
1

08 - Creational Patterns CSC407 1

Creational Patterns

• Patterns used to abstract the process of instantiating
objects.
– class-scoped patterns

• uses inheritance to choose the class to be instantiated

– Factory Method

– object-scoped patterns
• uses delegation

– Abstract Factory

– Builder

– Prototype

– Singleton

08 - Creational Patterns CSC407 2

Importance

• Becomes important as emphasis moves towards
dynamically composing smaller objects to achieve
complex behaviours.
– need more than just instantiating a class

– need consistent ways of creating related objects.

2

08 - Creational Patterns CSC407 3

Recurring Themes

• Hide the secret about which concrete classes the system
uses.

• Hide the secret about how instances are created and
associated.

• Gives flexibility in
– what gets created

– who creates it

– how it gets created

– when it get gets created

08 - Creational Patterns CSC407 4

Running Example

• Building a maze for a computer game.

• A Maze is a set of Rooms.

• A Room knows its neighbours.
– another room

– a wall

– a door

3

08 - Creational Patterns CSC407 5

Maze Example

08 - Creational Patterns CSC407 6

Creating Mazes
public class MazeGame
{

public static void main(String args[]) {
Maze m = new MazeGame().createMaze();

}

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.West, d);
r2.setSide(Direction.East, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}
}

r1 r2

d

4

08 - Creational Patterns CSC407 7

Maze Classes

public abstract class MapSite

{

public abstract void enter();

}

public class Wall extends MapSite

{

public void enter() {

}

}

MapSite

enter()

Wall

enter()

08 - Creational Patterns CSC407 8

Maze Classes
public class Door extends MapSite
{

Door(Room s1, Room s2) {
side1 = s1;
side2 = s2;

}

public void enter() {
}

public Room otherSideFrom(Room r) {
if(r == side1)

return side2;
else if(r == side2)

return side1;
else

return null;
}

public void setOpen(boolean b) {
open = b;

}

public boolean getOpen() {
return open;

}

private Room side1;
private Room side2;
boolean open;

}

MapSite

enter()

Room

Door

open: boolean

enter()
otherSideFrom(Room): Room

2

side1, side2

[0..4]

5

08 - Creational Patterns CSC407 9

Maze Classes

public class Direction

{

public final static int First = 0;

public final static int North = First;

public final static int South = North+1;

public final static int East = South+1;

public final static int West = East+1;

public final static int Last = West;

public final static int Num = Last-First+1;

}

08 - Creational Patterns CSC407 10

Maze Classes
public class Room extends MapSite
{

public Room(int r) {
room_no = r;

}

public void enter() {
}

public void setSide(int direction, MapSite ms) {
side[direction] = ms;

}

public MapSite getSide(int direction) {
return side[direction];

}

public void setRoom_no(int r) {
room_no = r;

}

public int getRoom_no() {
return room_no;

}

private int room_no;
private MapSite[] side = new MapSite[Direction.Num];

}

MapSite

enter()

Room

enter()

4

6

08 - Creational Patterns CSC407 11

Maze Classes
import java.util.Vector;

public class Maze
{

public void addRoom(Room r) {

rooms.addElement(r);
}

public Room getRoom(int r) {

return (Room)rooms.elementAt(r);
}

public int numRooms() {

return rooms.size();
}

private Vector rooms = new Vector();
}

Maze

Room

*

08 - Creational Patterns CSC407 12

Maze Creation

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

7

08 - Creational Patterns CSC407 13

Maze Creation

• Fairly complex member just to create a maze with two
rooms.

• Obvious simplification:
– Room() could initialize sides with 4 new Wall()

– That just moves the code elsewhere.

• Problem lies elsewhere: inflexibility
– Hard-codes the maze creation

– Changing the layout can only be done by re-writing, or overriding
and re-writing.

08 - Creational Patterns CSC407 14

Creational Patterns Benefits

• Will make the maze more flexible.
– easy to change the components of a maze

– e.g., DoorNeedingSpell, EnchantedRoom
• How can you change createMaze() so that it creates mazes with these

different kind of classes?

• Biggest obstacle is hard-coding of class names.

