
1

12 - Arch. Reintro CSC407 1

Systems-Level Architecture

A Re-Introduction

12 - Arch. Reintro CSC407 2

Level of Design
• Divide into two levels:

– System-Level Architecture

– Programming-Level Design

• You know what design is
– OOD + written text = one example

• Next we will discuss architecture



2

12 - Arch. Reintro CSC407 3

Architecture & Design

• Architecture
– High-level

– Major decisions

– Not even thinking about programming

• Design
– “Laying out” the programming language code

used to implement the architecture

– Organizing programming language concepts

12 - Arch. Reintro CSC407 4

Requirements

Architecture

Code
&

Unit
Test

C&ut C&ut C&ut C&ut C&ut C&ut

Integration Test

System Test

Design & Architecture in the Development Process

Design Design Design Design



3

12 - Arch. Reintro CSC407 5

• A “software architecture” is the structure (or
structures) of a system,
which comprise
– software components,

– the externally visible properties of those
components,

– and the relationships among them.
Logic

App

Generic
GUI

Win32

Architecture Definition

12 - Arch. Reintro CSC407 6

• Architecture defines “components”
– an abstraction

– suppresses details not pertinent to its interactions with
other components

• An architecture comprises more than one structure
• modular structure (calls/uses)

• process structure (invokes, communicates with,
synchronises with)

• physical structure (libraries, DLL’s, processors)

• inheritance structures (inherits)

• …

Components & Structures



4

12 - Arch. Reintro CSC407 7

Link to Design in Java-Speak

• Referring to the modular structure
– The "system" is the whole thing
– A "sub-system" is the division into components of

• the system
• or of a sub-system

– At the lowest level,
• leaf sub-system = package

– A package contains
• a set of classes

– Traditional to use the (hierarchical) directory structure to represent the
system breakdown.

• = hierarchical package structure in Java

– Coupling and Cohesion (information hiding) guide the architectural
division into sub-systems.

– Must constrain who calls whom
• imports, exports

12 - Arch. Reintro CSC407 8

Software Architecture
• Specifying at the highest level the construction of

the system:
– Technology choices

• Platforms, language, database, middleware, …

– System construction
• Overall pattern: Monolithic, RDBMS, client/server, 3-tiered, n-

tiered, distributed, …

• Hardware interfaces (if any)

– Division into programs
• E.g. a program for data entry, another for data analysis, a Web-

oriented interface, …

– Division of programs into major subsystems
• Reuse strategy (shared subsystems)
• Calls constraints
• Major strategies (e.g., for persistence, IPC, …)



5

12 - Arch. Reintro CSC407 9

The Essence of the Architecture Document

• Imagine after the system has been built attempting to
describe as cogently and in as compact a form as
possible how the system has been put together.

• Be utterly clear

• you only have an hour in which to do it.

• your target audience is knowledgeable professionals
in the field, but unfamiliar with the domain.

• They will wish to evaluate your choices

12 - Arch. Reintro CSC407 10

Documentation of an Architecture
• Golden Rule of Software Development:

– If it’s not reviewable (written down), it doesn’t exist.

• Architectures sometime suffer from over-elaborate
documentation
– Unnecessary. Simply document your decisions.
– Most systems don’t deserve elaborate architectural documentation

• Dealing with unknowns
– Indicate they are unknown for the present
– Cycle back later and add new decisions taken
– But beware of costs of postponing decisions

• Must religiously keep architecture document up-to-date
– Very hard to do in practice: takes effort
– Therefore keep it simple as possible (but no simpler)



6

12 - Arch. Reintro CSC407 11

Two Main Architectural Structures
• Modular structure

– Purely static

– Disappears at run-time

• Structures that survive through execution
– E.g., pipes, processes, networks, objects, …

• Both views need to be considered (not the
same)

12 - Arch. Reintro CSC407 12

Documentation

• Architecture
– Informal diagrams

– Written explanations

– Bullet points

• Design
– Formal UML

– Reflects and in-synch with program structure

– Simplify and divide into small chunks for
presentation

– Add written explanations.



7

12 - Arch. Reintro CSC407 13

Sample Systems Architecture Document
• Introduction

– purpose of current document
– what we are building and why
– references to other documents
– important business considerations

• Technical Requirements
– platforms, portability, hardware available, existing systems

• Application architecture
– user-facing apps

• Architectural paradigm
– general idea of the system

• Data Architecture
– how to load/store/write/warehouse data

• Run-Time & Physical architecture
– processes/threads communications, allocation to hardware

• Technology choices
– databases, languages, app/web servers, libraries, networks & IPC

• Module architecture
– source code, re-use strategy

12 - Arch. Reintro CSC407 14

• Manifests early design decision
– most difficult to get correct and hardest to change
– defines constraints on the implementation
– inhibits or enables quality attributes

• Defines a work-breakdown structure
– organization (especially important for long-distance development)
– estimation
– architecture document provides the vocabulary

• A vehicle for stakeholder communication
– an architecture is the earliest artefact that enables the priorities among competing

concerns to be analysed

• Reviewable
– architectural errors are vastly more expensive to fix once a system has been coded
– Can serve as a basis for training new developers
– As an indication of progress

Why is architecture important?



8

12 - Arch. Reintro CSC407 15

Must Answer

• Two questions
– What structure shall I employ to

• Assign workers

• Derive a work breakdown

• Exploit pre-packaged components

• Plan for modification

– What structure shall I employ so that
• the system, at runtime, fulfills its behavioral and

quality attributes.

12 - Arch. Reintro CSC407 16

Functionality & Quality Attributes

• Functionality usually takes 1st place during
development.

• Systems are more frequently re-designed not
because they are functionally deficient, but rather
because
– They are difficult to maintain

– Difficult to port

– Won’t scale

– Too slow

– Too insecure

– Not fault tolerant



9

12 - Arch. Reintro CSC407 17

System Qualities
• Observable via execution

– Performance
– Security
– Availability

• Reliability = mttf = mean time to failure
• Availability = mttf/(mttf + time to repair)

– Functionality
– Usability

• Not observable via execution
– Modifiability
– Portability
– Reusability
– Integrability
– Testability

12 - Arch. Reintro CSC407 18

Business Qualities

– Time-to-market

– Cost

– Projected lifetime

– Target market

– Rollout schedule

– Use of legacy systems



10

12 - Arch. Reintro CSC407 19

Architectural Qualities

• Conceptual integrity

• Correctness

• Completeness

• Buildability
– Completed by available team in a timely

manner

12 - Arch. Reintro CSC407 20

Architectural Paradigms in Common Use

• Monolithic Systems
– single/multi threaded

• Client/Server
– roll your own

• Classic RDBMS C/S
– ex. Java JDBC

• Distributed Systems
– ex. Java RMI

• N-tiered systems
– ex. Java EJB


