
1

16 - N-Tiered CSC407 1

N(=3)-Tiered Systems

16 - N-Tiered CSC407 2

System Architecture Choices

• Monolithic
– 1 large program, imports/exports data

• Client/Server
– collection of clients, updates database

– “fat client”

• 3-tiered
– collection of clients, 1 mid-tier process for “business rules”

– “thin client”



2

16 - N-Tiered CSC407 3

3-Tiered Systems

Client

Middle-Tier
Server

Database
Server

Presentation logic

Data

Business rules

Two tiers
in a
client/server
architecture

some logic
to client

some logic
to db

16 - N-Tiered CSC407 4

Example Business Rule

• pay = hours_worked * pay_rate

• In a client/server architecture:
– Prompt the user for employee_number & hours_worked
– Fetch pay_rate from db

• select pay_rate from pay_table where employee_id = <id>

– Calculate the pay for the employee

– Generate and execute an SQL statement to update the db
• update payroll

set pay = <calculated_pay>
where employee_id = <id>



3

16 - N-Tiered CSC407 5

Change to a Business Rule

• Suppose you need to change the system to account for
overtime
if(hours_worked < 40)

pay = hourseWorked * payRate;
else {

pay = 40 * payRate;

overtimeRate = payRate * 1.5;
overtimeHours = hours_worked – 40;
pay += overtimeHours * overtimeRate;

}
return pay;

• Multiple client program needs to be modified, re-compiled,
re-tested, and re-installed.
– N.B. separation of concerns at code level can be maintained.

16 - N-Tiered CSC407 6

Alternately

• A database stored procedure could be used to compute the
pay.
– e.g., Oracle PL/SQL

– Java extension to db

• Clients could then concentrate exclusively on presentation.

• Single database would have to be changed, re-tested &
migrated.



4

16 - N-Tiered CSC407 7

Basic Problems with this Approach

• Want to change the db as little as possible.
– the most fragile component

• DB is not a great execution engine
– inefficient

– limited choice of language

– hard to interact with outside services

– poor development environment

– poor error recovery

• Vendor lock-in

16 - N-Tiered CSC407 8

Architectural Problems

• Client-resident business rules
– client bloat + lack of scalability on client machines

• need to address lowest common denominator machine

– 386 with 16M

– transactions involving more than just db (e.g., queues)
• must configure all client machines!

• DB-resident business rules
– db bloat (too much for the db to do – runs out of steam)

• Common Issues
– large # db connections

– lack of support for caching

– wide-area data distribution (data partitioning strategy)

– fault tolerance



5

16 - N-Tiered CSC407 9

Some Industry Statistics

• 2/3 of respondents had a formal system architecture
– Monolithic

• 14%

– client/server
• 26%

– n-tier client/server
• 54%

– web centric
• 3%

• Source
– Cutter Consortium

• Jan, 1999
• survey of Fortune 1000 internal IT projects

– “Client-server in general, and n-tier client-server in particular, gives IT the
flexibility to deploy available computing resources most effectively."

16 - N-Tiered CSC407 10

Legacy Issues

• In large corporations, different departments develop their
own client/server systems

• Inevitable in the case of mergers and acquisitions



6

16 - N-Tiered CSC407 11

Solution

• Add a middle tier to isolate clients from databases.

• Re-engineer the databases going forward.

16 - N-Tiered CSC407 12

Case Study

• Source:
– AMIA (American Medical Informatics Association) 1998 Conference
– “A Software Architecture to Support a Large-Scale, Multi-Tier

Clinical Information System “
• J.A. Yungton, D.F. Sittig, J. Pappas, S. Flammini, H.C. Chueh, and J.M.

