AHV95].

This property becomes important when one considers clustering algorithms. Cluster-

Chapter 4. LIMBO-Based Techniques for Structure Discovery 96

ing assumes that there is some well-defined notion of similarity between data objects.

Many clustering methodologies employ similarity functions that depend on the seman-

tics of the data values. For example, if the values are numbers, a Euclidean distance

function may be used to define similarity. However, we do not want to impose any

application-specific semantics on the data values within a database.

Again, we assume a model where a set T of n tuples is defined on m attributes

(A1, A2, . . . , Am). The domain of attribute Ai is the set Vi = {Vi,1, Vi,2, . . . , Vi,di}. Any

tuple t ∈ T takes exactly one value from the set Vi for the ith attribute. Moreover, a

functional dependency between attribute sets W ⊆ A and Z ⊆ A, denoted by W → Z,

holds if, whenever the tuples in T agree on the W values, they also agree on their

corresponding Z values.

To apply information-theoretic techniques, we will treat relations as distributions.

For each tuple t ∈ T containing a value v ∈ V, we will set the probability that v appears

in tuple t to 1/m as described by the formalism of Section 3.3. If we go back to the

example of Figure 4.1, we consider a representation of its tuples as given in Figure 4.2.

Each row corresponds to a tuple and has a non-zero value for each one of the values it

stores in the original relation and sums up to one.

Coppola Scorsese Grant DeNiro Thriller

t1 1/3 0 1/3 0 1/3
t2 1/3 0 0 1/3 1/3
t3 0 1/3 1/3 0 1/3

Figure 4.2: Example of tuple representation for the relation of Figure 4.1

Similarly, the representation we consider for the values of the same data set is given

in Figure 4.3. Each row in the table of Figure 4.3 characterizes the occurrence of values

in tuples, and for each value there is a non-zero entry for the tuples in which it appears.

As in the tuple representation, each row sums up to one.

Using such representations, we consider a number of clustering approaches for iden-

tifying duplication in tuples, values, and attributes. All of our techniques are based on

Chapter 4. LIMBO-Based Techniques for Structure Discovery 97

t1 t2 t3
Coppola 1/2 1/2 0
Scorsese 0 0 1
Grant 1/2 0 1/2
DeNiro 0 1 0
Thriller 1/3 1/3 1/3

Figure 4.3: Example of value representation for the relation of Figure 4.1

LIMBO.

4.4 Duplication Summaries

In this section, we present a suite of structure discovery tasks that can be performed

using LIMBO, the information-theoretic clustering algorithm introduced in the previous

chapter. We will see how, from information about tuples, we can build summaries about

the attribute values and, from this, summaries about the attributes of a relation.

The input to our problem here is the set of tuples T and the set V = V1 ∪ . . .∪Vm,

which denotes the set of all possible values. Let d = d1 + d2 + . . .+ dm denote the size of

set V. We shall denote by V and T the random variables that range over sets V and T,

respectively. In our approach, we want to control the information loss during merges of

objects that correspond to tuples and attribute values, and, therefore, we shall use the

LIMBOφ version of the LIMBO algorithm. LIMBOS can also be used, without direct

control of information loss in the merges.

4.4.1 Tuple Clustering

Again, we seek to find clusters of tuples that preserve the information about the values

they contain as much as possible. We use the formalism introduced in Section 3.3.1 for

the clustering of the values represented by random variable T in order to preserve as much

information as possible about the values represented by V . When clustering tuples, the

parameter φ is denoted by φT , which controls the loss of information when newly inserted

tuples are merged with existing sub-clusters during Phase 1 of LIMBO. We shall use φ

Chapter 4. LIMBO-Based Techniques for Structure Discovery 98

values for attribute value clustering, denoted by φV and for attribute grouping, denoted

by φA. We tried different values for these parameters and present results with the ones

that produced the best results.

Duplicate Tuples

Duplicate tuples can be introduced through data integration. Different sources may store

information about the same entity. The values stored may differ slightly so when inte-

gration is performed, two entries may be created for the same entity. As an example, we

can imagine a situation where employee information is integrated from different sources

and employee numbers are represented differently in the sources. After integration, it

is natural to expect tuples referring to the same employee that differ only in their em-

ployee number (or perhaps some other attributes if one database is more up-to-date than

another). To identify duplicate or nearly duplicate tuples we proceed as follows.

1. Apply Phase 1 of LIMBO to construct tuples summaries using a chosen value of φT .

2. Eliminate any DCF leaf entries that represent only a single tuple (i.e., with p(c∗) =

1/n).

3. Apply Phase 3 of LIMBO to associate each tuple of the initial data set with the

remaining summary to which it is closest, where proximity is measured by the information

loss in merging the two.

Step 1 of the above procedure determines the accuracy of the representation of groups

of tuples in the summaries at the leaf level of theDCF -tree and applies Phase 1 of LIMBO.

If φT = 0.0, we merge only identical tuples and the representation is exact. As we increase

φT , the summaries permit larger differences in the duplicate values in a group. Step 2

eliminates summaries of single tuples, while Step 3 associates tuples with summaries

that represent groups of tuples (more than one tuple). It is then natural to explore the

sets of tuples associated with each single summary to find candidate duplicates or near

duplicates.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 99

Horizontal Partitioning

Horizontal partitioning is an application of tuple clustering approach given in the previous

chapter. Horizontal partitioning can be useful on relations that have been overloaded with

different types of data [DJ03]. For example, Table 4.1, originally designed to store movies

that have a release date (released movies), may have been reused to store future releases.

Released movies have a value on their Release Data attribute while future releases do

not and, thus, when integrated the latter ones get filled with NULL values. Performing

horizontal partitioning on this table, our goal is to separate the information in the first

four tuples (released movies) from the last three tuples (future releases).

Movie Director Actor Genre Release Date
Godfather Scorsese DeNiro Crime 1974
Good Fellas Coppola DeNiro Crime 1998

Vertigo Hitchcock Stewart Thriller 1958
N by NW Hitchcock Grant NULL 1959
Alexander Luhrman NULL NULL NULL
Water Mehta NULL NULL NULL

Life Without Me Coizet NULL NULL NULL

Table 4.1: A relation with two heterogeneous clusters

In horizontal partitioning, we are seeking to separate different types of tuples based

on the similarities in their attribute values. Specifically, we try to identify whether there

is a natural clustering that separates out tuples having different characteristics.

4.4.2 Attribute Value Clustering

As in tuple clustering, we can build clusters of attribute values that maintain as much

information about the tuples in which they appear as possible. The parameter φ in this

case will be denoted by φV , and small values of it allow for the identification of almost

perfectly co-occurring groups of attribute values. Such groups of values appear within

the same attributes of subsets of the tuples. Our intention is to cluster values that mainly

come from different attributes and cluster them together in order to characterize their

Chapter 4. LIMBO-Based Techniques for Structure Discovery 100

duplication. For example, the values “DeNiro” and “Crime” in Table 4.1 will be clustered

together, since they appear within the same attributes of two different tuples.

A useful connection between tuple and attribute value clustering is drawn when the

number of tuples is large. We can use a φT > 0.0 value to cluster the tuples, and then

attribute values can be expressed over the (much smaller) set of tuple clusters instead of

individual tuples. Attribute value clustering can then be performed as described above.

This technique is referred to as Double Clustering [EYS01].

Contrary to tuple clustering, our goal here is to cluster the values represented in

random variable V so that they retain information about the tuples in T in which they

appear.

Presuming that the representation of our data set is the same as a market basket

data set (Section 3.3.2), we represent our data as a d × n matrix N , where N [v, t] = 1

if attribute value v ∈ V appears in tuple t ∈ T (for each value c(v) = 1), and zero

otherwise. Note that the vector of a value v contains dv ≤ di 1’s, 1 ≤ di ≤ n. For a value

v ∈ V, we define:

p(v) = 1/d (4.1)

p(t|v) =

1/dv if v appears in t

0 otherwise
(4.2)

Intuitively, we consider each value v to be equi-probable and normalize matrix N

so that the vth row holds the conditional probability distribution p(T |v). Consider the

example relation depicted in Figure 4.4. Figure 4.5 (left) shows the normalized matrix

N for the relation in Figure 4.4. Together with N , we define a second matrix, O, which

keeps track of the frequency of the attribute values in their corresponding attributes.

The matrix O is defined as a d×m matrix were O[v, A] = dv if value v appears dv times

in attribute V . Intuitively, each entry of matrix O[v, A] stores the support of a value v

in attribute A of the relation. For our example, matrix O is given on the right-hand-

side of Figure 4.5. Note that for a value v:
∑

j O[v, Aj] = dv and for an attribute A:

Chapter 4. LIMBO-Based Techniques for Structure Discovery 101

A B C
a 1 p
a 1 r
w 2 x
z 2 x
y 2 x

Figure 4.4: Duplication in attribute pairs (A,B) and (B,C)

N t1 t2 t3 t4 t5 p(a)
{a} 1/2 1/2 0 0 0 1/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9
{1} 1/2 1/2 0 0 0 1/9
{2} 0 0 1/3 1/3 1/3 1/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9
{x} 0 0 1/3 1/3 1/3 1/9

O A B C
{a} 2 0 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0
{1} 0 2 0
{2} 0 3 0
{p} 0 0 1
{r} 0 0 1
{x} 0 0 3

Figure 4.5: Matrix N (left) and O (right) for the table in Figure 4.4

∑

lO[vl, A] = n.

Given matrixN , we can use mutual information I(V ;T) to cluster the attribute values

in V into clusters CV such that the loss of information I(CV ;T)− I(V ;T) is minimized

at each step. Intuitively, we seek sets of attribute values in CV that retain information

about the tuples in which they appear. Such sets of values may contain values that

appear in the same attributes of more than one tuple. We will show how to characterize

the sets of attribute values in the clusters of CV in the next subsection.

Set V may include a large number of values, making the AIB algorithm computa-

tionally infeasible. Thus, we perform the clustering using LIMBO, where the DCF s are

extended in order to include information from matrix O. If c∗ is the summary of a par-

ticular cluster of values, we define the Attribute Distributional Cluster Features (ADCF)

as a triplet:

ADCF (c∗) =
(

p(c∗), p(T |c∗), O(c∗)
)

where p(c∗) and p(T |c∗) are defined as in Section 3.4 and O(c∗) =
∑

c∈c∗ O(c), i.e., O(c∗)

Chapter 4. LIMBO-Based Techniques for Structure Discovery 102

is the sum of the rows of matrix O that correspond to the sub-clusters c∗ represents.

Essentially, O(c∗) stores the support of the values in cluster c∗ in each of the attributes.

As in tuple clustering, we use LIMBO to identify duplicate or near duplicate values

in the data set.

1. Apply Phase 1 of LIMBO to construct tuple summaries using a chosen value of φV .

2. Eliminate any ADCF leaf entries that represent a single value (i.e, with p(c∗) = 1/d).

3. Apply Phase 3 of LIMBO to associate each attribute values of the initial data set

with the remaining summary to which it is closest, where proximity is measured by the

information loss in merging the two.

By augmenting DCF s in this way, we are able to perform value clustering on the

value matrix N together with O at the same time. Hence, we are able to find sets

of attribute values (of arbitrary size) together with their counts (that is, the number of

tuples in which they appear) using one execution of our clustering algorithm. Specifically,

we require only three passes over the data set. One pass to construct the matrices N and

O, one pass to perform Phase 1 of LIMBO and a final pass to perform Phase 3.

In our example, in executing LIMBO while allowing no loss of information during

merges (φV = 0.0), attribute values a and 1 are clustered, as are values x and 2. These

values have perfect co-occurrence in the tuples of the original relation. The clustering of

values with φV = 0.0 is depicted on the left-hand-side of Figure 4.6. The resulting matrix

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9
{2, x} 0 0 1/3 1/3 1/3 2/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0
{2, x} 0 3 3
{p} 0 0 1
{r} 0 0 1

Figure 4.6: Clustered matrix N (left) and O (right)

Chapter 4. LIMBO-Based Techniques for Structure Discovery 103

O of our example is depicted on the right-hand-side of Figure 4.6. For the cluster {a, 1}

of values the corresponding row of O becomes (2, 2, 0), which means that the values of

this cluster appear two times in attribute A and two times in attribute B. In general, O

stores the cumulative counts of the occurrences of clusters of values inside the attributes

of a relation. Both N and O contain important information, and the next sub-section

describes their use in finding duplicate and non-duplicate groups of values.

It is critical to emphasize the role of parameter φV . As already explained, φV is

used to control the loss of information during the merges of newly inserted values with

existing sub-clusters in the leaf entries of the tree. Besides this, it plays a significant role

in identifying “almost” perfect co-occurrences of values. To illustrate this consider the

relation in Figure 4.7. This relation is the same as the one in Figure 4.4 except for value

x in the second tuple.

A B C
a 1 p
a 1 x
w 2 x
z 2 x
y 2 x

Figure 4.7: No perfect correlation of attribute B and C due to value x in the second
tuple

Constructing matrices N and O can be done as explained before. However, when

trying to cluster with φV = 0.0, our method does not place values x and 2 together since

they do not exhibit perfect correlation any more. This may be a result of an erroneous

placement of x in the second tuple, or a difference in the representation among data

sources that were integrated in this table. Moreover, the functional dependency C → B

that holds in the relation of Figure 4.4 now becomes approximate in that it does not hold

in all the tuples. To capture such anomalies, we perform clustering with φV > 0.0, which

allows for some small loss of information when merging ADCF leaves in the ADCF -tree.

Matrices N and O for φV = 0.1 are depicted in Figure 4.8. An interesting distinction

Chapter 4. LIMBO-Based Techniques for Structure Discovery 104

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/8
{w} 0 0 1 0 0 1/8
{z} 0 0 0 1 0 1/8
{y} 0 0 0 0 1 1/8
{2, x} 0 1/8 7/24 7/24 7/24 2/8
{p} 1 0 0 0 0 1/8

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0
{2, x} 0 3 4
{p} 0 0 1

Figure 4.8: Matrix N (left) and O (right), (φV = 0.1)

between the notions of approximation in our method and in the methods that have

appeared in the literature should be made. These methods [SF93, HKPT99] characterize

approximate duplication based upon the removal of whole tuples from the relation. This,

however, might lead in the loss of useful information. If, for example, a particular set

of values are not perfectly duplicated due to a single tuple, the removal of this tuple

could result in the elimination of values with high importance in the attributes that do

not contain duplicate values. In contrast, our method is valued-based. This means that

no tuple elimination is required, and the control of the loss of information in the model

through parameter φV is enough to determine the approximate nature of duplication.

Hence, using as input the example of Figure 4.8, our method with φV = 0.1 determines

that value x in the second tuple affects the perfect duplication of pairs {2, x} less than

any other value, and thus the value with which it co-occurs (value 1) is merged with the

cluster {2, x}.

As already mentioned, tuple clustering and attribute value clustering can be combined

when the size of the input is large. In a situation where the number of tuples is very

large, we can define the mutual information I(T ;V), and cluster the tuples in T into the

clusters represented by CT . Usually |CT | ¿ |T | and we can use it to define I(V ;CT) and

speed up the clustering of attribute values.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 105

4.4.3 Grouping Attributes

Knowing the similarities among the values in the data set, we are able to express at-

tributes over the duplicate groups of values they contain and derive information about

duplication-based attribute proximity. These similarities can be used in the ranking of

functional dependencies found to hold in a particular instance. Again, the information

loss in merging attributes can be controlled through a φ value denoted by φA. Typically,

the number of attributes m is much smaller than the number of tuples n, so we use small

values of φA.

The rows of the compressed matrix N represent groups of values as conditional prob-

ability distributions on the tuples in which they appear either exactly for φV = 0.0, or

approximately for φV > 0.0. From these rows and the corresponding rows of the com-

pressed matrix O, we can infer which groups of attribute values appear as duplicates in

the set of attributes. We are looking for clusters of values that make their appearance in

more than one tuple and more than one attribute. More formally, we define the following.

• CD
V denotes the set of duplicate groups of attribute values. A set of values cD belongs

to CD
V if and only if there are at least two tuples ti, tj for which both p(ti|cD) 6= 0 and

p(tj|cD) 6= 0, and at the same time there are at least two attributes Ax and Ay such that

both O[cD, Ax] 6= 0 and O[cD, Ay] 6= 0. Intuitively, CD
V contains these sets of values that

appear within more than two attributes and more than two tuples in the data set, and,

thus naturally co-occur in it.

• CND
V denotes the set of non-duplicate groups of attribute values. This set is comprised

of all values in CV − CD
V . These are sets that appear just once in the tuples of the data

set.

In our example, it is easy to see from Figure 4.6 that CD
V =

{

{a, 1}, {2, x}
}

and

CND
V =

{

{w}, {z}, {y}, {p}, {r}
}

. Now, from these groups, CD
V contains “interesting”

information in that it may lead to a grouping of the attributes such that attributes in

Chapter 4. LIMBO-Based Techniques for Structure Discovery 106

the same group contain more duplicate values than attributes in different groups.

Formally, if A is the set of attributes and A the random variable that takes its values

from this set, we only express the members of A over CD
V (since we are only interested in

duplicated values) through the information kept in matrix O. We denote these members

of A by AD and the random variable that takes values from this set by AD. Then, we

cluster the attributes in AD into a clustering CD
A , such that the information I(CD

A ;C
D
V)

remains maximum. Intuitively, we can cluster the attributes such that the information

about the duplicate groups of attribute values that exist in them, remains as high as

possible. Using CD
V instead of the whole set CV , we focus on the set of attributes that

will potentially offer higher duplication, while at the same time we reduce the size of the

input for this task.

Since set A usually includes a tractable number of attributes, we can use LIMBO

with φA = 0.0 and produce a full clustering of the attributes (i.e., produce all clusterings

up to k = 1). By performing an agglomerative clustering (in Phase 2) over the attributes,

at each step we cluster together a pair that creates a group with the maximum possible

duplication. For our example, Figure 4.9 depicts the table of attributes expressed over

the set CD
V as explained above, and using the information in matrix O (the rows that

correspond to the members of CD
V). Note that we have the same matrix both for φV = 0

and φV = 0.1, and that in this example A = AD. We name this matrix F . Normalizing

rows of F so that they sum up to one, we can proceed with our algorithm and cluster

the attributes. All the merges performed are depicted in the dendrogram given in Fig-

ure 4.10. The horizontal axis of the dendrogram shows the information loss incurred at

each merging point. Initially, all attributes form singleton clusters. The first merge with

the least amount of information (0.13) loss occurs between attributes B and C and after

that, attribute A is merged with the previous cluster (with an information loss of 0.52).