8

08 - Creational Patterns CSC407 15

Creational Patterns

• If createMaze() calls virtuals to construct components
– Factory Method

• If createMaze() is passed a parameter object to create rooms, walls, …
– Abstract Factory

• If createMaze() is passed a parameter object to create and connect-up
mazes
– Builder

• If createMaze is parameterized with various prototypical rooms, doors,
walls, … which it copies and then adds to the maze
– Prototype

• Need to ensure there is only one maze per game, and everybody can
access it, and can extend or replace the maze without touching other
code.
– Singleton

08 - Creational Patterns CSC407 16

Factory Method

• Define an interface for creating an object, but let
subclasses decide which class to instantiate.

• a.k.a. Virtual Constructor

• e.g., app framework

factory method

9

08 - Creational Patterns CSC407 17

Applicability

• Use when:
– A class can’t anticipate the kind of objects to create.

– Hide the secret of which helper subclass is the current delegate.

08 - Creational Patterns CSC407 18

Structure

• Product
– defines the interface of objects the factory method creates

• ConcreteProduct
– implements the Product interface

10

08 - Creational Patterns CSC407 19

Structure

• Creator
– declares the factory method which return a Product type.

– [define a default implementation]

– [call the factory method itself]

• ConcreteCreator
– overrides the factory method to return an instance of a

ConcreteProduct

08 - Creational Patterns CSC407 20

Sample Code
public class MazeGame {

public static void main(String args[]) {

Maze m = new MazeGame().createMaze();

}

private Maze makeMaze() { return new Maze(); }

private Wall makeWall() { return new Wall(); }

private Room makeRoom(int r) { return new Room(r); }

private Door makeDoor(Room r1, Room r2) { return new Door(r1,r2); }

public Maze createMaze() {

…

}

}

11

08 - Creational Patterns CSC407 21

Sample Code
public Maze createMaze() {

Room r1 = makeRoom(1);

Room r2 = makeRoom(2);

Door d = makeDoor(r1,r2);

r1.setSide(Direction.North, makeWall());

r1.setSide(Direction.East, d);

r1.setSide(Direction.West, makeWall());

r1.setSide(Direction.South, makeWall());

r2.setSide(Direction.North, makeWall());

r2.setSide(Direction.East, d);

r2.setSide(Direction.West, makeWall());

r2.setSide(Direction.South, makeWall());

Maze m = makeMaze();

m.addRoom(r1);

m.addRoom(r2);

return m;

}

08 - Creational Patterns CSC407 22

Sample Code
public class BombedMazeGame extends MazeGame

{

private Wall makeWall() { return new BombedWall(); }

private Room makeRoom(int r) { return new RoomWithABomb(r); }

}

public class EnchantedMazeGame extends MazeGame

{

private Room makeRoom(int r)

{ return new EnchantedRoom(r, castSpell()); }

private Door makeDoor(Room r1, Room r2)

{ return new DoorNeedingSpell(r1,r2); }

private Spell castSpell()

{ return new Spell(); }

}

12

08 - Creational Patterns CSC407 23

Sample Code

public static void main(String args[]) {

Maze m = new EnchantedMazeGame().createMaze();

}

public static void main(String args[]) {

Maze m = new BombedMazeGame().createMaze();

}

08 - Creational Patterns CSC407 24

Consequences

• Advantage:
– Eliminates the need to bind to specific implementation classes.

• Can work with any user-defined ConcreteProduct classes.

• Disadvantage:
– Uses an inheritance dimension

– Must subclass to define new ConcreteProduct objects
• interface consistency required

13

08 - Creational Patterns CSC407 25

Consequences

• Provides hooks for subclasses
– always more flexible than direct object creation

• Connects parallel class hierarchies
– hides the secret of which classes belong together

08 - Creational Patterns CSC407 26

Implementation

• Two major varieties
– creator class is abstract

• requires subclass to implement

– creator class is concrete, and provides a default implementation
• optionally allows subclass to re-implement

• Parameterized factory methods
– takes a class id as a parameter to a generic make() method.
– (more on this later)

• Naming conventions
– use ‘makeXXX()’ type conventions (e.g., MacApp –

DoMakeClass())

• Can use templates instead of inheritance
• Return class of object to be created

– or, store as member variable

14

08 - Creational Patterns CSC407 27

Question

• What gets printed?

public class Main {

public static void main(String args[])

{ new DerivedMain(); }

public String myClass()

{ return "Main"; }

}

class DerivedMain extends Main {

public DerivedMain()

{ System.out.println(myClass()); }

public String myClass()

{ return "DerivedMain"; }

}

08 - Creational Patterns CSC407 28

Implementation

• Lazy initialization
– In C++, subclass vtable pointers aren’t installed until after parent

class initialization is complete.
• DON’T CREATE DURING CONSTRUCTION!