Teich,

• Partners HealthCare System
– Merger of two Boston-area hospitals

• Brigham and Women's Hospital
• Massachusetts General Hospital

• Clinical Information System
– patient health records
– tests and results
– …

• Each hospital had its own HOMEGROWN system
– decision was made to merge the systems
– neither was superior to the other

• each system had its strengths



7

16 - N-Tiered CSC407 13

Case Study

• Major requirements

– Ease of software distribution/installation
• 20,000+ workstations in the network

– A solid data access tier
• software services
• data access routines
• reusable modules to

– minimize duplication of effort
– maximize application interoperability

– Intuitive, consistent, clinical computing environment
• diverse end-user population
• distributed client development

– “In the absence of a unifying force, applications would take on their own
look and feel leaving end-users to sort out a myriad of different styles
and functionalities”

16 - N-Tiered CSC407 14

Case Study – Software Distribution

• Options
– network architecture

• applications resident on servers

– pro: applications always up-to-date

– con: excessive load on servers for menial tasks

– client-server architecture
• local executables

– pro: frees server from download and execution

– con: program and patch distribution

» initial distribution: Micorosoft Systems Management Server

» update distributions: ?

» uses “push” on reboot, therefore stale client potential



8

16 - N-Tiered CSC407 15

Case Study – Software Distribution

• Hybrid approach
– Client maintains local program cache

• executables, support files, shared libraries

– On each execution, cache checked against server to ensure most
recent updates are installed.

– “Launcher” installed on each client
• “Version Console” resides on a network server

– front-end to version control database
• Uses “pull” (“client pull”)

– 2 key features
• defines projects = collection of files

– project dependencies
– project + dependents bundled on-the-fly as a “release”

• workstation types
– architecture
– class: alpha test, beta test, production

16 - N-Tiered CSC407 16

Case Study – Data Access Tier

• Faced with challenge of enterprise-wide data consistency and data
acess
– no existing common denominator
– inevitable that additional systems would need to be integrated
– corporate strategy:

• add an abstract “data access” tier
– provides common data objects & services to client applications while

hiding the details of disparate back-end systems

• Technology
– Microsoft COM

• robust, easy to use, relatively fast
• allows application development to proceed in parallel with middle-tier

development

• Location
– could reside anywhere
– chose to distribute data access servers to client workstations

• better performance



9

16 - N-Tiered CSC407 17

Case Study – Data Access Tier

• Analyzed to identify key objects and services
– PatientObject

– UserObject, UserSecurity

– OrderEntry-based objects:
• Order, Test, Medication, …

– Service-based objects:
• PatientLookup, Observation, Procedure, Therapy, …

– Results-based objects

– PCISClientManager
• MGH data stored on Tandem Nonstop SQL

16 - N-Tiered CSC407 18

Case Study – Data Access Tier

• Client-to-data access tier communications
– callable well-defined interface

• names of callable routines
• parameters

– set in stone
– modifications require justifications and approvals

• returning well-known objects
• heavily documented online
• objects can be plugged into applications

– proven system agility
• built web-based clinical info viewer
• built web-based phone directory
• longitudinal medical record application
• back-end redirected to first look into a data cache before attmepting a

retrieval



10

16 - N-Tiered CSC407 19

Case Study – Data Access Tier

• client-to-client communications
– e.g.,

• PatientObject can be passed from one application to another.

• UserSecurity object can be passed

• Security
– with servers resident on clients,

• e.g., can use Excel/VB to interface to COM objects such as
PatientLookup.

– sol’n:
• db of authorized applications

• launched applications receive an ALK (application launch key)

• using ALK, will get an SLK that must match the local server’s SLK,
or server will not respond.

16 - N-Tiered CSC407 20

Case Study - Application Framework

• Clinical Application Suite
– a framework used to house applications

• merges multiple clinical applications into a single visual a functional
context

• maintains a single CurrentPatient and CurrentUser object across all
applications

• consolidates common system services

– e.g., only one connection to PatientLookup objects

– one GUI for displaying patient fields

– button bars along top and down sides
• launch apps and switch between them

– because of its persistence on the screen, CAS provides a constant
point of reference for the user

– app builders code to the CAS API