Looking back at our example of Figure 4.4, we can see that attributes B and C contain

more tuples with the duplicate group of values {2, x} than A and B do with respect to

Chapter 4. LIMBO-Based Techniques for Structure Discovery 107

F {a, 1} {2, x}
{A} 2 0
{B} 2 3
{C} 0 4

Figure 4.9: Matrix F before nor-
malization

B
C
A

0.0 0.1 0.2 0.3 0.4 0.5

Figure 4.10: Attribute cluster dendrogram

the group of values {a, 1}.

4.5 Ranking Dependencies

In this section, we show how to use our attribute clustering to rank a set of functional

dependencies holding on an instance.

A desirable goal of structure discovery is to derive clues with respect to a poten-

tial decomposition of an integrated data set. As we pointed out, duplication is not the

same as redundancy. To understand the relationship, we turn to work on mining for

constraints (dependencies). There have been several approaches to the discovery of func-

tional [SF93, HKPT99, WGR01] and multivalued [SF00] dependencies. However, none of

the approaches presents a characterization of the resulting dependencies. In this section,

we present a procedure that performs a ranking of the functional dependencies found to

hold on an instance, based on the redundancy they represent in the initial relation.

A good indication of the amount of duplication of the values in CD
V in a cluster of

attributes CA is the entropy H(CD
V |CA). The entropy captures how skewed the distribu-

tion of CD
V in CA is. Skewed distributions are expected to have higher duplication. The

lower the entropy, the more skewed the distribution. The following proposition shows

that the clusters of attributes formed early in the clustering process have smaller entropy

than those formed later in the clustering process.

Proposition 1 Given sets of attributes CA1, CA2 and CA3, if the information loss of
merging CA1 and CA2 into C1 is smaller than the information loss of merging CA1 and
CA3 into C2, then the duplication in C1 is larger than the duplication in C2.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 108

Proof 2 If the clustering before the merge is C, we have that δI(CA1, CA2) < δI(CA1, CA3)
and

I(C;CD
V)− I(C1;C

D
V) < I(C;CD

V)− I(C2;C
D
V)

I(C1;C
D
V) > I(C2;C

D
V)

H(CD
V)−H(CD

V |C1) > H(CD
V)−H(CD

V |C2)

H(CD
V |C1) < H(CD

V |C2)

The last inequality states that given C1, the duplicate groups of values appear more times
than in C2, which implies that duplication is higher in C1 than in C2.

The above result justifies the observation that if we scan the dendrogram of a full

clustering of the attributes of AD, the sub-clusters that get merged first are the ones

with the highest duplication. Upon the creation of the dendrogram, if we have a set

of functional dependencies FD, we can rank them according to how much of the dupli-

cation in the initial relation is removed after their use in the decomposition. Given a

functional dependency that contains attributes with high duplication, we may then say

that the duplicate values in these attributes are redundant. The more redundancy the

set of attributes of a functional dependency remove from the initial relation, the more

interesting it is for our purposes. Knowing all values of information loss across all merges

(in a sequence Q) of attribute sub-clusters, we can proceed with algorithm Fd-rank

given in Figure 4.11 to rank the functional dependencies in FD.

Intuitively, if we have the sequence of all merges Q of the attributes in matrix F

(the set CD
A) with their corresponding information losses, we first initialize the rank of

each dependency to be the maximum information loss realized during the full clustering

procedure (Step 1.a). For the set of values that participate in a functional dependency

(Step 1.b), we update its rank with the highest information loss of a merge where all

attributes are merged and this information loss is below a percentage, specified by ψ,

of the maximum information loss (Step 1.c). At this point we can break ties among

the functional dependencies that acquire the same ranking based on the number of par-

ticipating attributes; we rank the ones with more attributes higher than others. Step

2 collapses two functional dependencies with the same left-hand-side and ranks, into a

Chapter 4. LIMBO-Based Techniques for Structure Discovery 109

Fd-rank

Input : Set FD, merge sequence Q, threshold 0 ≤ ψ ≤ 1
Output : Set FDranked

1. For each fd ∈ FD : X → A (A single attribute):
(1.a) rank(fd) = max(Q) (max inf. loss in Q);
(1.b) S = X ∪ A;
(1.c) rank(fd) = IL(G), the inf. loss at merge G
where all attributes in S participate and
IL(G) <= ψ ·max(Q);

2. If fd1 : X → A1 and fd2 : X → A2

with rank(fd1) = rank(fd2), set fd12 : X → A1A2

3. Order the set FD in ascending order of
rank to produce FDranked

Figure 4.11: The Fd-rank algorithm

single functional dependency. Finally, Step 3 orders set FD in ascending order of their

corresponding ranks. We currently have no guideline for choosing ψ and in the future,

we are planning to investigate this issue as well as the influence of ψ in our results. This

parameter is used here as a cut-off point.

In the example of Section 4.4.2, the maximum information loss realized in the attribute

clustering is approximately 0.52. This is the initial rank the dependencies A → B and

C → B acquire. With a ψ = 0.5, we only update the rank of functional dependency

C → B with an information loss of the merge of attributes B and C, since this is the

only merge lower than 0.26 (ψ · 0.52). At this point, C → B is the highest ranked

functional dependency since it contains attributes with the highest redundancy in it.

Indeed, looking back at the initial relation, if we use the dependency C → B to decompose

the relation into relations S1=(B,C) and S2=(A,C), the reduction of tuples, and thus the

redundancy reduction, is higher than using A→ B to decompose into relations S1’=(A,B)

and S2’=(A,C).

Finally, if f is the number of functional dependencies in FD, finding the greatest

common merge which is smaller than ψ times the maximum information loss realized,

Chapter 4. LIMBO-Based Techniques for Structure Discovery 110

can be done inO(f ·m·(m−1)) time, since we can have at mostm attributes participating

in a dependency and should traverse at most (m− 1) merges to find the desired common

merge of all of them. The final step of ordering the dependencies according to their ranks

has a worst-case complexity of O(f · log f). Thus, the total complexity is O(f ·m · (m−

1) + f · log f). If f À m2, which is often the case in practice, the previous complexity is

dominated by the number of dependencies (first term).

4.6 Experiments

We ran a set of experiments to determine the effectiveness of the techniques discussed in

this chapter in the structure discovery process. We report on the results found in each

data set we used and provide evidence of the usefulness of our approach.

Data Sets. In our experiments we used the following data sets.

• DB2 Sample Database: This is a data set we constructed out of the small database

that is pre-installed with IBM DB2.1 We built a single relation after joining three of the

tables in this database, namely tables EMPLOYEE, DEPARTMENT and PROJECT. The schema

of the tables together with their key (the attributes separated by a line at the top of each

box) and foreign key (arrows) constraints are depicted in Figure 4.12. The relational

algebra expression we used to produce the single relation was (we use the initials of each

relation):

R =
(

(E ./WorkDepNo=DepNo D) ./DepNo=DepNo P
)

Relation R contains 90 tuples with 19 attributes and 255 attribute values. We used this

instance to illustrate the types of “errors” we are able to discover using our information-

theoretic methods

1http://www-3.ibm.com/software/data/db2/udb/

Chapter 4. LIMBO-Based Techniques for Structure Discovery 111

EmpNo

ProjNo

DepNo

PROJECT

DEPARTMENT
EMPLOYEE

DeptNo

FirstName
LastName
PhoneNo
HireYear
Job
EduLevel
Sex
BirthYear
WorkDepNo

AdminDepNo
MgrNo
DepName

StartDate
RespEmpNo
ProjName

EndDate
MajorProjNo

Figure 4.12: DB2 Sample

• DBLP Database: This data set was created from the XML document found at

http://dblp.uni-trier.de/xml/. This document stores information about different

types of computer science publications. In order to integrate the information into a sin-

gle relation, we chose to use the Clio schema mapping tool that permits the creation of

queries to transform the information stored in XML format into relations [PVM+02]. We

specified a target schema (the schema over which the tuples in the relation are defined)

containing the 13 attributes depicted in Figure 4.13. We specified correspondences be-

tween the source XML schema and the attributes in Figure 4.13. The queries given by

the mapping tool were used to create a relation that contained 50, 000 tuples and 57, 187

attribute values. Each tuple contains information about a single author and, therefore, if

a particular publication involved more than one author, the mapping created one addi-

tional tuple for each one of them. Moreover, the highly heterogeneous information in the

source XML document (information regarding conference, journal publications, etc.) in-

troduced a large number of NULL values in the tuples of the relation. We used this highly

heterogeneous relation to demonstrate the strength of our approaches in suggesting a

better structure than the target relation we initially specified.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 112

DBLP

Editor
Pages
BookTitle
Month
Volume
JournalTitle
Number
School

Publisher
Author

Series
ISBN

Year

Figure 4.13: DBLP

Functional Dependency Discovery. Our goal is not to rediscover functional depen-

dencies, but rather provide a ranking of those that hold on a database instance in order

to help a database designer acquire hints about the data and potentially re-organize it.

For the purposes of our study, we used FDEP [SF93] as the method to discover functional

dependencies. Other methods could also be used.

A maximal invalid dependency is a dependency that does not hold in the data set

and the addition of any attribute to the dependency makes it valid. On the other hand,

a minimal valid dependency is a dependency that holds in the data set and any addition

of an attribute makes it invalid. FDEP first computes all maximal invalid dependencies

by pairwise comparison of all tuples and then it computes the minimal valid dependen-

cies from the maximal set of invalid dependencies. The algorithm proposed by Savnik

and Flach [SF93] performs the second step using a depth-first search approach. During

this approach the set of maximal invalid dependencies are used to test whether a func-

tional dependency holds. It also prunes the search space, which consists of the set of all

candidate functional dependencies.

After computing the functional dependencies using FDEP, we computed the minimum

cover using Maier’s algorithm [Mai80].

Chapter 4. LIMBO-Based Techniques for Structure Discovery 113

Duplication Measures. In order to evaluate the amount of redundancy removed from

the initial data set, and thus the ranking of functional dependencies, we used two mea-

sures. These measures are the Relative Attribute Duplication (RAD) and Relative Tuple

Reduction (RT R) defined below.

• Relative Attribute Duplication: Given a relation, R, of n tuples, a set CA = {A1, A2, . . . , Aj}

with j ≥ 1 of attributes, and the projection tCA = πCA(R) of tuples assuming bag se-

mantics on the attributes of CA, we define

RAD(CA) =
(

1− H(tCA|CA)

log2(n)

)

Intuitively, RAD captures the fraction of bits we save in the representation of CA due to

repetition of values. However, the above definition does not clearly distinguish between

the duplication of differently sized relations. For example, consider two relations on a

single attribute with the first one having the same value in its three tuples and the second

one the same value in its two tuples. The above definition will suggest that both relations

have RAD equal to one, missing the fact that the first relation contains more duplication

than the second (since it contains more tuples). To overcome this we introduce the next

measure.

• Relative Tuple Reduction: Given a relation, R, of n tuples, a set CA = {A1, A2, . . . , Aj}

with j ≥ 1 of attributes, and tCA = πCA(R) the set of n
′ tuples (assuming bag semantics)

projected on the set CA, we define

RT R(CA) =
(

1− n′

n

)

Intuitively, RT R quantifies the fractional reduction in the number of tuples that we get

if we project the tuples of a relation over CA.

Overall RAD and RT R offer two different measures of the extent to which values

are repeated in the relation. A closer look at RAD reveals that this measure is more

width-sensitive. From the definition of conditional entropy, the numerator of the fraction

Chapter 4. LIMBO-Based Techniques for Structure Discovery 114

in RAD can be considered as the weighted entropy of the tuples in a particular set of

attributes, where the weights are taken as the probability of this set of attributes. On

the other hand, RT R is more size-sensitive in that it can quantify the duplication within

different set of tuples taken over the same set of attributes.

4.6.1 Small Scale Experiments

In this phase of our experiments, we performed a collection of tests in the DB2 sample

data set to see how effective our techniques are in finding exact or near duplicate tuples

and values in the data. This data set was used since it is a “clean” one and errors can

be introduced to illustrate the potential of our methods.

Application of Tuple Clustering

Exact Tuple Duplicates. Our method can identify exact duplicates introduced in the

data set in any order. These duplicates are found by setting φT = 0.0.

Typographic, Notational and Schema Discrepancies. Such errors may be intro-

duced when the same information is recorded differently in several data sources and then

integrated into a single database. For example, this might be the case where the employee

numbers are stored following different schemes (typographical or notational errors). On

the other hand, this might also be the case where unknown values during integration

are filled with NULL values in order to satisfy the common integrated schema (schema

discrepancies). An example of the latter case was given in Table 4.1.

To identify this type of error, we introduced additional tuples into the data set where

some of the values in their attributes differ from the values in the corresponding attributes

of their matching tuples in the data set. First, we set the value of φT to 0.1 and performed

a study with various numbers of erroneous tuples and attribute values. Then, we fixed

the number of erroneous tuples that we inserted to five and performed a study where the

φT and the number of erroneous attribute values varied. We changed the same number of

attribute values in each of the inserted tuples every time. The results of both experiments

Chapter 4. LIMBO-Based Techniques for Structure Discovery 115

are given in Table 4.2. From this table, the strength of our method in determining groups

#Err. Tuples=5 #Err. Tuples=20
Errors Found Errors Found

1 5 1 20
2 5 2 20
4 5 4 19
6 4 6 17
10 4 10 15

φT = 0.2 φT = 0.3
Errors Found Errors Found

1 5 1 4
2 5 2 3
4 4 4 3
6 3 6 2
10 3 10 2

Table 4.2: DB2 Sample results of erroneous tuples, for φT = 0.1 (left) and #err. tuples=5
(right)

of tuples that do not differ a lot is evident. The table on the left indicated that, for a

small number of “dirty” tuples inserted, our method fails to discover some approximate

duplicates only when the number of attribute values on which they differ is more than

half the number of attributes in the schema. The same table, shows that, as the number

of these duplicates increases, the performance of the method deteriorates gracefully. The

table on the right, where the number of inserted tuples is five, shows that, as the accuracy

of the chosen model in the summaries decreases (larger φT values), the identification

of approximate duplicates becomes more difficult, since in these cases more tuples are

associated with the clusters of the constructed summaries.

Duplicates found using tuple clustering are presented to the user, and an inspection of

the tuple clusters reveals whether these are interesting ones, i.e., duplicates corresponding

to the same physical entities represented by the tuples. Phase 3 was effective in that it

never failed to identify the correct correspondences of tuples with their summaries in the

leaf entries of the tree.

Application of Attribute Value Clustering

In this section, we present experiments on attribute value clustering.

Value correlations. Using φT = 0.0 (no clustering of tuples is performed), and φV =

0.0, we first looked for perfect correlations among the values, that is, groups of attributes

Chapter 4. LIMBO-Based Techniques for Structure Discovery 116

values that naturally appear exclusively together in the tuples. Our clustering method

successfully discovered such groups of values that make up the set CD
V .

Although with φV = 0.0 we do not get anything more than the perfectly correlated

sets of values, we believe that this information is critical in that it aligns our method

with that of Frequent Itemset counting [AIS93]. However, with higher values of φV , we

are able to discover potential entry errors.

Value Errors. In this experiment, we introduced errors similar to the ones in tuple

clustering, however our goal here is to locate the values that are “responsible” for them.

For better results, we may combine the results of tuple and attribute value clustering.

We performed experiments for the same set of tuples that were artificially inserted when

we performed tuple clustering, where we counted the number of correct placements of

“dirty” values in the clusters of attribute values that appear almost exclusively together

in the tuples. That is, we wanted to see if a dirty value was correctly clustered with

the value it replaced. Results of these experiments are given in Table 4.3. As in tuple

#Err. Tuples=5 #Err. Tuples=20
Errors Found Errors Found

1 1 1 1
2 2 2 2
4 4 4 4
6 5 6 5
10 9 10 7

φ = 0.2 φ = 0.3
Errors Found Errors Found

1 1 1 1
2 2 2 1
4 2 4 2
6 4 6 2
10 7 10 6

Table 4.3: DB2 Sample results of erroneous values, for φT = 0.1 (left) and #Err. Tu-
ples=10 (right)

clustering, our method performs well even if the number of inserted tuples is quite large

relative to the size of the initial data set.

Attribute Grouping

Having information about duplicate values in CD
V , we built matrix F . The dendrogram

that was produced for φV = 0.0 and φA = 0.0 is depicted in Figure 4.14. Again, the

horizontal axis represents information loss. In this data set, the maximum information

Chapter 4. LIMBO-Based Techniques for Structure Discovery 117

EmpNo
FirstName
LastName
PhoneNo
BirthYear
HireYear
EduLevel
StrtDate

ProjNo
ProjName

RespEmpNo
MajorProjNo

DeptNo
MgrNo

DeptName

0.0 0.2 0.4 0.6 0.8

50% of Max Information Loss

Figure 4.14: DB2 Sample attribute clusters

loss realized was 0.922. As indicated by the boxes, our attribute grouping has separated

the attributes of the initial sub-schemas to a large extent, with the only exception being

attributes EduLevel and StartDate. From the dendrogram, we could also identify that

pairs (EmpNo, FirstName), (LastName, PhoneNo), (ProjNo, ProjName) and (DeptNo,

MgrNo) exhibit the highest redundancy in the data set, a result that agrees with the data

instance as well as our intuition.

In addition to the previous experiment, we increased the value of φV to 0.1 and 0.2

respectively. The set of attributes in CD
A remained the same for φV = 0.1, while attribute

ProjEndDate was included when φV = 0.2. However, there was large information loss

when this attribute was merged with other attributes. In both experiments, the sequence

of the merges remained the same, indicating that our attribute grouping is stable in the

presence of errors (a constant number of errors are initially present, but more of them

are discovered with higher φV values).