• can use lazy instatiation:

Product getProduct() {

if(product == null) {

product = makeProduct();

}

return product;

}

15

08 - Creational Patterns CSC407 29

Abstract Factory

• Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

• e.g., look-and-feel portability
– independence

– enforced consistency

08 - Creational Patterns CSC407 30

Applicability

• Use when:
– a system should be independent of how its products are created,

composed, and represented

– a system should be configured with one of multiple families of
products.

– a family of related product objects is designed to be used together,
and you need to enforce this constraint.

– you want to provide a class library of products, and you want to
reveal just their interfaces, not their implementations.

– you want to hide and reuse awkward or complex details of
construction

16

08 - Creational Patterns CSC407 31

Structure

• AbstractFactory
– declares an interface for operations that create product objects.

• ConcreteFactory
– implements the operations to create concrete product objects.

08 - Creational Patterns CSC407 32

Structure

• AbstractProduct
– declares an interface for a type of product object.

• Product
– defines a product to be created by the corresponding concrete factory.

– implements the AbstractProduct interface.

17

08 - Creational Patterns CSC407 33

Structure

• Client
– uses only interfaces declared by AbstractFactory and AbstractProduct

classes.

08 - Creational Patterns CSC407 34

Sample Code

public class MazeFactory {

Maze makeMaze() { return new Maze(); }

Wall makeWall() { return new Wall(); }

Room makeRoom(int r) { return new Room(r); }

Door makeDoor(Room r1, Room r2) { return new Door(r1,r2);}

}

18

08 - Creational Patterns CSC407 35

Maze Creation (old way)

public Maze createMaze() {
Room r1 = new Room(1);
Room r2 = new Room(2);
Door d = new Door(r1,r2);

r1.setSide(Direction.North, new Wall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, new Wall());
r1.setSide(Direction.South, new Wall());

r2.setSide(Direction.North, new Wall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, new Wall());
r2.setSide(Direction.South, new Wall());

Maze m = new Maze();
m.addRoom(r1);
m.addRoom(r2);
return m;

}

08 - Creational Patterns CSC407 36

Sample Code

public Maze createMaze(MazeFactory factory) {
Room r1 = factory.makeRoom(1);
Room r2 = factory.makeRoom(2);
Door d = factory.makeDoor(r1,r2);

r1.setSide(Direction.North, factory.makeWall());
r1.setSide(Direction.East, d);
r1.setSide(Direction.West, factory.makeWall());
r1.setSide(Direction.South, factory.makeWall());

r2.setSide(Direction.North, factory.makeWall());
r2.setSide(Direction.East, d);
r2.setSide(Direction.West, factory.makeWall());
r2.setSide(Direction.South, factory.makeWall());

Maze m = factory.makeMaze()
m.addRoom(r1);
m.addRoom(r2);
return m;

}

19

08 - Creational Patterns CSC407 37

Sample Code

public class EnchantedMazeFactory extends MazeFactory {

public Room makeRoom(int r) {

return new EnchantedRoom(r, castSpell());

}

public Door makeDoor(Room r1, Room r2) {

return new DoorNeedingSpell(r1,r2);

}

private protected castSpell() {

// randomly choose a spell to cast;

…

}

}

08 - Creational Patterns CSC407 38

Sample Code

public class MazeGame

{

public static void main(String args[]) {

Maze m = new MazeGame().createMaze(new MazeFactory());

}

}

public class MazeGame

{

public static void main(String args[]) {

Maze m = new MazeGame().createMaze(new EnchantedMazeFactory());

}

}

20

08 - Creational Patterns CSC407 39

Consequences

• It isolates concrete classes
– Helps control the classes of objects that an application creates.

– Isolates clients from implementation classes

– Clients manipulate instances through abstract interfaces

– Product class names are isolated in the implementation of the
concrete factory

• they do not appear in the client code

08 - Creational Patterns CSC407 40

Consequences

• It makes exchanging product families easy
– The class of a concrete factory appears only once in the app.

• where it’s instantiated

– Easy to change the concrete factory an app uses.

– The whole product family changes at once

21

08 - Creational Patterns CSC407 41

Consequences

• It promotes consistency among products
– When products are designed to work together, it’s important that

an application use objects only from one family at a time.