Chapter 4. LIMBO-Based Techniques for Structure Discovery 118

Ranking of Functional Dependencies

Having the sequence of merged attributes, we used Fd-rank to identify which functional

dependencies, if used in a decomposition, would help in the removal of high amounts of

redundancy from the initial data set. FDEP initially discovered 106 functional depen-

dencies, and the minimum cover consisted of nine dependencies given below in order of

their increasing rank using Fd-rank with ψ = 0.5.

1. [DeptNo]→[DeptName,DeptMgrNo]

2. [DeptName]→[DeptMgrNo]

3. [EmpNo]→[EmpBirthYear,EmpFName,EmpLName,EmpPhoneNo,EmpHireYear]

4. [ProjNo]→[ProjName,ProjRespEmpNo,ProjStDate,ProjMajorProjNo]

5. [ProjRespEmpNo]→[ProjStDate,ProjMajorProjNo]

6. [ProjRespEmpNo,EmpEdLevel,EmpBirthYear]→[EmpNo,EmpFName,EmpLName,

EmpPhoneNo,DeptName,EmpHireYear,DeptMgrNo,Dep tNo]

7. [EmpNo]→[DeptNo,DeptName,DeptMgrNo,EmpEdLevel]

8. [ProjNo]→[DeptNo,DeptName,DeptMgrNo]

9. [ProjRespEmpNo]→[DeptNo,DeptName,DeptMgrNo]

Finally, Table 4.4 shows the RAD and RT R values for the nine functional dependen-

cies of the minimum cover, if their attributes are used to project the tuples in the initial

relation. Table 4.4 shows that our ranking identifies dependencies with high redundancy

(high RAD and RT R values). Decompositions of the initial relation according to the

ordered list of dependencies would lead to the removal of considerable amounts of redun-

dancy. This is attributed to the fact that correlations of the corresponding attributes

are high. However, the attribute value clusters in CD
V have lower support in the initial

Chapter 4. LIMBO-Based Techniques for Structure Discovery 119

FD RAD RT R
1. 0.947 0.922
2. 0.965 0.922
3. 0.924 0.878
4. 0.872 0.800
5. 0.871 0.800
6. 0.577 0.523
7. 0.456 0.345
8. 0.435 0.311
9. 0.234 0.300

Table 4.4: RAD and RT R values for DB2 Sample

data set. This fact is also visible in the dendrogram, where the attributes of Department

have a lower information loss than those of Employee and Project, and according to

Proposition 1, they can remove more redundancy.

4.6.2 Large Scale Experiments

For these experiments, we used the larger DBLP data set. We performed a different

series of experiments which, in large integrated relations, could be part of a structure

discovery task.

The DBLP data set contains integrated information. The relation contains tuples

describing computer science publications that appeared as part of conference proceedings,

journals, theses, etc. As we already argued, integrated information may have anomalies

due to the discrepancies between the source and the target schemas. More specifically,

most conference publications have their Journal attributes filled with NULL values. Some

conference publications, though, appear as part of a Series publication, (like SIGMOD

publications in the SIGMOD Record journal).

Before performing horizontal partitioning, we performed attribute grouping in order to

identify which attributes would be most useful in such a partitioning. We used φT = 0.5,

which reduced the number of tuples to 1361 and then performed the attribute grouping

with φA = 0.0. The result of this grouping is depicted in Figure 4.15. From the

dendrogram, we observe that a number of attributes demonstrate an almost perfect

correlation in that the information loss in merging them is very small. These are the

Chapter 4. LIMBO-Based Techniques for Structure Discovery 120

Author
Pages

BookTitle
Publisher

ISBN
Editor
Series
School
Month

Year
Volume
Journal
Number

0.0 0.2 0.4 0.6

Figure 4.15: DBLP attribute clusters

attributes (dashed box) with zero or almost zero information loss, indicating an almost

one-to-one correspondence among their values. This is true since the value that prevails

in this set of attributes is the NULL value. A manual inspection of the data set revealed

that the set of attributes {Publisher, ISBN, Editor, Series, School, Month} contains

over 98% of NULL values, an anomaly introduced during the transformation of XML data

into the integrated schema.

Having a set of attributes with limited non-missing information, the horizontal parti-

tioning produced unexpected results. We performed all three Phases of our algorithm to

cluster the tuples into three groups. The result contained a huge cluster of 49, 998 tuples

and two clusters of one tuple in each. However, this result was very informative. All the

tuples in the relation are almost duplicates on many attributes and NULL values forced

them into the same summary. Hence, our first observation here is that the six attributes

with NULL values can be set aside in the analysis without considerable loss of information

Chapter 4. LIMBO-Based Techniques for Structure Discovery 121

about the tuples. At the same time, if our goal is the definition of a possible schema

for the relation, the existence of a huge percentage of NULL values suggests that these

attributes contain very large amounts of duplication and should be stored separately,

before any horizontal partitioning.

After the previous observation, we projected the initial relation onto the attribute

set {Author, Pages, BookTitle, Year, Volume, Journal, Number}. Then we performed

a horizontal partitioning of the tuples. Using our heuristic for choosing k as described

in Section 3.7, we determined that k = 3 was a natural grouping for this data. The

loss of initial information after Phase 3 was only 9.45%, indicating that the clusters are

highly informative. The characteristics of the three clusters are given in Table 4.5. We

now consider each cluster separately, and we report results of our attribute grouping and

functional dependency ranking.

Cluster Tuples AttributeV alues

c1 35892 43478
c2 13979 21167
c3 129 326

Table 4.5: Horizontal partitions

Author
Pages

BookTitle
Year

Volume
Journal
Number

0.0 0.1 0.2 0.3 0.4

Figure 4.16: Cluster 1

Author
Pages

Year
Number
Volume
Journal

0.0 0.1 0.2 0.3

Figure 4.17: Cluster 2

Author
Journal

Year
BookTitle

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.18: Cluster 3

Cluster 1: This horizontal partition contains all Conference publications where the

BookTitle attribute was a non-NULL value in every tuple. Using φT = 0.5 and φV = 1.0

(we use a large φV value due to the large number of attribute values), we performed

the grouping of attributes and the result is given in Figure 4.16. This dendrogram of

Chapter 4. LIMBO-Based Techniques for Structure Discovery 122

the attributes in CD
A reveals that there is zero distance among the Volume, Journal and

Number attributes. Indeed, these are attributes that exclusively contained NULL values in

this cluster. In addition, we found almost zero distance between attributes Author and

Pages, which happens due to an almost one-to-one mapping between their values in this

sample of the DBLP data set (author tuples had unique Pages values in this particular

cluster). Finally, BookTitle is closer to the Author and Pages attributes as conference

titles are correlated with the authors. Having the sequence of attribute merges, we used

FDEP to find functional dependencies that hold in c1 and Fd-rank with ψ = 0.5 to

rank them. There were 12 dependencies and the minimum cover contained 11. All

dependencies together with their RAD and RT R values are given in Table 4.6. Looking

at the top-two dependencies along with the RAD and RT R values of their sets of

attributes we see that maximum redundancy reduction can be achieved if we use them

in a decomposition. Although these two dependencies that were ranked highest did not

contain conference attributes, they are highly informative in that the NULL values in the

attributes they cover indicate removal of more redundancy. A database designer may

not choose to decompose the relation according to these functional dependencies but

rather exclude them from this cluster. Hence, the ranking of dependencies may give

hints regarding the structure of the data.

FD RAD RT R Rank

[Volume]→[Journal] 1.0 1.0 1
[Number]→[Journal] 1.0 1.0 2

[BookTitle]→[Journal] 0.3661 0.9349 3
[Year,BookTitle,Volume]→[Journal,Number] 0.2201 0.8419 4

[Pages,Number]→[Volume,Journal] 0.1406 0.6237 5
[Pages]→[Journal] 0.1407 0.6238 6

[Author,Number]→[Volume,Journal] 0.0430 0.2313 7
[Pages,BookTitle]→[Volume,Journal] 0.0191 0.0986 8

[Author,BookTitle,Volume]→[Journal,Number] 0.0052 0.0374 9
[Author,Year]→[Journal,Number] 0.0089 0.0472 10
[Author,Pages]→[Journal,Number] 0.0082 0.0145 11

Table 4.6: Ranked dependencies for c1.

Chapter 4. LIMBO-Based Techniques for Structure Discovery 123

Cluster 2: The second horizontal partition contains journal publications where the

Journal, Volume and Number attributes had non-NULL values. Again, using φT = 0.5

and φV = 1.0 (given the number of the attribute values) the dendrogram produced is

depicted in Figure 4.17. The first observation is that all attributes in CD
A are generally

characteristics of journal publications. We see that correlations appear among Journal,

Volume, Number and Year, which is something natural to assume in such publications.

For example, the SIGMOD Record journal appears once every quarter and the values

of the Number attribute are 1 through 4. Finally, using the sequence of merges of the

attributes in CD
A , we ranked the functional dependencies holding in this partition. FDEP

discovered a set of functional dependencies whose minimum cover contained 3 depen-

dencies. Using Fd-rank with ψ = 0.5, we ranked the dependencies, which are given in

Table 4.7 together with the RAD and RT R values of the sets of attributes they involve.

Note that the first two dependencies had the same rank. However, the first dependency

has more attributes and is ranked at the top. Using the first dependency in a decompo-

sition, it separates Year from the other attributes, something that is counter-intuitive.

Decomposing over the first dependency will remove redundancy but a designer must de-

cide if the dependency is time-invariant and semantically meaningful. Notice, also, the

big difference in the RAD and RT R values of the third dependency compared to the

first two ones. This can be attributed to the almost distinct values that appear in the

attributes of the Author and Pages.

FD RAD RT R Rank

[Author,Volume,Journal,Number]→[Year] 0.754 0.881 1
[Author,Year,Volume]→[Journal] 0.858 0.982 1
[Author,Year,Pages]→[Volume] 0.0001 0.001 2

Table 4.7: Ranked dependencies for c2.

Cluster 3: The last horizontal partition was much smaller than the previous two, and

contained miscellaneous publications, such as technical reports, theses, etc. It also con-

tained a very small number of conference and journal publications that were written by

Chapter 4. LIMBO-Based Techniques for Structure Discovery 124

a single author. The dendrogram produced based on the CD
A set is given in Figure 4.18.

Given the nature and the size of the cluster, the attribute associations are rather random,

and we did not find any functional dependencies in the partition, a fact suggesting that

this relation does not have internal structure.

The initial horizontal partitioning we used was beneficial. While the initial relation

defined on all 13 attributes contained hundreds of functional dependencies, mainly due

to the attributes containing NULL values, the clusters we produced had a small number

of dependencies (or none) defined on their attributes. This makes the understanding

of their structure an easier task. As to the decomposition of the individual partitions

using the ranked dependencies, we should be careful in that higher ranked dependencies

cannot always be used in a decomposition. The mining algorithms used to derive these

dependencies often produce a large number of them, some of which are accidental (at-

tributes either contain unique values or a large number of NULL values that co-occur

with others). Thus, our ranking provides useful hints to help a designer interactively

examine the data.

4.7 Conclusions

We have presented an approach to discover duplication in large data sets. We presented

a set of information-theoretic techniques based on clustering that discover duplicate, or

almost duplicate, tuples and attribute values in a relation instance. From the information

collected about the values, we then presented an approach that groups attributes so that

duplication in each group is as high as possible. The groups of attributes with large

duplication provide important clues for the re-design of the schema of a relation. Using

these clues, we introduced a novel approach to rank the set of functional dependencies

that are valid in an instance.

Chapter 5

Software Clustering Based on
Information Loss

In this chapter, we consider a different application of the LIMBO algorithm, that of

clustering software artifacts. The majority of the algorithms in the software clustering

literature utilize structural information in order to decompose large software systems.

Other approaches, such as using file names or ownership information, have also demon-

strated merit. However, no intuitive way to combine information obtained from these

two different types of techniques has been proposed previously.

In this chapter, we present an approach that combines structural and non-structural

information in an integrated fashion. LIMBO is used as the clustering algorithm. We

apply LIMBO to two large software systems in a number of experiments. The results

indicate that this approach produces valid and useful clusterings of the components of

large software systems. LIMBO can also be used to evaluate the usefulness of various

types of non-structural information in the software clustering process.

Portions of this chapter have been published by Andritsos and Tzerpos [AT03].

5.1 Introduction

It is widely believed that an effective decomposition of a large software system into

smaller, more manageable subsystems can be of significant help to the process of under-

standing, redocumenting, or reverse engineering the system in question. As a result, the

125

Chapter 5. Software Clustering Based on Information Loss 126

software clustering problem has attracted the attention of many researchers in the last

two decades.

The majority of the software clustering approaches presented in the literature attempt

to discover clusters by analyzing the dependencies between software artifacts, such as

functions or source files [MMCG99, Kos00, Lut02, SP89, Sch91, CS90, MOTU93, HB85,

TH00]. Software engineering principles such as information hiding or high-cohesion, low-

coupling are commonly employed to help determine the boundaries between clusters.

Well-designed software systems are organized into cohesive subsystems that are loosely

interconnected. A cohesive subsystem is characterized by its knowledge of a design deci-

sion that it hides from other subsystems. Typically, the elements of a cohesive subsystem

exhibit a large degree of interdependency [Par72].

We distinguish two types of information about software artifacts. Structural infor-

mation is extracted from the system implementation by program analysis tools on the

behaviour of the system. It includes function calls, variable references, inter-process com-

munications, header file inclusions and system build dependencies. On the other hand,

non-structural information is based on the organization of the development group. It in-

cludes the names of developers of particular parts of the code, as well as simple statistics

derived from the system, such as the number of lines of code. More general concepts can

also be used, such as design principles, the goals for which particular modules were built

and the functionality of sub-systems.

Using naming information, such as file names or words extracted from comments in

the source code [AL97, MMM93] may be the best way to cluster a given system. The

ownership architecture of a software system, i.e., the mapping that shows which developer

is responsible for what part of the system, can also provide valuable hints [BH98]. Some

researchers have also attempted to combine structural and non-structural information

[AL99]. Others have proposed ways of bringing clustering into a more general data

management framework [AM01].

Chapter 5. Software Clustering Based on Information Loss 127

Even though existing approaches have shown that they can be quite effective when

applied to large software systems, there are still several issues that can be identified:

1. There is no guarantee that the developers of a legacy software system have followed

software engineering principles, such as high-cohesion, low-coupling. As a result,

the validity of the clusters discovered following such principles, as well as the overall

contribution of the decomposition obtained to the reverse engineering process, can

be challenged.

2. Software clustering approaches based on high-cohesion, low-coupling fail to discover

utility subsystems, i.e., collections of utilities that do not necessarily depend on each

other, but are used in many parts of the software system (they may or may not

be omnipresent nodes [MOTU93]). Such subsystems do not exhibit high-cohesion,

low-coupling, but they are frequently found in manually-created decompositions of

large software systems.

3. It is not clear what types of non-structural information are appropriate for inclusion

in a software clustering approach. Some choices are listed in Table 5.1. Clustering

Developer names
Lines of code

Directory structure
Date of creation

Date/Time of last maintenance
Revision control logs

Table 5.1: Candidate non-structural features

based on the lines of code of each source file is probably inappropriate, but what

about using timestamps? Ownership information has been shown to be valuable

[BH99], but its usefulness in an automatic approach has not been evaluated.

In this chapter, we present an approach that addresses these issues. Our approach

is based on minimizing information loss during the software clustering process. The

Chapter 5. Software Clustering Based on Information Loss 128

objective of software clustering is to reduce the complexity of a large software system,

especially when this system is visualized, by replacing a set of objects with a cluster.

Thus, the decomposition obtained is easier to understand. However, this process also

reduces the amount of information conveyed by the clustered representation of the soft-

ware system. Using LIMBO, we create decompositions that convey as much information

as possible by choosing clusters that represent their contents as accurately as possible.

In other words, one can predict with high probability the features of a given object just

by knowing the cluster to which it belongs.

Our approach clearly addresses the first issue raised above. It makes no assumptions

about the software engineering principles followed by the developers of the software sys-

tem. It also creates decompositions that convey as much information about the software

system as possible, a feature that should be helpful to the reverse engineer. As will be

shown in Section 5.2, our approach can discover utility subsystems as well as ones based

on high-cohesion, low-coupling. Finally, any type of non-structural information may be

included in our approach. As a result, our approach can be used in order to evaluate the

usefulness of various types of information such as timestamps or ownership. In fact, we

present such a study in Section 5.3.2.

5.2 Clustering Using LIMBO

Throughout this section we will use as an example the dependency graph of an imaginary

software system given in Figure 5.1. For our purposes, we assume that the edges of the

graph correspond to only one type of dependency among the nodes. This graph contains

three program files f1, f2 and f3 and two utility files u1 and u2. This software system is

clearly too trivial to require clustering. However, it will serve as an example of how our

approach discovers various types of subsystems.

Our approach starts by translating the dependencies shown in Figure 5.1 into the

matrix shown in Table 5.2. The rows of this matrix represent the artifacts to be clustered,

Chapter 5. Software Clustering Based on Information Loss 129

u2

f1 f2 f3

u1

Figure 5.1: Example dependency graph

while the columns represent the features that describe these artifacts. Since our example

contains only structural information (non-structural information will be added in Section

5.2.2), the features of a software artifact are other artifacts. To avoid confusion, we will

represent the software artifacts to be clustered with italic letters, e.g., f1, u1, and the

corresponding features with bold letters, e.g., f1,u1. Note that the directed arcs in

Figure 5.1 are treated as undirected arcs in creating the matrix of Table 5.2.

f1 f2 f3 u1 u2

f1 0 1 1 1 1
f2 1 0 1 1 1
f3 1 1 0 1 1
u1 1 1 1 0 0
u2 1 1 1 0 0

Table 5.2: Example matrix from dependencies in Figure 5.1

Let X denote a discrete random variable taking its values from a set X. In our

example, X is the set {f1, f2, f3, u1, u2}. Let Y be a second random variable taking

values from the set Y of all the features in the software system. In our example, Y is

the set {f1, f2, f3,u1,u2}.

The normalized matrix of Table 5.2 is depicted in Table 5.3.

Notice that this is a representation equivalent to the market-basket representation of

Section 3.3.2, and is suitable for clustering by LIMBO.

Chapter 5. Software Clustering Based on Information Loss 130

X\Y f1 f2 f3 u1 u2

f1 0 1/4 1/4 1/4 1/4
f2 1/4 0 1/4 1/4 1/4
f3 1/4 1/4 0 1/4 1/4
u1 1/3 1/3 1/3 0 0
u2 1/3 1/3 1/3 0 0

Table 5.3: Normalized matrix of system features

5.2.1 Structural Example

By using the representation of Section 3.3.2, we can compute all pairwise values of in-

formation loss (δI). These values are given in Table 5.4. The value in position (i, j)

indicates the information loss we would incur, if we chose to group the i-th and the j-th

artifact together.

f1 f2 f3 u1 u2

f1 - 0.10 0.10 0.17 0.17
f2 0.10 - 0.10 0.17 0.17
f3 0.10 0.10 - 0.17 0.17
u1 0.17 0.17 0.17 - 0.00
u2 0.17 0.17 0.17 0.00 -

Table 5.4: Pairwise δI values for vectors of Table 5.3

Clearly, if utility files u1 and u2 are merged into the same cluster, cu, we lose no

information about the system. This agrees with our intuition just by observation of

Figure 5.1, which suggests that u1 and u2 have exactly the same structural features. On

the other hand, we lose some information if f1 and f2 are merged into the same cluster

cf . The same loss of information is incurred if any pair among the program files forms

a cluster. Table 5.5 depicts the new matrix after forming clusters cf and cu. Intuitively,

cu represents the dependencies of its constituents exactly as well as u1 and u2 before the

merge, while cf is almost as good. We compute the probabilities of the two new clusters

using Equation 3.2 from Section 3.2.3 as p(cf) = 2/5 and p(cu) = 2/5, while the new

distributions p(Y |cf) and p(Y |cu) are calculated using Equation 3.3 of the same section.

The values obtained are shown in Table 5.5.

Chapter 5. Software Clustering Based on Information Loss 131

X\Y f1 f2 f3 u1 u2 p(c∗)
cf 1/8 1/8 1/4 1/4 1/4 2/5
f3 1/4 1/4 0 1/4 1/4 1/5
cu 1/3 1/3 1/3 0 0 2/5

Table 5.5: Normalized matrix after forming cf and cu

The new matrix of pairwise distances is given in Table 5.6. It suggests that cf should

next be merged with f3 as their δI value is the minimum. Thus, our approach is able to

discover both utility subsystems (such as cu) as well as cohesive ones (such as the cluster

containing f1, f2, and f3).

cf f3 cu
cf - 0.04 0.26
f3 0.04 - 0.24
cu 0.26 0.24 -

Table 5.6: Pairwise δI after forming cf and cu

5.2.2 Example Using Non-Structural Information

One of the strengths of our approach is its ability to consider various types of information

about the software system. Our example so far has employed only structural data. We

now expand it to involve non-structural data as well, such as the name of the developer,

or the location of an artifact.

All we need to do is extend the universe Y to include the values of non-structural

features. This way our algorithm is able to cluster the software system components in the

presence of meta-information about software artifacts. The files of Figure 5.1 together

with their developer and location are given in Table 5.7.

The normalized matrix whenY is extended to {f1, f2, f3,u1,u2,Alice,Bob,p1,p2,p3}

and shown in Table 5.8.

After that, I(X;Y) is defined and clustering is performed as before, but without

necessarily giving the same results. This will be illustrated in the experimental evaluation

section of this chapter.

Chapter 5. Software Clustering Based on Information Loss 132

Developer Location
f1 Alice p1

f2 Bob p2

f3 Bob p2

u1 Alice p3

u2 Alice p3

Table 5.7: Non-structural features for the files in Figure 5.1

f1 f2 f3 u1 u2 Alice Bob p1 p2 p3

f1 0 1/6 1/6 1/6 1/6 1/6 0 1/6 0 0
f2 1/6 0 1/6 1/6 1/6 0 1/6 0 1/6 0
f3 1/6 1/6 0 1/6 1/6 0 1/6 0 1/6 0
u1 1/5 1/5 1/5 0 0 1/5 0 0 0 1/5
u2 1/5 1/5 1/5 0 0 1/5 0 0 0 1/5

Table 5.8: Normalized matrix of system dependencies with structural and non-structural
features

5.3 Experimental Evaluation

5.3.1 Experiments with Structural Information Only

In order to evaluate the applicability of LIMBO to the software clustering problem, we

applied it to two large software systems with known widely accepted decompositions, and

compared its outputs to those of other well-established software clustering algorithms.

The two large software systems we used for our experiments were of comparable size,

but of different development philosophy:

1. TOBEY. This is a proprietary industrial system that is under continuous develop-

ment. It serves as the optimizing back end for a number of IBM compiler products.

The version we worked with was comprised of 939 source files and approximately

250,000 lines of code. An authoritative decomposition of TOBEY was obtained

through a series of interviews with its developers.

2. Linux. We experimented with version 2.0.27a of this free operating system that

is probably the most significant existing open-source system. This version had 955

source files and approximately 750,000 lines of code. An authoritative decomposi-

Chapter 5. Software Clustering Based on Information Loss 133

tion of Linux was presented by Bowman, Holt and Brewester [BHB99].

The software clustering approaches used for comparison were the following:

1. ACDC. This is a pattern-based software clustering algorithm that attempts to

recover subsystems commonly found in manually-created decompositions of large

software systems [TH00].

2. Bunch. This is a suite of algorithms that attempt to find a decomposition that op-

timizes a quality measure based on high-cohesion, low-coupling. We experimented

with two versions of a hill-climbing algorithm, we will refer to as NAHC and SAHC

(for nearest- and shortest-ascent hill-climbing) [MMCG99].

3. Cluster Analysis Algorithms. We also compared LIMBO to several hierarchi-

cal agglomerative cluster analysis algorithms. We used the Jaccard co-efficient as

similarity measure because it has been shown to work well in a software clustering

context [AL99]. We experimented with four different algorithms: single linkage

(SL), complete linkage (CL), weighted average linkage (WA), and unweighted av-

erage linkage (UA).

Many data sets commonly used in testing clustering algorithms include a variable that

is hidden from the algorithm, and specifies the class with which each tuple is associated.

As mentioned above, the market-basket data sets we experimented with include such a

variable, since an authoritative decomposition is available for all of them. This variable

is not used by the clustering algorithms.

To evaluate the results of our clustering, we used the MoJo distance measure1 [TH99,

WT03]. MoJo distance between two different partitions A and B of the same data set

is defined as the minimum number of Move or Join operations one needs to perform

1A Java implementation of MoJo is available for download at:
http://www.cs.yorku.ca/~bil/downloads

Chapter 5. Software Clustering Based on Information Loss 134

in order to transform either A to B or vice versa. Move refers to assigning a tuple to

a different cluster, while Join refers to merging two clusters into one. Intuitively, the

smaller the MoJo distance between an automatically created clustering A and the ac-

cepted partitioning B, the more effective the algorithm that created A can be considered

to be.

In order to choose an appropriate number of clusters for the non-structural data, we

start by creating decompositions for all values of k between two and a large value. For the

experiments performed here, the chosen value was 100. We felt that clusterings of higher

cardinality would not be useful from a reverse engineering point of view. Moreover, this

value was always sufficient to allow us to choose an appropriate k.

Let Ck be a clustering of k clusters and Ck+1 a clustering of k + 1 clusters. Both

clusterings are given after Phase 3 of Limbo is performed. Hence, this phase may produce

different results when we move from k + 1 to k clusters. If the cluster representatives

created in Phase 2 are well created, then these neighboring clusterings must differ in only

one cluster after Phase 3. Starting from a large k value, we compare consecutive clustering

results and stop if one of the clusterings, Ck+1, can be produced after a single merge of

two clusters of the second clustering, Ck. Using MoJo, we can detect these clusterings

by computing the value of the index from Ck+1 to Ck, i.e., the value of MoJo(Ck+1, Ck).

If this value is equal to one, this means that the difference in the two clusterings is

translated to a simple merge of two clusters of Ck+1, to produce the k clusters of Ck. In

our experiments we report the first value of k, where MoJo(Ck+1, Ck) = 1 after all three

phases of LIMBO have been performed.

For the experiments presented in this section, all algorithms were provided with the

same input, the dependencies between the software artifacts to be clustered. The tra-

ditional cluster analysis algorithms were run with a variety of cut-point heights, which

is a user-specified threshold on the distance between sub-clusters. The smallest MoJo

distance obtained is reported below.

Chapter 5. Software Clustering Based on Information Loss 135

TOBEY Linux
k MoJo k MoJo

LIMBO 80 311 56 237
ACDC 94 320 66 342
NAHC 33 382 35 249
SAHC 15 482 15 353
SL 67 688 9 402
CL 153 361 154 304
WA 139 351 70 309
UA 131 354 38 316

Table 5.9: (k,MoJo) pairs between decompositions proposed by eight different algorithms
and the authoritative decompositions for TOBEY and Linux

Table 5.9 presents the results of our experiments. As can be seen, LIMBO created

a decomposition that is closer to the authoritative one for both TOBEY and Linux,

although the nearest-ascent hill-climbing (NAHC) algorithm of Bunch comes very close in

the case of Linux, as does ACDC in the case of TOBEY. The cluster analysis algorithms

perform respectably, but as expected, are not as effective as the specialized software

clustering algorithms. Notice that although the MoJo values that correspond to the

LIMBO algorithm are quite large, they are smaller than the values for other algorithms.

Moreover, all MoJo values correspond to different numbers of clusters.

We believe that the fact that LIMBO performed better than other algorithms can

be attributed mostly to its ability to discover utility subsystems. An inspection of the

authoritative decompositions for TOBEY and Linux revealed that they both contain

such collections of utilities. Since in our experience that is a common occurrence, we are

optimistic that similar results can be obtained for other software systems as well.

The results of these experiments indicate that the idea of using information loss

minimization as a basis for software clustering has definite merit. Even though further

experimentation is required in order to assess the usefulness of LIMBO in the reverse

engineering process, it is clear that it can automatically create decompositions that are

close to the ones prepared manually by humans.

Chapter 5. Software Clustering Based on Information Loss 136

We also tested LIMBO’s efficiency with both systems. The time required to cluster

the components of a software system depends on the number of clusters. For a given

number of clusters k, LIMBO was able to produce a Ck clustering within 31 seconds.

Figure 5.2 presents LIMBO’s execution time for both example systems, and all values of

k from 2 to 100.

2 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

34

36

38

40

Number of Clusters

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
TOBEY
Linux

Figure 5.2: LIMBO execution time

As can be seen in Figure 5.2, execution time varies only slightly as k increases. As

a result, obtaining an appropriate clustering for either example system was a matter of

minutes. The similarity in the execution times of LIMBO for the two systems does not

come as a surprise, since the number of source files to be clustered was similar (939 in

TOBEY and 955 in Linux). Finally, we provide the execution times for each phase of the

LIMBO algorithm. Figure 5.3(a) shows the execution time for Phase1, Figure 5.3(b) the

execution time for Phase 2 and Figure 5.3(c) the execution time of Phase 3. From the

graphs in these figures, we observe the decrease in the execution time of Phase 2 while

the execution time of Phase 3 increases linearly with increasing k.

5.3.2 Experiments with Non-Structural Information Added

In this section, we utilize LIMBO’s ability to combine structural and non-structural

information seamlessly in order to evaluate the usefulness of certain types of information

Chapter 5. Software Clustering Based on Information Loss 137

10 20 30 40 50 60 70 80 90 100
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Number of Clusters

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

TOBEY
Linux

(a)

10 20 30 40 50 60 70 80 90 100
23.5

24

24.5

25

25.5

26

26.5

27

27.5

28

28.5

Number of Clusters

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

TOBEY
Linux

(b)

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Clusters

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

TOBEY
Linux

(c)

Figure 5.3: (a) Phase 1, (b) Phase 2, (c) Phase 3 execution times of LIMBO

to the reverse engineering process. We present results for the application of LIMBO to

Linux when non-structural features are present. We will test the quality of clustering

when the following features are added to the structural information:

• Developers (dev): This feature gives the ownership information, i.e., the names of

the developers involved in the implementation of the file. Where the developer was

unknown, we used a unique dummy value for each file.

• Directory Path (dir): In this feature, we include the full directory path for each

file. In order to increase the similarity of the files residing in similar directory

paths, we include the set of all sub-paths for each path. For example, the direc-

tory information for file drivers/char/ftape/ftape-io.c is the set {drivers,

drivers/char, drivers/char/ftape} of directory paths.

• Lines of Code (loc): This feature is the number of lines of code in the files. We

discretized the values by dividing the full range of loc values into the intervals

(0, 100], (100, 200], (200, 300], etc. Each file is given a feature such as RANGE1,

RANGE2, RANGE3, etc.

• Time of Last Update (time): This feature is derived from the time-stamp of each

file on the disk. We include only the month and year of latest modification to the

file.

Chapter 5. Software Clustering Based on Information Loss 138

In order to investigate the results LIMBO produced with these non-structural features,

we consider all possible combinations of them added to the structural information. These

combinations are depicted in the lattice of Figure 5.4. At the bottom of this lattice, we

have only the structural dependencies, and as we follow a path upwards, different non-

structural features are added. Thus, in the first level of the lattice, we only add individual

non-structural features. Each addition is represented by a different type of arrow at each

level of the lattice. For example, the addition of dir is given by a solid arrow. As the

loc+timedir+timedev+timedir+locdev+locdev+dir

dir+loc+timedev+loc+timedev+dir+timedev+dir+loc

addition of loc

addition of time

addition of dir

addition of dev

dev
239282195229

265208240210242178

201248189212

248

237
Structural

dev+dir+loc+time

timelocdir

Figure 5.4: Lattice of combinations of non-structural features for the Linux system

lattice of Figure 5.4 suggests, there are fifteen possible combinations of non-structural

features that can be added to the structural information.

Each combination of non-structural features in Figure 5.4 is annotated with the MoJo

distance between the decomposition created by LIMBO and the authoritative one. The

results are also given, in ascending order of the MoJo distance value, in Table 5.10. The

Chapter 5. Software Clustering Based on Information Loss 139

table also includes the number of clusters that the proposed decomposition had in each

case.

Clusters MoJo
dev+dir 69 178

dev+dir+time 37 189
dir 25 195

dir+loc+time 78 201
dir+time 18 208
dir+loc 74 210

dev+dir+loc 49 212
dev 71 229

structural 56 237
time 66 239

dev+time 73 240
dev+loc 73 242

dev+loc+time 45 248
dev+dir+loc+time 48 248

loc+time 34 265
loc 85 282

Table 5.10: Number of clusters and MoJo distance between the proposed and the au-
thoritative decomposition.

Certain combinations of non-structural data produce clusterings with a smaller MoJo

distance to the authoritative decomposition than the clustering produced when using

structural information alone. This indicates that the inclusion of non-structural informa-

tion has the potential to increase the quality of the decomposition obtained. However,

in some of the cases the MoJo distance to the authoritative decomposition has increased

significantly.

A closer look reveals some interesting observations:

• Following a solid arrow in the lattice always leads to a smaller MoJo value (with the

exception of the topmost one where the value is actually the same). This indicates

that the inclusion of directory structure information produces better decomposi-

tions, an intuitive result.

• Following a dashed arrow leads to a smaller MoJo value as well, although the

Chapter 5. Software Clustering Based on Information Loss 140

difference is not as dramatic as before (the topmost dashed arrow is again an

exception). Still, this indicates that ownership information has a positive effect on

the clustering obtained, a result that confirms the findings of Holt and Bowman

[BH99].

• Following a dotted arrow consistently decreases the quality of the decomposition

obtained. (A marginal exception exists between dir+time and dir+loc+time.) This

confirms our expectation that using the lines of code as a basis for software clus-

tering is not a good idea.

• Finally, following the arrows that indicate addition of time, leads mostly to worse

clusterings but only marginally. This indicates that time could have merit as a

clustering factor for some software systems. Better results might be achieved by

examining the revision control logs of a system in order to obtain information about

which files are being developed around the same time.

The few exceptions to the above trends that we encountered occurred in the top part

of the lattice. This is due to the fact that, when a number of factors have already been

added to the algorithm’s input, the effect of a new factor will not be as significant, and

in fact it might be eclipsed by the effect of other factors. As a result, we believe that the

lower part of the lattice provides more revealing results than the top part.

When the structural information was removed from LIMBO’s input, the results were

not as good. In fact, loc and time produced rather random decompositions. The situation

was better for dir and dev (MoJo distances to the authoritative decomposition of 407 and

317 respectively), but still quite far from the results obtained from the combination of

structural and non-structural information. This result indicates that an effective cluster-

ing algorithm needs to consider both structural and non-structural information in order

to produce decompositions that are close to the conceptual architecture of a software

system.

Chapter 5. Software Clustering Based on Information Loss 141

Finally, the execution times observed for the experiments that involved non-structural

information were almost identical to those that involved both structural and non-structural

information.

In summary, the results of our experiments show that directory structure and owner-

ship information are important factors for the software clustering process, while lines of

code is not. Further research is, of course, required in order to determine whether these

results hold true for a variety of software systems, or are particular to the Linux kernel.

5.4 Conclusions

This chapter demonstrated that information loss minimization is a valid basis for a soft-

ware clustering approach. A strength of our approach is that it can incorporate in the

software clustering process any type of information relevant to the software system. We

experimented and assessed the usefulness of adding four different types of non-structural

information to supplement the structural information.

Chapter 6

Evaluating Value Weighting
Schemes in LIMBO

All algorithms presented so far deem all attributes and data values present in a data

set as equally important. In this chapter, we present a set of weighting schemes that

allow for objective assignments of importance to the values of a data set. We use well

established weighting schemes from information retrieval, web search and data clustering

to assess the importance of whole attributes and individual values. To the best of our

knowledge, this is the first work that considers weights in the clustering of categorical

data.