– AbstractFactory makes this easy to enforce.

08 - Creational Patterns CSC407 42

Consequences

• Supporting new kinds of products is difficult.
– Extending AbstractFactory to produce new product types isn’t easy

• extend factory interface

• extend all concrete factories

• add a new abstract product

• + the usual (implement new class in each family)

22

08 - Creational Patterns CSC407 43

Implementation

• Factories as Singletons
– An app typically needs only one instance of a ConcreteFactory per

product family.

– Best implemented as a Singleton

08 - Creational Patterns CSC407 44

Implementation

• Defining extensible factories
– Hard to extend to new product types

– Add parameter to operations that create products
• need only make()

• less safe

• more flexible

• easier in languages that have common subclass

– e.g. java Object

• easier in more dynamically-typed languages

– e.g., Smalltalk

• all products have same abstract interface

– can downcast – not safe

– classic tradeoff for a very flexible/extensible interface

23

08 - Creational Patterns CSC407 45

Implementation

• Creating the products
– AbstractFactory declares an interface for product creation

– ConcreteFactory implements it. How?
• Factory Method

– virtual overrides for creation methods

– simple

– requires new concrete factories for each family, even if they only
differ slightly

• Prototype

– concrete factory is initialized with a prototypical instance of each
product in the family

– creates new products by cloning

– doesn’t require a new concrete factory class for each product
family

– variant: can register class objects

08 - Creational Patterns CSC407 46

Prototype-based Implementation

abstract class AbstractProduct implements Cloneable {

public abstract int geti();

public abstract Object clone();

}

class ConcreteProduct extends AbstractProduct

{

public ConcreteProduct(int j) { i = j; }

public Object clone() { return new ConcreteProduct(i); }

public int geti() { return i; }

private int i;

}

24

08 - Creational Patterns CSC407 47

Prototype-based Implementation
import java.util.Hashtable;

public class ConcreteFactory {
void addProduct(AbstractProduct p, String name) {

map.put(name, p);
}

AbstractProduct make(String name) {
return (AbstractProduct)

((AbstractProduct)map.get(name)).clone();
}

private Hashtable map = new Hashtable();
}

08 - Creational Patterns CSC407 48

Prototype-based Implementation
public class Main {

public static void main(String args[]) {

ConcreteFactory f = new ConcreteFactory();

f.addProduct(new ConcreteProduct(42), “ap");

AbstractProduct p = f.make(“ap");

System.out.println(p.geti());

}

}

25

08 - Creational Patterns CSC407 49

Class Registration Implementation
abstract class AbstractProduct {

public abstract int geti();
}

class ConcreteProduct extends AbstractProduct {
public int geti() { return i; }
private int i = 47;

}

public class ConcreteFactory {

void addProduct(Class c, String name) {

map.put(name, c);

}

Product make(String name) throws Exception {

Class c = (Class)map.get(name);

return (Product) c.newInstance();

}

private Hashtable map = new Hashtable();

}

08 - Creational Patterns CSC407 50

Class Registration Implementation

public class Main {

public static void main(String args[]) throws Exception {

ConcreteFactory f = new ConcreteFactory();

f.addProduct(Class.forName("ConcreteProduct"), “ap");

AbstractProduct p = f.make(“ap");

System.out.println(p.geti());

}

}

26

08 - Creational Patterns CSC407 51

Prototype

• Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.
– e.g., reduce # of classes (# of tools) by initializing a generic tool

with a prototype

08 - Creational Patterns CSC407 52

Applicability

• Use When:
– the classes to be instantiated are specified at run-time

• e.g., for dynamic loading

– to avoid building a class hierarchy of factories to parallel the
hierarchy of products

– when instances can have only one of a few states
• may be better to initialize once, and then clone prototypes

27

08 - Creational Patterns CSC407 53

Structure

• Prototype
– declares an interface for cloning itself

• ConcretePrototype
– implements an operation for cloning itself

• Client
– creates a new object by asking a prototype to clone itself

08 - Creational Patterns CSC407 54

Sample Code
public class MazePrototypeFactory extends MazeFactory

{

private Maze prototypeMaze;

private Wall prototypeWall;

private Room prototypeRoom;

private Door prototypeDoor;

public MazePrototypeFactory(Maze pm, Wall pw, Room pr, Door pd) {

prototypeMaze = pm;

prototypeWall = pw;

prototypeRoom = pr;

prototypeDoor = pd;