We perform clustering in the presence of importance for the values within the LIMBO

framework. Our experiments were performed on dataset from a variety of domains,

including data sets used before in clustering research and three data sets from large

software systems. We report results as to which weighting schemes show merit in the

decomposition of data sets.

The results of this chapter have been submitted for publication [AT04].

6.1 Introduction

Current algorithms treat all attributes in a relation and all individual values in a data

set equally. However, a domain expert clustering a particular data set would invariably

assign different importance to particular attributes based on her intuition. Similarly, she

143

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 144

might consider certain data values as more important than others for the determination

of the clusters.

The premise for the work presented in this chapter is that by assigning different

importance to attributes and/or individual values, we can direct the clustering process

toward a more meaningful result. We do this by implementing a number of weighting

schemes that are based on existing techniques from information retrieval and clustering

of categorical values. Experiments conducted using the LIMBO algorithm demonstrate

the merit of the various weighting schemes and suggest possible improvements.

In particular, we investigate weighting schemes that apply to two different types of

data sets:

1. Relational Data Sets. These are data sets where tuples are defined over a set of

different attributes. We employ two techniques from information retrieval and one

from spectral graph theory, in order to produce weights for the attributes and/or

individual values in such data sets:

• Term Frequency-Inverse Document Frequency (TF.IDF).

• Mutual Information (conveyed by a particular value about the rest of the

values).

• Linear Dynamical Systems. These systems iterate a function over a graph

in order to update the weights of its nodes. They are used in the STIRR

algorithm described in Section 2.4.

2. Graph-based data sets. These are data sets where the objects to be clustered are

in the form of a graph that represents interdependencies between them. Such

structures appear in numerous domains, such as in hyperlinked documents, where

the objective is to group web pages with similar content, or the reverse engineering

of software systems, where the objective is to decompose software systems into

meaningful components in order to better understand and maintain them.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 145

In addition to the weighting schemes applied to relational data sets, we also employ

the following two weighting schemes for graph-based data sets:

• We use the well known PageRank algorithm [BP98] to assign importance to

specific values.

• We utilize usage data, such as weblogs or information obtained by profiling

software systems.

Our work is different in spirit from the work presented in the literature on Feature

Selection [LM98]. In feature selection for clustering [Tal99], the main focus is on the

elimination of whole attributes to improve the performance of the underlying algorithm.

An initial evaluation of a weighting scheme without attribute elimination is presented

by Modha and Spangler for numerical data and the k-means algorithm [MS03]. On the

other hand Term Weighting Schemes have appeared in Information Retrieval to ensure

better search results [BR99, DS03, SB88]. These techniques, though, assume a class label

assigned to every tuple and evaluate attributes according to how well they predict these

labels. Finally, Gravano et al., use the TF.IDF weighting schemes for approximate text

joins within a database system [GIKS03].

6.2 Incorporating Weights

We consider both relational and market-basket data with the representations given in

Section 3.3.1 and 3.3.2, respectively. We denote by T the set of tuples to be clustered

and T the random variable that takes its values from set T. Similarly, V is the set of

attribute values and V the random variable taking values from V. When dealing with

graph-based data sets, we first transform them into market-basket data sets, and then

use the corresponding representation. Since the objective with a graph-based data set is

to cluster the nodes of the graph, the transformation into market-basket data proceeds

as follows: Each node ni of the graph corresponds to a tuple, while the values in the

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 146

tuple is the set of nodes that are adjacent to ni in the graph.

6.2.1 Incorporating Weighting Schemes

In both relational and market-basket data, we normalized each row of matrixM to sum to

one in order to make it a probability distribution. This way we consider the appearance

of a value in a tuple as probable as any of the other value in the same tuple. If we

represent importance with numerical weights, the aforementioned conceptualizations of

our data sets involve values with equal weights.

Our goal is to study how particular weighting schemes over the data we cluster influ-

ence the resulting clusters. Before introducing these schemes, we describe how to apply

a weighting scheme through an example. Consider the tuples of the market-basket data

set given in Table 6.1. According to the equations from Section 3.3.1, we set p(ti) = 1/4,

1 ≤ ti ≤ 4, and the matrix M that is used to represent this data set is given in Table 6.2.

t1 a b c d e
t2 b c e
t3 d e
t4 a b d

Table 6.1: Market-basket data

a b c d e p(t)
t1 1/5 1/5 1/5 1/5 1/5 1/4
t2 0 1/3 1/3 0 1/3 1/4
t3 0 0 0 1/2 1/2 1/4
t4 1/3 1/3 0 1/3 0 1/4

Table 6.2: Market-basket data representation

By applying Equation 3.4 to the example data set, we can compute all pairwise values

of information loss (δI) that would result from merging tuples. These values are given

in Table 6.3. The value in position (i, j) indicates the information loss we would incur,

if we chose to group the i-th and the j-th tuple together.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 147

t1 t2 t3 t4
t1 - 0.1182 0.1979 0.1182
t2 0.1182 - 0.2977 0.3333
t3 0.1979 0.2977 - 0.2977
t4 0.1182 0.3333 0.2977 -

Table 6.3: Pairwise δI values for vectors of Table 6.2

From the information losses of Table 6.3, we conclude that the algorithm should merge

either pair (t1, t2) or (t1, t4), which have the lowest value of 0.1182. We also notice that

pairs (t2, t3) and (t3, t4) are equidistant.

Let us now assume that a particular weighting scheme has assigned weights to the five

values in the example (larger weights correspond to more important values). Denoting

the vector of weights with w, we may have w = (0.01, 0.01, 0.01, 0.96, 0.01). This rather

extreme weight distribution considers value d to be the most important one. In order

to have the importance of each value reflected in matrix M , we replace each appearance

of a value in a tuple with its weight, and normalize the rows of matrix M so that they

sum up to one. Using the example vector w given above, the new matrix M is given in

Table 6.4.

a b c d e p(t)
t1 0.01 0.01 0.01 0.96 0.01 1/4
t2 0 0.3333 0.3333 0 0.3333 1/4
t3 0 0 0 0.9897 0.0103 1/4
t4 0.0102 0.0102 0 0.9796 0 1/4

Table 6.4: Data representation with weights

The new pairwise distances between tuples are given in Table 6.5.

t1 t2 t3 t4
t1 - 0.4511 0.0076 0.0050
t2 0.4511 - 0.4833 0.4834
t3 0.0076 0.4833 - 0.0077
t4 0.0050 0.4834 0.0077 -

Table 6.5: Pairwise δI values for vectors of Table 6.4

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 148

In the presence of importance for the values, there are no ties in the information losses

among the tuples in this particular example. Moreover, the closest pair is now (t1, t4),

which are almost identical since they both share the value with highest importance. The

clustering algorithm, as an initial step, will merge tuples t1 and t4 into cluster t14 and

the new probability distribution p(V |t14) is given in Table 6.6.

a b c d e p(t)
t14 0.0101 0.0101 0.0050 0.9698 0.0050 1/2
t2 0 0.3333 0.3333 0 0.3333 1/4
t3 0 0 0 0.9897 0.0103 1/4

Table 6.6: New data representation with weights

The new pairwise distances are given in Table 6.7.

t14 t2 t3
t14 - 0.3820 0.3298
t2 0.3820 - 0.4833
t3 0.3298 0.4833 -

Table 6.7: New pairwise δI values for vectors of Table 6.6

This table dictates that tuple t3 and cluster t14 should be merged next.

After this illustrative example, we are now ready to formally define the data set

representation in the presence of weights for the attribute values. If V is the universe

of all d values that appear in the data set and w a vector of their importances, where

|w| = d, we represent our data as an n× d matrix M , where M [t, v] = w(v) if attribute

value v ∈ V appears in tuple t ∈ T, and zero otherwise. For a tuple t ∈ T, we define:

p(t) = 1/n (6.1)

p(v|t) =

w(v)/
∑

v′∈V(w(v
′)) if v appears in t

0 otherwise
(6.2)

The only difference from the representation of market-basket data in Section 3.3.2

is in the definition of distribution p(V |t), where we first replace each entry equal to 1

with the weight of the corresponding value v and normalize each vector so that it sums

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 149

up to one. Note that our definition is sufficiently general to cover both relational and

market-basket data sets. In the former case, if we only have weights for each attribute

rather than for each value, we may proceed as above after giving each value the weight

of its corresponding attribute.

In the following section, we present weighting schemes for both attributes and values.

6.3 Data Weighting Schemes

In this section, we present in detail the weighting schemes we consider for our data sets.

6.3.1 Mutual Information

The first weighting scheme that we propose is based on mutual information. Given a

set of attributes A1, A2, . . . , Am, we can define a probability distribution of the values of

each one of them. The dependence score for attribute Ai and Aj, is computed as the

mutual information I(Ai;Aj) given by the following equation

I(Ai;Aj) = H(Ai)−H(Ai|Aj) = H(Aj)−H(Aj|Ai)

Note that mutual information is symmetric and, the lower its value, the weaker the

dependence between Ai and Aj . We suggest computing the weight MI(Ai) for each

attribute Ai as the average mutual information between Ai and each other attribute:

MI(Ai) =
1

m− 1

m
∑

j=1,j 6=i

I(Ai;Aj)

The higher the value of MI(Ai), the more important Ai is.

Given a relational data set, we compute the weight of each one of the attributes and

label the values of the data sets with the weights of their corresponding attributes. More

formally, if vij is the j-th value that belongs to the set of values Vi of attribute Ai, then

w(vij) =MI(Ai).

The previous definition of MI holds for relational data sets. In the case of market-

basket data sets, the tuples are expressed over a single attribute. Hence, we need to

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 150

define the probability distribution in a different manner. For each value vi ∈ Vi, we

define the probability

Ppresent(vi) =
number of times vi appears

n
(6.3)

Equation 6.3 is the probability of finding value vi in a randomly selected tuple in the

data set. Therefore, using Ppresent and Pabsent = 1−Ppresent we can compute the entropy

H(vi) of value vi. Similarly we can define the joint distribution of pairs of values vi ∈ Vi

and vj ∈ Vj and compute the joint entropy H(vi, vj). Given the mutual information of

values vi ∈ Vi and vj ∈ Vj, the MI value of vi can be computed by

MI(vi) =
1

d− 1

d
∑

j=1,j 6=i

I(vi; vj)

6.3.2 Linear Dynamical Systems

In this section, we restate the definition of Dynamical Systems from Chapter 2. Dy-

namical Systems have been previously used in the clustering of attribute values in a

relational data set [GKR98]. In this case, the data set is represented as a hypergraph

whose nodes are the values in the data set, and there is an undirected edge between two

values that appear in a tuple together. An example of a relational data set together with

its hypergraph is given in Figure 6.1.

A B C
t1 a w 1
t2 a x 1
t3 b y 2 y

a

b 2

1

w

x

Figure 6.1: Relational data set with its hypergraph

Given a set of d values, the initial set of weights, which is called the initial config-

uration, is a d-dimensional vector w of real numbers. The dynamical system repeat-

edly applies a function f : R
n → R

n. The configuration in which the values in the

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 151

d-dimensional vector do not change, that is f(wi) = wi−1, where i indexes the successive

weight configurations, is called a fixed point of the dynamical system.

The dynamical system that f describes is given in Figure 6.2 [GKR98]. Following the

steps, we update the weight wv of each value v.

Dynamical System

To update weight wv:
For each tuple τ = {v, u1, . . . , um}
containing v do:

χτ =
⊕

(u1, . . . , um)
wv ←

∑

τ χτ

Figure 6.2: Updating weights in a dynamical system

In Figure 6.2, the symbol
⊕

denotes the combination operator. Several choices for

the combination operator have appeared in the literature [GKR98]. We shall use the

summation operator, hence the term Linear Dynamical Systems (LDS). Intuitively, for

each value, we sum the weights of the values with which it co-occurs in the data set.

To update all the values in the data set, a full pass over the data is required. In each

iteration, we normalize the weight vector w so that the weights sum to one and check if

f(wi) = wi−1. If this is the case, the dynamical system has converged and the final set

of weights is stored in wi. If not, more iterations are performed until we reach a fixed

point. In our experiments, we performed ten iterations of the dynamical system, since

this has been shown to perform well [GKR98]. Alternatively, a threshold ε can be used

in the comparison f(wi) = wi−1. If f(wi)−wi−1 ≤ ε then the iterations cease, otherwise

a new one starts. Instead of ε, we can also bound the number of iterations. Generally,

little is known with respect to the theoretical justification as to why Dynamical Systems

converge [GKR98].

In our work, we use Linear Dynamical Systems to derive weights for the values in

both kinds of data sets. The more a value co-occurs with other values in the data set the

higher its weight.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 152

6.3.3 TF.IDF

In this section, we introduce the use of the well-established Term Frequency-Inverse Doc-

ument Frequency (TF.IDF) weighting scheme from information retrieval [BR99]. Given

a collection of d values V and n tuples T, the TF.IDF weight of a value v ∈ V is defined

as

TF.IDF (v) = tf(v) · log
(

idf(v)
)

where tf(v) (term frequency) is the frequency of value v in a tuple t ∈ T and idf(v)

(inverse document frequency) is the fraction n/nv, with nv being the number of tuples

containing the value v. For relational data sets all values have tf(v) = 1 for obvious

reasons. Drawing the analogy with information retrieval, we consider our tuples as a

set of documents and our values as the set of terms over which these documents are

expressed.

Intuitively, the TF.IDF weight of a value is high if this value appears many times

within a tuple and at the same time a smaller number of times in the collection of the

tuples. The latter means that this value conveys high discriminatory power. For example,

in a data warehouse of software artifacts, file stdio.h, which is used by a large number of

software files will have a lower TF.IDF compared to file my vector.h, which is connected

to a smaller fraction of files.

Once vector w of the weights of all values in V is defined, we normalize it so that

it sums up to one. Hence, the resulting weights correspond to the impact of the values

in the data set. Note that the TF.IDF scheme can be applied to both relational and

market-basket data.

6.3.4 PageRank

PageRank is a weighting scheme proposed and widely used in search engines [BP98]

to compute a web page’s importance (or relevance). PageRank can be used when the

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 153

relationships among different web pages are given by a graph. We shall draw an analogy

with a data set whose values are related to each other, and this relationship is realized

through a directed graph. (Note that, in the case of Dynamical Systems, there is no

direction associated with the edges of the hypergraph.) The main idea behind PageRank

is that a value v is deemed important if it is being pointed to by good values.

More precisely, let us denote by G the graph that relates the values in V. PageRank

performs a random walk over the nodes of G. The walk starts at a random node according

to some distribution, usually uniform. Intuitively, the weight of a node n0 is the number

or frequency of visits to this node. The PageRank of a node n0 with C(n0) outgoing links

is computed as [BP98]:

PR(n0) = (1− α) + α
(PR(n1)

C(n1)
+ . . .+

PR(ns)

C(ns)

)

(6.4)

where n1, . . . , ns are the nodes that point to n0. The parameter α is a damping factor,

which can be set between 0 and 1. A common value for α is 0.85 [BP98], the value we

used in our experiments.

The PageRank of each page depends on the PageRank of the pages that point to it. To

reach a final weight vector w of PageRank weights, PR(v) of each value can be calculated

using a simple iterative algorithm. Vector w corresponds to the principal eigenvector of

the normalized adjacency matrix ofG. As in the case ofDynamical Systems, the iterations

stop when the vector w of PR values, as given by Equation 6.4, converges.

6.3.5 Usage Data

Edges in a graph-based data set indicate only potential relationships between the objects

they connect. For example, a link on a webpage indicates a potential path that a user

might follow. A procedure call in the call graph of a software system may or may not be

executed when the system is run. Furthermore, it is quite common that particular edges

are heavily used, while others are used only rarely.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 154

These observations indicate that the static picture of a graph-based data set might

belie what actually happens when the system it represents is in use. It is intuitive to

conjecture that the amount of usage of a particular object is related to its importance.

For this reason, the fifth weighting scheme we implemented for this work is based

on usage data acquired from a dynamic trace. Assuming that each edge in the graph-

based data set is associated with a weight that represents its usage, each value in the

corresponding market-basket data set was assigned a weight equal to the weight of the

edge that connects the node represented by the value to the node represented by the

tuple. (The unweighted transformation of a graph-based data set to a market-basket

data set was described in Section 6.2.) The weights of the values within each tuple were

then normalized prior to the execution of LIMBO.

In contrast to the PageRank weighting scheme, here the same value might be given a

different non-normalized weight when it appears in different tuples since, for example, a

particular procedure will not be called with the same frequency by all its callers.

6.3.6 Weight Transformations

An interesting observation that was confirmed by early experiments is that the weights

assigned by the weighting schemes presented so far may not always be beneficial to the

clustering process. For example, nodes deemed highly relevant by PageRank may not be

as important for clustering purposes. In software clustering, there is the well-established

notion of “omnipresent” nodes [MOTU93], i.e., nodes with large in- or out-degree. It is

often beneficial to minimize the effect such nodes have in the clustering process.

For this reason, we investigated several variations to the five weighting schemes by a

process of weight smoothing. More precisely, for each weighting scheme, we also applied

the following variations:

• The values with the largest weights were identified, and their weight was modified

to the minimum weight in the data set. We performed experiments where the values

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 155

affected were in the top 5, 10, or 20 percentile.

• All values were sorted according to their weight. Intuitively, we reverse the order

in which the values are weighted. If v1 is the value with the smallest weight, and vd

is the value with the largest weight, this variation assigns a new weight to vi equal

to the old weight of vd−i+1.

6.4 Experimental Evaluation

We perform a comparative evaluation using the LIMBO clustering algorithm on both

relational and market-basket data sets. Our intention here is not to test the scalability

or the performance of LIMBO under different parameter settings. The effects of these

parameters have been discussed in Chapter 3.

We experimented with the following six data sets.

6.4.1 Relational Data Sets

The first two relational data sets we used are the Votes and Mushroom data sets described

in Chapter 3. The third data set is the DBLP data set described in Chapter 4.

The first two data sets have been previously used for the evaluation of clustering algo-

rithms [BCL02b, GKR98, GRS99, ATMS04] as well as in our experiments with LIMBO

in Chapters 3 and 4.

Congressional Votes. We ran LIMBO with φ = 0.0 and use this data set to test the

performance of the weighting schemes on data sets with small attribute domains.

Mushroom. We used φ = 0.5 for this data set to reduce the number of leaf entries to

approximately 350 with no loss in quality.

DBLP Bibliography. We used this highly heterogeneous relation containing a large

number of values (including missing ones) to demonstrate the strength of our approach

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 156

in suggesting a clustering. The φ value used was 1.2 due to the larger size of this data

set.

6.4.2 Market-basket Data Sets

In addition to the TOBEY and LINUX data sets as described and used in Chapter 5, we

performed experiments on a third data set, that of the Mozilla source code.

TOBEY. We used φ = 0.0 for this data set.

LINUX. Due to the relatively small size of this data set, we used φ = 0.0 again.

Mozilla. The third market-basket data set we used for our experiments was derived

from Mozilla, an open-source web browser. We experimented with version 1.3, which

was released in March 2003. It contains approximately 4 million lines of C and C++

source code.

We built Mozilla under Linux and extracted its static dependency graph using CPPX,

and a dynamic dependency graph using jprof. A decomposition of the Mozilla source files

for version M9 was presented by Godfrey and Lee [GL00]. For the evaluation portion of

our work, we used an updated decomposition for version 1.3 [Xia04].

Mozilla was the only software system that was used to evaluate the usage data weight-

ing scheme. The main reason for this was the fact that, in order to extract meaningful

usage data from a software system, one needs a comprehensive test suite that ensures

good coverage of as many execution paths as possible. Such a test suite was not available

for TOBEY or LINUX. However, we were able to use the Mozilla “smoketests” [GL00]

for this purpose. The dynamic dependency graph we obtained contained information

about 1202 of the 2432 source files that are compiled under Linux. The results presented

in this section are based on the classification of these 1202 files. A number of φ values

between 0.0 and 1.2 gave the same results. We report experiments with φ = 1.2.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 157

6.4.3 Quality Measures for Clustering

Clustering quality lies in the eye of the beholder; determining the best clustering usu-

ally depends on subjective criteria. For this reason, we will use a variety of evaluation

measures in order to assess the merit of the obtained clusterings.

Category Utility (CU): The definition of Category Utility [GC85] was presented in

Chapter 3. In order to compare clusterings with different number of clusters, Fisher’s

COBWEB clustering system [Fis87] introduced the average CU value per cluster. This

value is defined as CUavg =
CU
k
, where k is the number of clusters. We use this measure

in order to evaluate the clusterings obtained from the relational data sets.

MoJo: We use MoJo here, similar to the way in which it was used for non-structural

data in Chapter 5 and in Section 5.3.1, to derive an appropriate value for the number of

clusters and assess the quality of the results.

Information Loss, (IL): We also use the information loss IL = I(A;T) − I(A;Ck)

to compare clusterings. The lower the information loss, the better the clustering. For a

clustering with low information loss, given a cluster, we can predict the attribute values

of the tuples in the cluster with relatively high accuracy. We present IL as a percentage

of the initial mutual information, IL
I(A;T)

·100%, lost after producing the desired number of

clusters using each algorithm. However, special attention must be paid since clusterings

with smaller k values tend to incur larger values of information loss. We report the value

of IL as an indication of the information content of the resulting clusters.

6.4.4 Relational Data: Results and Observations

For the relational data sets, we ran LIMBO without any weights as well as in the presence

of weights given by theMI, LDS, and TF.IDF weighting schemes. Figures 6.3, 6.4 and 6.5

depict the weight distributions of the three weighting schemes on the Votes, Mushroom

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 158

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

W
e
ig

h
ts

votes
MI

votes
IDF

votes
LDS

Figure 6.3: Votes weights

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

W
e
ig

h
ts

mushroom
MI

mushroom
IDF

mushroom

LDS

Figure 6.4: Mushroom weights

0 1 2 3 4 5 6

x 10
4

10
−20

10
−15

10
−10

10
−5

10
0

W
ei

g
h

ts

dblp
MI

dblp
IDF

dblp
LDS

Figure 6.5: DBLP weights

and DBLP data sets, respectively. (The weight values were sorted in ascending order to

facilitate visualization.)

For the Votes data set, Figure 6.3 indicates that MI and LDS assign weights in a

similar fashion, although LDS does assign significantly smaller weights to 20% of the

values. On the other hand, TF.IDF assigns smaller weights to about half of the values,

while the weights increase for the rest of them. The latter ones correspond to YES or

NO values that do not appear many times in the corresponding attributes of the data

set.

The Mushroom data set contains values that are almost equally distributed in the

attributes of the data set. Hence, as Figure 6.4 depicts, the TF.IDF scheme does not

assign the highest weights as in Votes. A similar situation with respect to the weights

produced by LDS is observed here as well. The weights for approximately 20% of the

values are significantly lower than the rest. Finally, MI demonstrates behaviour similar

to that in the Votes data set, which can be characterized as more conservative than the

other weighting schemes.

The main lesson learned from the distribution of the weights in the DBLP data set

(the y-axis is in logarithmic scale) is that MI and TF.IDF produce similar distributions

of weights. On the other hand, the large number of missing values in different attributes

and the large number of values in the tuples related to the same publication forced LDS

to elicit two significantly different categories of weights.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 159

The results of clustering the three relational data sets (without any weight transfor-

mation) are given in Table 6.8. In order to choose an appropriate number of clusters, we

start by creating decompositions for all values of k between 2 and a large value. For the

experiments performed for these data sets, the chosen value was 50. For these cluster-

ings, we compute the value of CUavg and choose the clustering that had the maximum

CUavg value, i.e. a clustering where values can be predicted with the highest accuracy

in their corresponding clusters. The weighting schemes that performed best with respect

to CUavg are shown in bold.

Votes (φ = 0.0)

Scheme k CUavg IL(%)

None 2 1.4017 73.25
MI 2 1.4349 63.38
LDS 2 1.4397 71.67
IDF 2 1.3850 77.47

Mushroom (φ = 0.5)

Scheme k CUavg IL(%)

None 3 1.0670 79.24
MI 3 1.0670 72.71
LDS 4 1.0399 59.44
IDF 4 1.0399 58.11

DBLP (φ = 1.2)

Scheme k CUavg IL(%)

None 3 0.4089 90.72
MI 2 0.6002 92.75
LDS 3 0.6172 90.00
IDF 3 0.6174 89.04

Table 6.8: Results for relational data sets

From these results, we observe that in the Votes data set there is hardly any difference

among the three schemes. In all cases, the number of clusters with the lowest CUavg is

the same. MI and LDS produce slightly better quality results both with respect to the

CUavg and IL. A possible explanation for the similarity between the results could be the

fact that the domain of all attributes is the same (YES, NO, UNKNOWN).

In the Mushroom data set the MI weighting scheme gave the best results. The value

of CUavg is the same as in the case where no weights were introduced. However, for the

same number of clusters (three) in each case, MI resulted in a clustering with smaller IL

value.

Finally, in the DBLP data set, all weighting schemes showed merit. This result is

intuitive since weighting schemes balanced abnormalities, such as the high number of

NULL values. For example, the TF.IDF scheme assigned a very small weight to the

NULL values that appear almost exclusively in some attributes, driving the result of the

clustering to more meaningful and informative clusters.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 160

Votes (φ = 0.0)
Scheme k CUavg IL(%)
None 2 1.4017 73.25
MI 2 1.4349 63.38
MI-5% 2 1.4031 69.91
MI-10% 2 1.1889 73.34
MI-20% 3 0.9266 65.52
LDS 2 1.4397 71.67
LDS-5% 2 1.4321 68.97
LDS-10% 2 1.4393 68.89
LDS-20% 2 1.4206 71.26
IDF 2 1.3850 77.47
IDF-5% 2 1.4386 76.73
IDF-10% 2 1.4426 75.82
IDF-20% 2 1.4433 73.29

Mushroom (φ = 0.5)
Scheme k CUavg IL(%)
None 3 1.0670 79.24
MI 3 1.0670 72.71
MI-5% 4 1.0399 60.68
MI-10% 3 1.0666 69.09
MI-20% 3 1.0670 69.24
LDS 4 1.0399 59.44
LDS-5% 3 0.9719 68.71
LDS-10% 3 0.9718 65.68
LDS-20% 3 0.9717 65.50
IDF 4 1.0399 58.11
IDF-5% 4 1.0399 59.14
IDF-10% 4 1.0401 58.56
IDF-20% 3 1.0666 69.17

DBLP (φ = 1.2)
Scheme k CUavg IL(%)
None 3 0.4089 90.72
MI 2 0.6002 92.75
MI-5% 3 0.6001 90.68
MI-10% 3 0.6001 92.09
MI-20% 3 0.6201 89.24%
LDS 3 0.6172 90.00
LDS-5% 3 0.6174 89.97
LDS-10% 3 0.6171 90.20
LDS-20% 3 0.6089 91.04
IDF 3 0.6174 89.04
IDF-5% 4 0.6171 89.45
IDF-10% 3 0.6072 90.56
IDF-20% 3 0.6233 89.18%

Table 6.9: Results for relational data sets with transformed weights (bold fonts show best
results of transformed weights)

We also applied the same weighting schemes but with transformed weights, as ex-

plained in Section 6.3.6. The results obtained are shown in Table 6.9.

In the Votes data set, clustering results are worse whenMI and LDS weight values are

transformed. On the contrary, the results of TF.IDF are improved. TF.IDF is a scheme

that gives higher weights to values that appear less often in the tuples. The transformed

results prove that, in the case of this data set, such values are less important than the

scheme presumes, and, by decreasing their value, the results are better.

The same observation holds for the case of DBLP, where single authors or confer-

ence names appear with high weights in the case of TF.IDF, we see that transforming

the weights of these values to the weights that correspond to NULL values, the clusters

are more informative and the publications better separated. In Mushroom, IDF-20%

improves over IDF, but the result is still less good than for None and MI.

6.4.5 Market-Basket Data: Results and Observations

LIMBO was also applied to the three market-basket data sets using all weighting schemes

and their variations. In the same way as in the relational data sets, in order to choose an

appropriate number of clusters, we start by creating decompositions for all values of k

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 161

between 2 and a large value. For the experiments performed in market-basket data sets,

the chosen value was 150, a value that turned out to be sufficient for our purposes.

Figures 6.6, 6.7, and 6.8 present the weight distribution for the three market-basket

data sets and the applicable weighting schemes. In all figures, the y-axis is in logarithmic

scale.

0 200 400 600 800 1000
10

−15

10
−10

10
−5

10
0

W
e

ig
h

ts

tobey
MI

tobey
IDF

tobey
LDS

tobey
PageRank

Figure 6.6: TOBEY weights

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

W
e

ig
h

ts

linux
MI

linux
IDF

linux
PageRank

Figure 6.7: LINUX weights

0 0.5 1 1.5 2

x 10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

W
ei

g
h

ts

mozilla
Usage

Figure 6.8: MOZILLA weights

In Figure 6.6 we present the weight distribution of all four schemes. We observe that

MI, TF.IDF and PageRank produce weights in the same range. In the case of LDS, the

weights produced are smaller and with a broader range. Larger weights correspond to

nodes with large in- and out-degrees.

The weight distribution in the LINUX data set for all schemes follows the same pattern

as in the TOBEY data set. To reveal the differences among the weights of MI, TF.IDF

and PageRank schemes, we chose to omit the distribution of LDS in Figure 6.7. This

figure shows that MI and TF.IDF elicit similar and more conservative weights compared

to PageRank, which gives a high weight to a number of values. These values correspond

to nodes that are pointed to by other important nodes in the graph of the Linux system.

Finally, Figure 6.8 depicts only the weight distribution produced based on Mozilla usage

data. The distributions for the other four schemes are similar to what they were in the

previous two data sets described above. The main observation from the distribution of

usage weights is that there is a wide range of weights. The smallest weights are five

orders of magnitude smaller than the largest ones.

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 162

The clustering results we obtained are shown in Table 6.10. Weighting schemes per-

forming best are shown in bold.

TOBEY (φ = 0.0)
Scheme k MoJo IL(%)
None 80 311 30.59
MI 33 341 42.94
LDS 59 476 20.61
IDF 102 292 27.17
PageRank 24 571 41.33

LINUX (φ = 0.0)
Scheme k MoJo IL(%)
None 56 237 36.03
MI 70 237 30.95
LDS 41 286 31.31
IDF 81 225 20.09
PageRank 24 340 39.66

MOZILLA (φ = 0.2)
Scheme k MoJo IL(%)
None 10 600 63.25
MI 125 428 23.64
LDS 32 528 36.31
IDF 68 406 33.19
PageRank 48 478 33.14
Usage 61 440 47.21

Table 6.10: Results for market-basket data sets

The TF.IDF weighting scheme outperforms all others, including the scheme that uses

no weights. This can be attributed to the fact that the way TF.IDF assigns weights

corresponds well to the way software architects would assign importance to artifacts of

their system. Artifacts used by the majority of the system are probably library functions

that are not very important (low idf), while artifacts rarely used are unlikely to be central

to the system’s structure (low tf).

The LDS weighting scheme performs quite poorly most likely because it assigns large

importance to nodes of large in- and out-degree. This property is shared by the PageRank

weighting scheme. Our results confirm that this is not a desirable property for the analysis

of software data.

The usage data weighting scheme performs rather well with the Mozilla data set. Even

though it is outperformed by TF.IDF, it still improves significantly on using the static

dependency graph (represented by the None weighting scheme). Further experiments

with more software systems are, of course, required to determine whether this is generally

true.

Finally, the MI weighting scheme performs well consistently. With the exception of

TOBEY, it is only slightly worse than TF.IDF. This might indicate that it is a weighting

scheme that is not influenced by the type of data set used, a quite desirable property.

We also performed experiments with the transformed variations of the weighting

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 163

schemes. The results are shown in Table 6.11.

TOBEY (φ = 0.0)
Scheme k MoJo IL(%)
MI-5% 97 323 28.51
MI-10% 16 383 53.75
MI-20% 38 328 41.69
LDS-5% 42 486 20.61
LDS-10% 28 540 30.15
LDS-20% 37 447 34.27
IDF-5% 67 369 33.87
IDF-10% 27 333 46.41
IDF-20% 27 333 46.41
PageRank-5% 82 310 29.08
PageRank-10% 61 312 34.33
PageRank-20% 53 321 37.02
InvPageRank 86 297 29.90

LINUX (φ = 0.0)
Scheme k MoJo IL(%)
MI-5% 94 245 27.15
MI-10% 68 240 32.12
MI-20% 90 256 27.79
LDS-5% 52 281 28.29
LDS-10% 45 315 31.11
LDS-20% 31 305 37.02
IDF-5% 97 248 26.42
IDF-10% 47 257 37.60
IDF-20% 46 257 37.95
PageRank-5% 56 244 29.08
PageRank-10% 62 235 32.96
PageRank-20% 36 230 28.00
InvPageRank 79 226 29.26

MOZILLA (φ = 0.2)
Scheme k MoJo IL(%)
MI-5% 97 425 27.33
MI-10% 70 423 32.42
MI-20% 100 411 26.96
LDS-5% 100 423 26.90
LDS-10% 89 435 34.02
LDS-20% 69 452 32.84
IDF-5% 28 482 47.01
IDF-10% 132 419 23.19
IDF-20% 132 419 23.23
PageRank-5% 80 436 27.18
PageRank-10% 55 435 34.23
PageRank-20% 98 407 27.12
InvPageRank 91 416 28.34
Usage-5% 68 665 46.79
Usage-10% 73 673 46.80
Usage-20% 80 673 46.74
InvUsage 89 678 49.01

Table 6.11: Results for market-basket data sets with transformed weights

In agreement with our observations above, the performance of the LDS weighting

scheme improves in certain cases. This phenomenon is even more dramatic with the

PageRank weighting scheme. In many cases, the clustering obtained is only slightly

worse than the one produced by TF.IDF.

Surprisingly, the Inverse PageRank weighting scheme produced results that were

among the best. This indicates that importance for web search engines does not im-

ply importance for clustering algorithms. In fact, quite the opposite seems to be the

case.

As expected, TF.IDF yielded worse results when its weight structure was modified. A

similar behaviour was observed for the usage data weighting scheme. This indicates that

these weighting schemes in their pure form encapsulate well the properties of software

decompositions.

Finally, MI is insensitive to the weighting scheme chosen, confirming our belief that

it is a conservative, stable, and effective weighting scheme.

6.5 Conclusions

This chapter presented an evaluation of certain weighting schemes within a clustering

algorithm for categorical data. We implemented and experimentally assessed the useful-

Chapter 6. Evaluating Value Weighting Schemes in LIMBO 164

ness of such schemes on a variety of relational and market-basket data sets, the latter

ones from the field of software reverse engineering.

Our approach employs the LIMBO clustering algorithm as described in Chapter 3.

The only additional step required is the analysis of the data set and elicitation of value

weights. From our experiments, we can reach the following general conclusions:

• When the number of clusters in a data set is small, the weighting schemes do not

offer considerable merit. This is shown through our initial experiments on relational

data sets.

• The MI weighting scheme performs consistently well in a variety of domains.

• When software graph-based data sets are clustered, the TF.IDF weighting scheme

seems to perform best. Especially in software systems, this scheme decreases the ef-

fect of “omnipresent” nodes appropriately in order for the clusters to reflect natural

groupings of the data.

• The PageRank weighting scheme seems to be inappropriate for clustering purposes.

Interestingly, the Inverse PageRank weighting scheme performs well in the software

clustering domain.

• The performance of the LDS weighting scheme is overall worse than the rest of the

schemes. However, it was interesting to discover that it assigns weights in a more

skewed fashion than other weighting schemes. Such a property might be desirable

in domains other than the ones examined in this thesis.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we presented LIMBO, a scalable hierarchical clustering algorithm. We

evaluated its effectiveness in trading off either quality for time or quality for space to

achieve compact, yet accurate, models for small and large categorical data sets. We have

shown that LIMBO has advantages over other information-theoretic based clustering

algorithms including AIB (in terms of scalability) and COOLCAT (in terms of clustering

quality and parameter stability). We have also shown advantages in quality over other

scalable and non-scalable algorithms designed to cluster either categorical data objects or

values. LIMBO builds a model in one pass over the data in a limited amount of memory

while keeping information loss in the model close to minimal. In addition, to the best of

our knowledge, LIMBO is the only scalable algorithm for clustering categorical data that

is hierarchical. Using its compact summary model, LIMBO efficiently builds clusterings

for a large range (typically hundreds) of values of k. Furthermore, we are also able to

produce statistics that let us directly compare clusterings and select appropriate values

for the number of clusters, k.