}

…

}

28

08 - Creational Patterns CSC407 55

Sample Code
public class MazePrototypeFactory extends MazeFactory

{

Wall makeWall() {

Wall wall = null;

try {

wall = (Wall)prototypeWall.clone();

} catch(CloneNotSupportedException e) { throw new Error(); }

return wall;

}

Room makeRoom(int r) {

Room room = null;

try {

room = (Room)prototypeRoom.clone();

} catch(CloneNotSupportedException e) { throw new Error(); }

room.initialize(r);

return room;

}

…

}

08 - Creational Patterns CSC407 56

Sample Code
public abstract class MapSite implements Cloneable

{

public abstract void enter();

public String toString() {

return getClass().getName();

}

public Object clone() throws CloneNotSupportedException {

return super.clone();

}

}

29

08 - Creational Patterns CSC407 57

Sample Code
public class Door extends MapSite

{

public Door(Room s1, Room s2) {

initialize(s1,s2);

}

public void initialize(Room s1, Room s2) {

side1 = s1;

side2 = s2;

open = true;

}

private Room side1;

private Room side2;

boolean open;

…

}

08 - Creational Patterns CSC407 58

Sample Code
public class Room extends MapSite

{

public Room(int r) {

initialize(r);

}

public void initialize(int r) {

room_no = r;

}

public Object clone() throws CloneNotSupportedException {

Room r = (Room)super.clone();

r.side = new MapSite[Direction.Num];

return r;

}

…

private int room_no;

private MapSite[] side = new MapSite[Direction.Num];

}

30

08 - Creational Patterns CSC407 59

Sample Code
public class EnchantedRoom extends Room

{

public EnchantedRoom(int r, Spell s) {

super(r);

spell = s;

}

public Object clone() throws CloneNotSupportedException {

EnchantedRoom r = (EnchantedRoom)super.clone();

r.spell = new Spell();

return r;

}

private Spell spell;

}

08 - Creational Patterns CSC407 60

Sample Code
public static void main(String args[]) {

MazeFactory mf = new MazePrototypeFactory(

new Maze(), new Wall(),

new Room(0), new Door(null,null));

Maze m = new MazeGame().createMaze(mf);

}

public static void main(String args[]) {

MazeFactory mf = new MazePrototypeFactory(

new Maze(), new Wall(),

(Room)Class.forName("EnchantedRoom").newInstance(),

(Door)Class.forName("DoorNeedingSpell").newInstance());

Maze m = new MazeGame().createMaze(mf);

}

31

08 - Creational Patterns CSC407 61

Consequences

• Many of the same as AbstractFactory
• Can add and remove products at run-time
• new objects via new values

– setting state on a prototype is analogous to defining a new class

• new structures
– a multi-connected prototype + deep copy

• reducing subclassing
– no need to have a factory or creator hierarchy

• dynamic load
– cannot reference a new class’s constructor statically
– must register a prototype

• Disadvantage
– implement clone() all over the place (can be tough).

08 - Creational Patterns CSC407 62

Consequences

• No parallel class hierarchy
– awkward initialization

MapSite

Room

int r

EnchantedRoom

Spell s

MazeGame

EnchantedMazeGame

MazeFactory

EnchantedMazeFactory

MazePrototypeFactory

32

08 - Creational Patterns CSC407 63

Implementation

• Use a prototype manager
– store and retrieve in a registry (like Abstract Factory e.g.).

• Shallow versus deep copy
– consider a correct implementation of clone() for Maze.
– need a concept of looking up equivalent cloned rooms in the current maze

r1 r2

d

m

• m.clone()

• r1.clone()

• n.wall.clone()

• e.door.clone()

• r1.clone()

• !!!

08 - Creational Patterns CSC407 64

Singleton

• Ensure a class only has one instance, and provide a global
point of access to it.
– Many times need only one instance of an object

• one file system

• one print spooler

• …

– How do we ensure there is exactly one instance, and that the
instance is easily accessible?

• Global variable is accessible, but can still instantiate multiple
instances.