Next, we presented an approach to discovering structure. Our approach defines

schema discovery as a problem where the schema of a relation is inconsistent with respect

to the data, rather than the opposite. We presented a set of information-theoretic tech-

niques based on LIMBO that discover duplicate, or almost duplicate, tuples and attribute

165

Chapter 7. Conclusions and Future Work 166

values in a relational instance. From the information collected about the values, we then

presented an approach that groups attributes, so that differences within each group are

as small as possible. The groups of attributes with large duplication provide important

clues for the re-design of the schema of a relation. Using these clues, we introduced a

novel approach to rank the set of functional dependencies that are valid in an instance.

We also presented the notion that information loss minimization is a valid basis for

a software clustering approach. Our approach can exploit in the software clustering

process any type of information relevant to the software system. We experimented with

and assessed the usefulness of four different types of non-structural information.

Our final contribution was the evaluation of certain weighting schemes within the

LIMBO clustering algorithm for categorical data. We implemented and experimentally

assessed the usefulness of such schemes on a variety of relational and market-basket data

sets, the latter ones from the field of software reverse engineering.

7.2 Future Work

Finally, our contributions in this thesis open several avenues for further research. We

present the most important ones in the following sub-sections.

7.2.1 Clustering Numerical And Categorical Data

LIMBO is an approach that works well with categorical values, but it currently is not

designed to deal with mixed data, that is, data that contains both categorical and nu-

merical attributes. Simply ignoring the distinction and treating numerical attributes as

categorical does not lead to effective solutions. For example in a database instance, an

attribute “years” typically takes on numerical values. We could treat this attribute as

a categorical attribute. However, in this case the values 1958 and 1959 are considered

to be equally distant as are the values 1990 and 1947. Our distance function does not

exploit the inherent ordering of numerical values.

Chapter 7. Conclusions and Future Work 167

LIMBO needs further extensions in order to handle data sets with numerical as well as

categorical values well. It is our intention to propose a scheme for integrating numerical

data with categorical data which will allow us to employ the same information-theoretic

tools that were applied in LIMBO. Our approach should exploit the inherent geometric

notion of distance between numerical attribute values. Our initial idea is to replace each

numerical value by a distribution centered around the value. In this fashion, numerical

values that are close in a geometric sense, will be close in the information-theoretic

distance measure.

7.2.2 Clustering Categorical Data Streams

In many applications, data arrive in the form of continuous streams that need to be

analyzed. Clustering of numerical data streams has recently received a great deal of

attention [AHWY03, Bar02, OMM+02, GMM+03], but the problem is not well-studied

for categorical data streams. In this section, we argue that LIMBO is the first scalable

categorical clustering algorithm that can be used for streaming data. Requirements for

the effective, and efficient clustering of streams include the following [AHWY03, Bar02]:

• One Pass over the data: The data points must be read in an incremental fashion and

“discarded in favor of summaries whenever possible” [GMM+03].

• Compact Representation of the clusters: The size of data streams is usually large (or

unbounded) and the model cannot grow in proportion. Typically, a bounded amount of

memory is used to store useful summaries of previously seen data. The summaries must

be as concise and representative of the data that has been seen as possible.

Data stream clustering algorithms usually include an on-line component, which ac-

cepts the data points from the stream and produces the appropriate summaries, and an

off-line component, which maintains the summaries and produces higher-level clusters.

LIMBOS satisfies both requirements for a stream clustering algorithm. It scans the data

incrementally, associating each of the tuples with its closest DCF leaf entry and imposing

Chapter 7. Conclusions and Future Work 168

a strict bound on the size of the summary model. Phase 1 of LIMBO corresponds to

the on-line component of the data stream clustering algorithm. Phase 2 corresponds to

the off-line component of the algorithm. As our experiments in Chapter 3 showed, even

with a small number of leaf entries (i.e., small memory requirements), the quality of the

clustering produced by LIMBO is very good. In a streaming environment, the original

data is discarded and only the summary is kept. Hence, Phase 3 of LIMBO (which labels

the original data with their cluster assignments) is not applicable.

It is instructive to compare LIMBO to other approaches for clustering numerical

streams and to other approaches for clustering categorical data in order to understand

how LIMBO complements and extends this work. A recent proposal for clustering

streams [AHWY03] uses numerical cluster features (first proposed in BIRCH [ZRL96])

to summarize a numerical data stream. These cluster features cannot be used to summa-

rize categorical data. To handle categorical streams, we can use the information-theoretic

summaries of either LIMBO or COOLCAT. However, notice that the COOLCAT con-

struction algorithm makes use of an initial sample of the whole data set. A set of k

cluster representatives are chosen from this sample. Such a sample is not available in

streaming environments. Furthermore, our experiments with COOLCAT demonstrated

that the choice of cluster representatives has a significant effect on the quality of the

algorithm. So, a sample of the initial portion of a data stream may not yield a high-

quality clustering. Although LIMBO is using the same objective function as COOLCAT

(the entropy of the clustering), LIMBO does not require an initial sample to initialize its

summary data structure.

Finally, notice that COOLCAT is not hierarchical, rather it produces only a single

clustering for a specific value of k. In a streaming environment, the goal is to produce a

high-quality summary of the data. From this summary, we may, at different times, wish

to understand the underlying clustering structure of the data. We can imagine that this

structure may change as more data is processed. In particular, the number of clusters

Chapter 7. Conclusions and Future Work 169

in the data may change. LIMBO is designed to build and efficiently manage a summary

structure significantly larger than that required for producing the best clustering for a

static data set. This summary structure can be post-processed to understand the current

clustering properties of the data stream. While COOLCAT could be used in a similar

way (by setting k to be large), its data structures are not designed to efficiently manage

a large, in-memory summary. Namely, the execution time for COOLCAT is proportional

to the size of the summary it maintains.

7.2.3 Evaluating Other Structure Discovery Techniques

In Chapter 4, we described a particular aspect of the problem of reorganizing a large

data set, that of ranking a set of functional dependencies. The ranking produced by Fd-

rank is based on a clustering of the attributes of the data set. However, clustering may

be too restrictive for this application. For instance, once we have grouped attributes A

and B, we cannot then consider combination A and C, which may have high redundancy

(although lower than that of A and B). If AB does not participate in an FD, then the

high redundancy of AC might be missed.

We plan to investigate other techniques that decompose a relation with duplicate

values. More precisely, we will focus on techniques that have been proposed as part of

Reconstructibility Analysis [Kri86]. In brief, Reconstructibility Analysis proposes meth-

ods for decomposing a set of records defined on a number features into simpler sets of

records, such that the information content of the decomposed sets is as close as possible

to the original information content. To perform the decomposition, algorithms are pro-

posed that navigate through a lattice of models that cover all the features of the initial

data set and try to find the ones that produce the original set when merged, and at the

same time are simpler, i.e., require fewer degrees of freedom to be described.

Chapter 7. Conclusions and Future Work 170

7.2.4 Clustering and Histograms

Histograms are used to summarize the numerical values of data sets and, among other

applications, speed up the process of query answering. Ioannidis [Ioa03] draws similarities

between histograms and clustering. He speculates that the techniques that have been

proposed for histograms and clustering can be brought together, and that the advantages

and disadvantages of each one can be studied together. We are planning to study the

unification of histograms and clustering techniques.

Besides the previous observations, we are also planning to investigate whether tech-

niques for producing histograms of categorical data are feasible. The difficulty in building

such histograms is the ordering of the data. A potential histogram of categorical data

must be accompanied by a mapping of each of the values to the histogram buckets. Be-

cause that mapping is typically very large, the main advantage of histograms may be

lost.

7.2.5 Other LIMBO Studies

Finally, we plan to study different properties of the LIMBO algorithm and extend its

applicability. Namely we suggest the following two points of future research:

1. Soft Clustering: In the clustering framework we studied in the thesis, every

object from the initial data sets is assigned to one and only one cluster. Several

pieces of work present clustering algorithms that assign objects to more than one

cluster with an associated probability. Since the initial proposal of the IB method

includes all that is needed for such an approach, we plan to perform the so called

soft clustering and evaluate any merits with respect to the current approach.

2. Performance of LIMBO in high dimensions: In this thesis, we experimentally

argued that the problem of clustering categorical data becomes harder as dimen-

sionality grows. We plan to study the properties of the function used to assess the

Chapter 7. Conclusions and Future Work 171

information loss between clustered objects and provide theoretical justifications of

its properties.

3. LIMBO Stability: Data sets evolve and, as a consequence, their interdependen-

cies and groupings change. One of the desired properties of cluster analysis is that

the clustering remain stable whenever the data changes by only a small amount,

that is when new data objects are inserted and existing ones change or are deleted.

But, how stable is LIMBO? If the data set analyzed consists of daily transactions

or daily software releases and a daily clustering technique is part of the data mining

process, it is easy to understand that all changes in the data affect the results, where

extreme deviations from previous ones are unwanted. The stability of categorical

clustering algorithms in general is an under-studied issue and has not attracted

much attention. It would be interesting to know how much the output of a clus-

tering algorithm, specifically LIMBO, is affected when the input changes slightly.

We intend to propose a measure of stability and the effects of changes in the data

set, e.g., measure the difference in the resulting clusters.

4. Comparison of Quality Measures: Throughout this thesis we used a variety of

measures in order to assess the results of LIMBO. We are planning to study the

similarities and differences of the different quality measures. For instance, a variety

of measures [KE00, MM01, AL99, LG95] have been proposed in the Reverse Engi-

neering community besides MoJo and we are interested in exploring their usefulness

in our work.

Bibliography

[ABKS96] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.

OPTICS: Ordering Points To Identify the Clustering Structure. In Proceed-

ings of the ACM SIGMOD International Conference on the Management of

Data, pages 49–60, Philadelphia, PA, USA, 1–3 June 1996.

[ACN01] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Materialized

View and Index Selection Tool for Microsoft SQL Server 2000. In Proceedings

of the ACM SIGMOD International Conference on the Management of Data,

page 608, Sanata Barbara, CA, USA, 21–24 May 2001.

[AFF+02] Periklis Andritsos, Ron Fagin, Ariel Fuxman, Laura M. Haas, Mauricio A.

Hernandez, C. Ho, Anastasios Kementsietsidis, Renée J. Miller, Felix Nau-

mann, Lucian Popa, Yannis Velegrakis, Charlotte Vilarem, and Ling-Ling

Yan. Schema Management. IEEE Data Engineering Bulletin, 25(3): 32–38,

September 2002.

[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. Automatic Subspace Clustering of High Dimensional Data for

Data Mining Applications. In Proceedings of the ACM SIGMOD Interna-

tional Conference on the Management of Data, pages 94–105, Seattle, WA,

USA, 1–4 June 1998.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

173

Bibliography 174

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A Frame-

work for Clustering Evolving Data Streams. In Proceedings of the 29th Inter-

national Conference on Very Large Data Bases (VLDB), pages 81–92, Berlin,

Germany, 9–12 September 2003.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Association

Rules between Sets of Items in Large Databases. In Proceedings of the ACM

SIGMOD International Conference on the Management of Data, pages 207–

216, Washington, D.C., USA, 26–28 May 1993.

[AL97] Nicolas Anquetil and Timothy Lethbridge. File Clustering Using Naming

Conventions for Legacy Systems. In Proceedings of CASCON 1997, pages

184–195, Toronto, Canada, 10–13 November 1997.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments with Clustering as

a Software Remodularization Method. In Proceedings of the 6th Working

Conference on Reverse Engineering (WCRE), pages 235–255, Atlanta, GA,

USA, 6–8 October 1999.

[AL03] Marcelo Arenas and Leonid Libkin. An Information-Theoretic Approach to

Normal Forms for Relational and XML Data. In Proceedings of the 22nd

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS), pages 15–26, San Diego, CA, USA, 9–12 June 2003.

[AM01] Periklis Andritsos and Renée J. Miller. Reverse Engineering Meets Data

Analysis. In Proceedings of the 9th International Workshop on Program Com-

prehension (IWPC), pages 157–166, Toronto, ON, Canada, 12–13 May 2001.

[AM03] Periklis Andritsos and Renée J. Miller. Using Categorical Clustering in

Schema Discovery. In IJCAI Workshop on Information Integration on the

Web (IIWeb-03), page 211, Acapulco, Mexico, 2003.

Bibliography 175

[AMT04] Periklis Andritsos, Renée J. Miller, and Panayiotis Tsaparas. Information-

Theoretic Tools for Structure Discovery in Large Data Sets. In Proceedings

of the ACM SIGMOD International Conference on the Management of Data,

pages 731–742, Paris, France, 13–18 June 2004.

[And73] Michael R. Anderberg. Cluster analysis for applications. Academic Press,

1973.

[AT03] Periklis Andritsos and Vassilios Tzerpos. Software Clustering based on Infor-

mation Loss Minimization. In Proceedings of the 10th Working Conference

on Reverse Engineering (WCRE), pages 334–344, Victoria, BC, Canada, 13–

16 November 2003.

[AT04] Periklis Andritsos and Vassilios Tzerpos. Evaluating Value Weighting

Schemes in the Clustering of Categorical Data. Submitted for publication,

2004.

[ATMS04] Periklis Andritsos, Panayiotis Tsaparas, Renée J. Miller, and Kenneth C.

Sevcik. LIMBO: Scalable Clustering of Categorical Data. In Proceed-

ings of the 9th International Conference on Extending Database Technology

(EDBT), pages 123–146, Heraklion, Greece, 14–18 March 2004.

[Bar02] Daniel Barbará. Requirements for Clustering Data Streams. SIGKDD Ex-

plorations, 3(2): 23–27, January 2002.

[BCL02a] Daniel Barbará, Julia Couto, and Yi Li. An Information Theory Approach

to Categorical Clustering. Submitted for Publication, 2002.

[BCL02b] Daniel Barbará, Julia Couto, and Yi Li. COOLCAT: An Entropy-based

Algorithm for Categorical Clustering. In Proceedings of the 11th International

Conference on Information and Knowledge Management (CIKM), pages 582–

589, McLean, VA, USA, 4–9 November 2002.

Bibliography 176

[BFR99] Paul S. Bradley, Usama Fayyad, and Cory Reina. Scaling EM (Expectation-

Maximization) Clustering to Large Databases. Technical Report MSR-TR-

98-35, Microsoft Research, Redmond, WA, USA, October 1999.

[BH98] Ivan T. Bowman and Richard C. Holt. Software Architecture Recovery Using

Conway’s Law. In Proceedings of CASCON 1998, pages 123–133, Toronto,

ON, Canada, 30 November– 3 December 1998.

[BH99] Ivan T. Bowman and Richard C. Holt. Reconstructing Ownership Archi-

tectures to Help Understand Software Systems. In Proceedings of the 7th

International Workshop on Program Comprehension (IWPC), pages 28–37,

Pittsburgh, PA, USA, 5–7 May 1999.

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a Case

Study: Its Extracted Software Architecture. In Proceedings of the 21st In-

ternational Conference on Software Engineering (ICSE), pages 555–563, Los

Angeles, CA, USA, 16–22 May 1999.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and

S. Sudarshan. Keyword Searching and Browsing in Databases using BANKS.

In Proceedings of the 18th International Conference on Data Engineering,

pages 431–440, San Jose, CA, USA, 26 February–1 March 2002.

[BP98] Sergey Brin and Lawrence Page. The Anatomy of a Large-scale Hypertextual

Web Search Engine. Computer Networks, 30(1–7):107–117, 1998.

[BR99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. Addison-Wesley-Longman, 1999.

[BRRT01] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis

Tsaparas. Finding Authorities and Hubs From Link Structures on the World

Bibliography 177

Wide Web. In Proceedings of the 10th International World Wide Web Con-

ference (WWW), pages 415–429, Hong Kong, China, 1–5 May 2001.

[CDF+82] Arvola Chan, Sy Danberg, Stephen Fox, Wen-Te K. Lin, Anil Nori, and

Daniel Ries. Storage and Access Structures to Support a Semantic Data

Model. In Proceedings of the 8th International Conference on Very Large

Data Bases (VLDB), pages 122–130, Mexico City, Mexico, 8-10 September

1982.

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design

Recovery: A Taxonomy. IEEE Software, 7(1):13–17, January 1990.

[CS90] Song C. Choi and Walt Scacchi. Extracting and Restructuring the Design of

Large Systems. IEEE Software, 7(1): 66–71, January 1990.

[CT91] Tomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley

& Sons, 1991.

[De 87] Paul De Bra. Horizontal Decompositions in the Relatinal Database Model.

PhD thesis, Universiteit Antwerpen, 1987.

[DJ03] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data

Cleaning. John Wiley & Sons, Inc., 2003.

[DJMS02] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav

Shkapenyuk. Mining Database Structure; or, How to Build a Data Qual-

ity Browser. In Proceedings of the ACM SIGMOD International Conference

on the Management of Data, pages 240–251, Madison, WI, USA, 3–6 June

2002.

[DM00] Gautam Das and Heikki Mannila. Context-Based Similarity Measures for

Categorical Databases. In Proceedings of the 4th European Conference on

Bibliography 178

Principles of Data Mining and Knowledge Discovery (PKDD), pages 201–

210, Lyon, France, 13-16 September 2000.

[DMM03] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.

Information-Theoretic Co-clustering. In Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (KDD), pages 89–98, Washington, DC, USA, 24–27 August 2003.

[DP83a] Paul De Bra and Jan Paredaens. An Algorithm for Horizontal Decomposi-

tions. Information Processing Letters, 17: 91–95, 1983.

[DP83b] Paul De Bra and Jan Paredaens. Horizontal Decompositions for Handling Ex-

ceptions to Functional Dependencies. Advances in Database Theory, 2: 123–

144, 1983.

[DR00] Mehmet M. Dalkilic and Edward Robertson. Information Dependencies. In

Proceedings of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems (PODS), pages 245–253, Dallas, TX, USA,

15–17 May 2000.

[DS03] Franca Debole and Fabrizio Sebastiani. Supervised TermWeighting for Auto-

mated Text Categorization. In Proceedings of the 2003 ACM Symposium on

Applied Computing (SAC), pages 784–788, Melbourne, FL, USA, 9–12 March

2003.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jöerg Sander, and Xiaowei Xu. A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the 2nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), pages 226–231, Portland,

OR, USA, 2–4 August 1996.

[Eve93] Brian S. Everitt. Cluster Analysis. Edward Arnold, 1993.

Bibliography 179

[EYS01] Ran El-Yaniv and Oren Souroujon. Iterative Double Clustering for Unsu-

pervised and Semi-supervised Learning. In Proceedings of the 12th European

Conference on Machine Learning, (ECML), pages 121–132, Freiburg, Ger-

many, 3-7 September 2001.

[Fis87] Douglas H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clus-

tering. Machine Learning, 2: 139–172, 1987.

[GC85] Mark Gluck and James Corter. Information, Uncertainty, and the Utility

of Categories. In Proceedings of the 7th Annual Conference of the Cognitive

Science Society (COGSCI), pages 283–287, Irvine, CA, USA, 1985.

[GIKS03] Luis Gravano, Panagiotis Ipeirotis, Nick Koudas, and Divesh Srivastava. Text

Joins in an RDBMS for Web Data Integration. In Proceedings of the 12th In-

ternational World Wide Web Conference (WWW), pages 90–101, Budapest,

Hungary, 20–24 May 2003.

[Gil58] E. W. Gilbert. Pioneer Maps of Health and Disease in England. Geographical

Journal, 124: 172–183, 1958.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.

[GKR98] David Gibson, Jon M. Kleinberg, and Prabhakar Raghavan. Clustering Cat-

egorical Data: An Approach Based on Dynamical Systems. In Proceedings of

the 24th International Conference on Very Large Data Bases (VLDB), pages

311–322, New York, NY, USA, 24–27 August 1998.

[GL00] Michael W. Godfrey and Eric H. S. Lee. Secrets from the Monster: Ex-

tracting Mozilla’s Software Architecture. In Proceedings of the 2nd Inter-

national Symposium on Constructing Software Engineering Tools (CoSET

2000), Limerick, Ireland, 5 June 2000.

Bibliography 180

[GMM+03] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan

O’Callaghan. Clustering Data Streams: Theory and Practice. IEEE Trans-

actions on Knowledge and Data Engineering, 15(3): 515–528, June 2003.

[GRS98] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient

Clustering Algorithm for Large Databases. In Proceedings of the ACM SIG-

MOD International Conference on the Management of Data, pages 73–84,

Seattle, WA, USA, 1–4 June 1998.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust Clus-

tering Algorithm for Categorical Atributes. In Proceedings of the 15th Inter-

national Conference on Data Engineering, pages 512–521, Sydney, Australia,

23–26 March 1999.

[HAK00] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. What is the

Nearest Neighbor in High Dimensional Spaces? In Proceedings of the 26th

International Conference on Very Large Data Bases (VLDB), pages 506–515,

Cairo, Egypt, 10–14 September 2000.

[HB85] David H. Hutchens and Victor R. Basili. System Structure Analysis: Clus-

tering with Data Bindings. IEEE Transactions on Software Engineering,

11(8): 749–757, August 1985.

[HK98] Alexander Hinneburg and Daniel A. Keim. An Efficient Approach to Clus-

tering in Large Multimedia Databases with Noise. In Proceedings of the 4th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD), pages 58–65, New York, NY, USA, 27–31 August 1998.

[HK01] Jiawei Han and Michelle Kamber. Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2001.

Bibliography 181

[HKPT99] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE:

An Efficient Algorithm for Discovering Functional and Approximate Depen-

dencies. The Computer Journal, 42(2): 100–111, 1999.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword

Search in Relational Databases. In Proceedings of the 28th International

Conference on Very Large Data Bases (VLDB), pages 670–681, Hong Kong,

China, 20–23 August 2002.

[HS75] Jeffrey A. Hoffer and Dennis G. Severance. The Use of Cluster Analysis in

Physical Data Base Design. In Proceedings of the 1st International Confer-

ence on Very Large Data Bases (VLDB), pages 69–86, Framingham, MA,

USA, 1975.

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem

for Large Databases. In Proceedings of the ACM SIGMOD International

Conference on the Management of Data, pages 127–138, San Jose, CA, USA,

22–25 May 1995.

[Hua97] Zhexue Huang. Clustering Large Data Sets with Mixed Numeric and Cate-

gorical Values. In Proceedings of the 1st Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, (PAKDD), pages 21–34, Singapore, 1997.

[Hua98] Zhexue Huang. Extensions to the k-Means Algorithm for Clustering Large

Data Sets with Categorical Values. Data Mining and Knowledge Discovery,

2(3): 283–304, September 1998.

[Hul84] Richard Hull. Relative Information Capacity of Simple Relational Database

Schemata. In Proceedings of the 3rd ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems (PODS), pages 97–109, Waterloo,

ON, Canada, 2–4 April 1984.

Bibliography 182

[Ioa03] Yannis E. Ioannidis. The History of Histograms (Abridged). In Proceedings

of the 29th International Conference on Very Large Data Bases (VLDB),

pages 19–30, Berlin, Germany, 9–12 September 2003.

[JD88] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.

Prentice-Hall, 1988.

[JLVV99] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassiliadis.

Fundamentals of Data Warehouses. Springer, 1999.

[KE00] Rainer Koschke and Thomas Eisenbarth. A Framework for Experimental

Evaluation of Clustering Techniques. In Proceedings of the 8th International

Workshop on Program Comprehension (IWPC), pages 201–210, Limerick,

Ireland, 10-11 June 2000.

[Kle98] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.

In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), pages 668–677, San Francisco, CA, USA, 25–27 January

1998.

[Kos00] Rainer Koschke. Atomic Architectural Component Recovery for Program Un-

derstanding and Evolution. PhD thesis, Institute for Computer Science, Uni-

versity of Stuttgart, 2000.

[KR90] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An

Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[Kri86] Klaus Krippendrof. Information Theory: Structural Models for Qualitative

Data. Quantitative Applications in the Social Sciences. Sage Publications,

1986.

Bibliography 183

[LG95] Arun Lakhotia and John M. Gravley. Toward Experimental Evaluation

of Subsystem Classification Recovery Techniques. In Proceedings of the

2nd Working Conference on Reverse Engineering (WCRE), pages 262–269,

Toronto, ON, Canada, 14-16 July 1995.

[LM98] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery

and Data Mining. Kluwer Academic Publishers, 1998.

[Lut02] Rudi Lutz. Recovering High-Level Structure of Software Systems Using a

Minimum Description Length Principle. In Proceedings of the 13th Irish

Conference on Artificial Intelligence and Cognitive Science (AICS), pages

61–69, Limerick, Ireland, 12–13 September 2002.

[MA03] Renée J. Miller and Periklis Andritsos. On Scehma Discovery. IEEE Data

Engineering Bulletin, 26(3): 341–47, September 2003.

[Mai80] David Maier. Minimum Covers in Relational Database Model. Journal of

the ACM, 27(4): 664–674, October 1980.

[MHH+01] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Ling-Ling Yan

amd C.T. Howard Ho, Ronald Fagin, and Lucian Popa. The Clio Project:

Managing Heterogeneity. SIGMOD Record, 30(1): 78–83, March 2001.

[MM01] Brian S. Mitchell and Spiros Mancoridis. Comparing the Decompositions

Produced by Software Clustering Algorithms Using Similarity Measurements.

In Proceedings of the International Conference on Software Maintenance

(ICSM), pages 744–753, Florence, Italy, 6-10 November 2001.

[MMCG99] Spiros Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: A

Clustering Tool for the Recovery and Maintenance of Software System Struc-

tures. In Proceedings of the International Conference on Software Mainte-

Bibliography 184

nance (ICSM), pages 50–66, Oxford, England, UK, 30 August–3 September

1999.

[MMM93] Ettore Merlo, Ian McAdam, and Renato De Mori. Source code informal in-

formation analysis using connectionist models. In Proceedings of the 13th In-

ternational Joint Conference on Artificial Intelligence (IJCAI), pages 1339–

1344, Chambéry, France, 28 August–3 September 1993.

[MOTU93] Hausi A. Müller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A

Eeverse Engineering Spproach to Subsystem Structure Identification. Journal

of Software Maintenance: Research and Practice, 5: 181–204, December 1993.

[MS03] Dharmendra S. Modha andW. Scott Spangler. Feature Weighting in k-Means

Clustering. Machine Learning, 52(3): 217–237, September 2003.

[NCWD84] Shamkant B. Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Ver-

tical Partitioning Algorithms for Database Design. ACM Transactions on

Database Systems (TODS), 9(4): 680–710, December 1984.

[NH94] Raymond T. Ng and Jiawei Han. Efficient and Effective Clustering Methods

for Spatial Data Mining. In Proceedings of the 20th International Conference

on Very Large Data Bases (VLDB), pages 144–155, Santiago, Chile, 12–

15 September 1994.

[NR89] Shamkant B. Navathe and Minyoung Ra. Vertical Partitioning for Database

Design: A Graphical Algorithm. In Proceedings of the ACM SIGMOD Inter-

national Conference on the Management of Data, pages 440–450, Portland,

OR, USA, 31 May–2 June 1989.

[OMM+02] Liadan O’Callaghan, Adam Meyerson, Rajeeve Motwani, Nina Mishra, and

Sudipto Guha. Streaming-Data Algorithms For High-Quality Clustering. In

Bibliography 185

Proceedings of the 18th International Conference on Data Engineering, pages

685–696, San Jose, CA, USA, 26 February–1 March 2002.

[PA04] Stratos Papadomanolakis and Anastassia Ailamaki. AutoPart: Automating

Schema Design for Large Scientific Databases Using Data Partitioning. In

Proceedings of the 16th International Conference on Scientific and Statistical

Database Management (SSDBM), pages 383–392, Santorini Island, Greece,

21-23 June 2004.

[Par72] David L. Parnas. On the Criteria to be used in decomposing Systems into

Modules. Communications of the ACM, 15: 1053–1058, December 1972.

[PF03] Christopher R. Palmer and Christos Faloutsos. Electricity Based External

Similarity of Categorical Attributes. In Proceedings of the 7th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, (PAKDD), pages

486–500, Seoul, Korea, 30 April-2 May 2003.

[PVM+02] Lucian Popa, Yiannis Velegrakis, Renée J. Miller, Mauricio Hernáandez, and

Ronald Fagin. Translating Web Data. In Proceedings of the 28th Interna-

tional Conference on Very Large Data Bases (VLDB), pages 598–609, Hong

Kong, China, 20–23 August 2002.

[RD02] Ravishankar Ramamurthy and David J. DeWitt. A Case for Fractured Mir-

rors. In Proceedings of the 28th International Conference on Very Large Data

Bases (VLDB), pages 430–441, Hong Kong, China, 20–23 August 2002.

[RH01] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s Wheel: An In-

teractive Data Cleaning System. In Proceedings of the 27th International

Conference on Very Large Data Bases (VLDB), pages 381–390, Roma, Italy,

11–14 September 2001.

Bibliography 186

[SB88] Gerard Salton and Chris Buckley. Term-weighting Approaches in Automatic

Text Retrieval. Information Processing and Management, 24(5): 513–523,

1988.

[SB02] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive Deduplication using

Active Learning. In Proceedings of the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD), pages 269–

278, Edmonton, AB, Canada, 23–26 July 2002.

[Sch91] Robert W. Schwanke. An Intelligent Tool for Re-engineering Software Mod-

ularity. In Proceedings of the 13th International Conference on Software

Engineering (ICSE), pages 83–92, Austin, TX, USA, 13–17 May 1991.

[SCZ98] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.

WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spa-

tial Databases. In Proceedings of the 24th International Conference on Very

Large Data Bases (VLDB), pages 428–439, New York, NY, USA, 24–27 Au-

gust 1998.

[SE00] Sunita Sarawagi-(Editor). Special Issue on Data Cleaning. IEEE Data En-

gineering Bulletin, Volume 23(4), December 2000.

[SEKX98] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-

Based Clustering in Spatial Databases: The Algortihm GDBSCAN and Its

Applications. Data Mining and Knowledge Discovery, 2(2): 169–194, June

1998.

[SF93] Iztok Savnik and Peter A. Flach. Bottom-up Induction of Functional De-

pendencies from Relations. In Proceedings of the AAAI-93 Workshop on

Knowledge Discovery in Databases, pages 174–185, Washington, DC, USA,

11–12 July 1993.

Bibliography 187

[SF00] Iztok Savnik and Peter A. Flach. Discovery of Mutlivalued Dependencies

from Relations. Intelligent Data Analysis Journal, 4(3–4): 195–211, 2000.

[SP89] Robert W. Schwanke and Michael A. Platoff. Cross References are Features.

In Proceedings of the 2nd International Workshop on Software Configuration

Management (SCM), pages 86–95, Princeton, NJ, USA, 24 October 1989.

[ST99] Noam Slonim and Naftali Tishby. Agglomerative Information Bottleneck.

In Advances in Neural Information Processing Systems 12 (NIPS-12), pages

617–623, Denver, CO, USA, 29 November–4 December 1999.

[Tal99] Luis Talavera. Feature Selection as a Preprocessing Step for Hierarchical

Clustering. In Proceedings of the 16th International Conference on Machine

Learning (ICML), pages 389–397, Bled, Slovenia, 27–30 June 1999.

[TH99] Vassilios Tzerpos and Richard C. Holt. MoJo: A Distance Metric for Soft-

ware Clusterings. In Proceedings of the 6th Working Conference on Reverse

Engineering (WCRE), pages 187–193, Atlanta, GA, USA, 6–8 October 1999.

[TH00] Vassilios Tzerpos and Richard C. Holt. ACDC: An Algorithm for

Comprehension-Driven Clustering. In Proceedings of the 7th Working Con-

ference on Reverse Engineering (WCRE), pages 258–267, Brisbane, Aus-

tralia, 23–25 November 2000.

[TPB99] Naftali Tishby, Fernando C. Pereira, and William Bialek. The Information

Bottleneck Method. In Proceedings of the 37th Annual Allerton Confer-

ence on Communication, Control and Computing, pages 368–387, Urban-

Champaign, IL, USA, 22–24 September 1999.

[WGR01] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. FastFDs: A

Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependen-

Bibliography 188

cies from Relation Instances. In Proceedings of the 3rd International Con-

ference on Data Warehousing and Knowledge Discovery (DaWaK), pages

101–110, Munich, Germany, 5–7 September 2001.

[WT03] Zhihua Wen and Vassilios Tzerpos. An Optimal Algorithm for MoJo Dis-

tance. In Proceedings of the Eleventh International Workshop on Program

Comprehension (IWPC), pages 227–235, Portland, OR, USA, 10–11 May

2003.

[WYM97] Wei Wang, Jiong Yang, and Richard R. Muntz. STING: A Statistical Infor-

mation Grid Approach to Spatial Data Mining. In Proceedings of the 23rd

International Conference on Very Large Data Bases (VLDB), pages 186–195,

Athens, Greece, 26–29 August 1997.

[Xia04] Chenchen Xiao. Software Clustering Using Static and Dynamic Data. Mas-

ter’s thesis, Department of Computer Science, York University, in prepara-

tion, 2004.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An Efficient

Data Clustering Method for Very Large Databases. In Proceedings of the

ACM SIGMOD International Conference on the Management of Data, pages

103–114, Montreal, QB, Canada, 4–6 June 1996.

Appendix A

List of Symbols

List of Symbols

Symbol Meaning

D Database

n Number of tuples

m Number of attributes

d Number of all attribute values

di Number of attribute values of attribute i, 1 ≤ i ≤ m

k Number of clusters, k ≤ n

X Random variable of objects to be clustered

X Set from which X takes its values

Y Random variable of the feature space (values)

Y Set from which Y takes its values

C Random variable of clusters

C Set from which C takes its values

T Random variable of the tuples

T Set of tuples from which T takes its values

V Random variable of all the attribute values

V Set of all attributes values from which V takes its values

189

Appendix A. List of Symbols 190

Symbol Meaning

A Random variable of all the attributes

A Set of all attributes from which A takes its values

Vi Random variable of attribute value i, 1 ≤ i ≤ m

Vi Set of attributes values from which Vi takes its values

ci A non-empty cluster, 1 ≤ i ≤ k

c∗ New cluster after merging clusters ci and cj

δI(ci, cj) Information loss between clusters ci and cj

M Matrix of the initial data set

O Matrix of the frequency of attribute values in their corresponding attributes

S Maximum buffer size for the DCF tree

E Maximum buffer size of a DCF entry

B Branching factor of the DCF tree

φ Parameter controlling information loss incurred when DCF entries are merged

φT The value of φ used in tuples clustering

φV The value of φ used in attribute value clustering

φA The value of φ used in attribute clustering

φ Parameter controlling information loss incurred when DCF entries are merged

LIMBOφ LIMBO version using phi

LIMBOS LIMBO version using S

A′ Random variable of the attribute of interest in Intra-Attribute value clustering

A′ The set of values of A′

Ã Set of remaining attribute in Intra-Attribute value clustering, Ã = A \A′

IL Information Loss

CU Category Utility

Emin Min Classification Error

Appendix A. List of Symbols 191

Symbol Meaning

P Precision

R Recall

CT Set of tuple clusters

CV Set of attribute value clusters

CD
V Set of duplicate groups of attribute values

CND
V Set of non-duplicate groups of attribute values

AD Set of attributes expressed over the members of CD
V

F Matrix of the attributes in AD expressed over the members of CD
V

ψ Parameter used in the ranking of functional dependencies

RAD Relative Attribute Duplication

RT R Relative Tuple Reduction

TF.IDF Weighting Scheme based on Term Frequency-Inverse Document Frequency

MI Weighting Scheme based on Mutual Information

LDS Weighting Scheme based on Linear Dynamical Systems

w(v) Weight of value v