• make the class itself responsible

33

08 - Creational Patterns CSC407 65

Applicability

• Use when:
– there must be exactly one instance accessible from a well-known

access point

– the sole instance should be extensible via subclassing
• clients should be able to use the extended instance without modifying

their code

08 - Creational Patterns CSC407 66

Structure

• Singleton
– defines a class-scoped instance() operation that lets clients access

its unique instance

– may be responsible for creating its own unique instance

34

08 - Creational Patterns CSC407 67

Sample Code
package penny.maze.factory;

public class MazeFactory {

MazeFactory() { }

private static MazeFactory theInstance = null;

public static MazeFactory instance() {

if(theInstance == null) {

String mazeKind =

AppConfig.getProperties().getProperty("maze.kind");

if(mazeKind.equals("bombed")) {

theInstance = new BombedMazeFactory();

} else if(mazeKind.equals("enchanted")) {

theInstance = new EnchantedMazeFactory();

} else {

theInstance = new MazeFactory();

}

}

return theInstance;

}

…

}

08 - Creational Patterns CSC407 68

Sample Code

Maze application parameters

maze.kind=enchanted

file .mazerc:

35

08 - Creational Patterns CSC407 69

Sample Code
import java.io.*;

import java.util.Properties;

public class AppConfig {

public static Properties getProperties() {

if(props == null) {

props = new Properties(defaults());

try {

props.load(new FileInputStream(".mazerc"));

} catch(IOException e) {

System.err.println("Cannot read .mazerc, using defaults");

}

}

return props;

}

private static Properties defaults() {

Properties p = new Properties();

p.put("maze.kind", "bombed");

return p;

}

private static Properties props = null;

}

08 - Creational Patterns CSC407 70

Sample Code - More Dynamic

Maze application parameters

maze.factory=EnchantedMazeFactory

file .mazerc:

36

08 - Creational Patterns CSC407 71

Sample Code - More Dynamic
package penny.maze.factory;

public class MazeFactory {

MazeFactory() { }

private static MazeFactory theInstance = null;

public static MazeFactory instance() {

if(theInstance == null) {

String mazeFactory =

AppConfig.getProperties().getProperty("maze.factory");

try{

theInstance = (MazeFactory)

Class.forName(mazeFactory).newInstance();

} catch(Exception e) {

theInstance = new MazeFactory();

}

}

return theInstance;

}

…

}

08 - Creational Patterns CSC407 72

Consequences

• Controlled access to sole instance.
– Because singleton encapsulates the sole instance, it has strict

control.

• Reduced name space
– one access method only

• Variable # of instances
– can change your mind to have e.g., 5 instances

• Easy to derive and select new classes
– access controlled through a single point of entry

37

08 - Creational Patterns CSC407 73

Implementation

• Ensuring a unique instance
– can’t define singleton as a global object!

• no guarantee only one will get created

– must prohibit instantiation

• may not know the state settings at init time (prior to main())

• must create whether used or not

– can’t define as a static object
• all of the above +

– C++ doesn’t define the order of construction across translation units.

• Subclassing the singleton class
– as shown

– C++: implement Singleton::instance() in each sub-class, only link one in
at link time.

– registry of singletons: instance(“bombed”)
• subclasses register in static initializers (or “init()” methods).

08 - Creational Patterns CSC407 74

Builder

• Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.
– e.g., read in Rich Text Format, converting to may different formats

on load.

38

08 - Creational Patterns CSC407 75

Applicability

• Use When:
– the algorithm for creating a complex object should be independent

of the parts that make up the object and how they're assembled

– the construction process must allow different representations for
the object that's constructed

08 - Creational Patterns CSC407 76

Structure

• Builder
– specifies an abstract interface for creating parts of a Product object

• Concrete Builder
– constructs and assembles parts of the product by implementing the

Builder interface
– defines and keeps track of the representation it creates
– provides an interface for retrieving the product

39

08 - Creational Patterns CSC407 77

Structure

• Director
– constructs an object using the Builder interface

• Product
– represents the complex object under construction.

– includes classes that define the constituent parts, including
interfaces for assembling the parts into the final result

08 - Creational Patterns CSC407 78

Collaborations

• The client creates the Director object and configures it with the Builder object.

• Director notifies the builder whenever a part of the product should be built.

• Builder handles requests from the director and adds parts to the product.

• The client retrieves the product from the builder.

40

08 - Creational Patterns CSC407 79

Sample Code

public abstract class MazeBuilder {

public void buildRoom(int r){}

public void buildDoor(int r1, int direction, int r2){}

public Maze getMaze(){return null;}

}

public class MazeGame {

…

public Maze createMaze(MazeBuilder b) {

b.buildRoom(1);

b.buildRoom(2);

b.buildDoor(1, Direction.North, 2);

return b.getMaze();

}

…

}

08 - Creational Patterns CSC407 80

Sample Code

public class StandardMazeBuilder extends MazeBuilder

{

private Maze currentMaze;

public Maze getMaze() {

if(currentMaze==null)

currentMaze = new Maze();

return currentMaze;

}

…

}

41

08 - Creational Patterns CSC407 81

Sample Code

public class StandardMazeBuilder extends MazeBuilder

{

…

public void buildRoom(int r) {

if(getMaze().getRoom(r) == null) {

Room room = new Room(r);

getMaze().addRoom(room);

for(int d = Direction.First; d <= Direction.Last; d++)

room.setSide(d, new Wall());

}

}

…

}

08 - Creational Patterns CSC407 82

Sample Code
public class StandardMazeBuilder extends MazeBuilder

{

…

public void buildDoor(int r1, int d, int r2) {

Room room1 = getMaze().getRoom(r1);

Room room2 = getMaze().getRoom(r2);

if(room1 == null) {

buildRoom(r1);

room1 = getMaze().getRoom(r1);

}

if(room2 == null) {

buildRoom(r2);

room2 = getMaze().getRoom(r2);

}

Door door = new Door(room1, room2);

room1.setSide(d, door);

room2.setSide(Direction.opposite(d), door);

}

…

}

42

08 - Creational Patterns CSC407 83

Sample Code

public class CountingMazeBuilder extends MazeBuilder

{

private int rooms = 0;

private int doors = 0;

public void buildDoor(int r1, int direction, int r2) {

doors++;

}

public void buildRoom(int r) {

rooms++;

}

public int getDoors() { return doors; }

public int getRooms() { return rooms; }

}

08 - Creational Patterns CSC407 84

Sample Code

public class MazeGame

{

public static void main(String args[]) {

MazeGame mg = new MazeGame();

Maze m = mg.createMaze(new StandardMazeBuilder());

System.out.println(m);

CountingMazeBuilder cmb = new CountingMazeBuilder();

mg.createMaze(cmb);

System.out.println("rooms = "+cmb.getRooms());

System.out.println("doors = "+cmb.getDoors());

}

…

}

43

08 - Creational Patterns CSC407 85

Sample Code
public Maze createMaze(MazeFactory f) {

Room r1 = f.makeRoom(1);

Room r2 = f.makeRoom(2);

Door d = f.makeDoor(r1,r2);

r1.setSide(Direction.North, f.makeWall());

r1.setSide(Direction.East, d);

r1.setSide(Direction.West, f.makeWall());

r1.setSide(Direction.South, f.makeWall());

r2.setSide(Direction.North, f.makeWall());

r2.setSide(Direction.East, f.makeWall());

r2.setSide(Direction.West, d);

r2.setSide(Direction.South, f.makeWall());

Maze m = f.makeMaze();

m.addRoom(r1);

m.addRoom(r2);

return m;

}

08 - Creational Patterns CSC407 86

Sample Code
public Maze createMaze(MazeBuilder b) {

b.buildDoor(1, Direction.North, 2);

return b.getMaze();

}

44

08 - Creational Patterns CSC407 87

Consequences

• lets you vary a product's internal representation

• isolates code for construction and representation

• gives you control over the construction process

08 - Creational Patterns CSC407 88

Implementation

• Assembly interface
– sometimes can just append next element to structure

– more often must lookup previously constructed elements
• need an interface for doing this that hides Products

– cookie of some sort

• beware order of construction

• Product hierarchy?
– often no great similarity

– no great need

– don’t use up a precious inheritance dimension

• abstract v.s. empty methods?
– empty methods more generally useful

• User-installable product classes

45

08 - Creational Patterns CSC407 89

Creational Patterns

• If createMaze() calls virtuals to construct components
– Factory Method (class scoped)

• If createMaze() is passed a parameter object to create rooms, walls, …
– Abstract Factory

• If createMaze() is passed a parameter object to create and connect-up
mazes
– Builder

• If createMaze is parameterized with various prototypical rooms, doors,
walls, … which it copies and then adds to the maze
– Prototype

• Need to ensure there is only one maze per game, and everybody can
access it, and can extend or replace the maze without touching other
code.
– Singleton

