Architecture Definition

» A “software architecture” is the structure (or
structures) of a system,
which comprise
— software components,

— the externally visible properties of those
components,

— and the relationships among them.

Logic Generic

GUI

02 - Architecture Intro. CSC407 1

Components & Structures

 Architecture defines “ components”
— an abstraction

— suppresses details not pertinent to its interactions with
other components

» An architecture comprises more than one structure
» modular structure (calls/uses)

* process structure (invokes, communicates with,
synchronises with)

 physical structure (libraries, DLL’s, processors)
* inheritance structures (inherits)

02 - Architecture Intro. CSC407 2

In Practice

 Divideinto two levels:
— System-Level Architecture
—Programming-Level Design

[User Interface

— Sometimes also referred to as “design” (or even
“architecture”)

— Different topic. Not covered in this course.

02 - Architecture Intro. CSC407 3

Design & Architecture in the Development Process

'

’ Requirements ‘

Code | caut | | caut | [caut] [caut| [caut|

Unit
Test

Integration Test

|

’ System Test ‘

02 - Architecture Intro. CSC407 4

Software Architecture

» Specifying at the highest level the construction of
the system:

— Technology choices
 Platforms, language, database, middleware, ...
— System construction

¢ Overall pattern: Monolithic, RDBMS, client/server, 3-tiered, n-
tiered, distributed, ...

» Hardware interfaces (if any)
— Division into programs

« E.g. aprogram for data entry, another for data analysis, a Web-
oriented interface, ...

— Division of programsinto major subsystems
» Reuse strategy (shared subsystems)
 Cdlsconstraints
« Magjor strategies (e.g., for persistence, IPC, ...)
02 - Architecture Intro. CSC407 5

Software Design

» We are now considering how to lay down code.
* E.g., Object-Oriented
— What classes? What inheritance amongst the classes?
— What classes will call what other classes?
— How are classes grouped into subsystems (e.g. Java
packages)?
— What data members of classes
* Must decide these things at some point during the
coding process.
— Wish to minimize re-writes now and down the line

— Danger in early over-complexity (c.f. Extreme
Programming)

02 - Architecture Intro. CSC407 6

Architecture & Design

 Architecture

— High-leve

— Magjor decisions

— Not even thinking about programming
e Design

—“Laying out” the programming language code

used to implement the architecture

— Organizing programming language concepts

But, ... N.B. no standard terminology

02 - Architecture Intro. CSC407

Documentation of an Architecture

» Golden Rule of Software Development:
— If it’s not reviewable (written down), it doesn’t exist.

* Architectures sometime suffer from over-elaborate
documentation
— Unnecessary. Simply document your decisions.
— Most systems don’t deserve elaborate architectural documentation

» Dealing with unknowns
— Indicate they are unknown for the present
— Cycle back later and add new decisions taken
— But beware of costs of postponing decisions

* Must religiously keep architecture document up-to-date
— Very hard to do in practice: takes effort
— Therefore keep it simple as possible (but no simpler)

02 - Architecture Intro. CSC407

How do we describe an architecture?

Control
Process
(CP)

Prop Loss Reverb Noise
Model Model Model
(MODP) (MODR) (MODN)

What is the nature of the components?
What is the nature of the links?

» Doesthelayout have any significance? '
» How does it operate at runtime CIear'
— Dataflow st Be
— Control flow Mu

Can we evaluate this architecture?

02 - Architecture Intro. CSC407 9

Two Main Architectural Structures

e Modular structure
— Purely static
— Disappears at run-time

 Structuresthat survive through execution
— E.g., pipes, processes, networks, objects, ...

» Both views need to be considered (not the
same)

02 - Architecture Intro. CSC407 10

The Essence of the Architecture Document

* Imagine after the system has been built attempting to
describe as cogently and in as compact aform as
possible how the system has been put together.

* Beutterly clear
 you only have an hour in which to do it.

* your target audience is knowledgeabl e professionals
in the field, but unfamiliar with the domain.

» They will wish to evaluate your choices

02 - Architecture Intro. CSC407 11

Documentation of a Design
UML (Unified Modeling Language)

— Expresses OO design using diagrammatic notation
— Complete UML for atypical systemisvery large.
— A selection must be made for presentation
* Choose the most illuminating parts
o Simplify w.r.t. the actual code
e Divideinto small sections (< 1 page)
« Add written text to describe the whys and wherefores.
Danger of UML and code getting out of synch over time
— Automated tools to keep the two in-synch
« E.g., Rational Rose
— Problem with these tools:
* Not literate
» Don’t work as well as we would want, cumbersome to use
« Eliding detail isdifficult, simplifying (lying) is difficult
 Selection of parts for presentation is primitive
Strive to explain (in writing) your choices to another programmer

02 - Architecture Intro. CSC407 12

Documentation

 Architecture
— Informal diagrams
— Written explanations
— Bullet points
* Design
— Formal UML
— Reflects and in-synch with program structure
— Simplify and divide into small chunks for

presentation
— Add written explanations.
02 - Architecture Intro. CSC407 13

The Waterfall Model

* Requirements — Architecture —» Design —
Code — Test

— Variations: Spiral, prototyping, ...
* All will have architecture and design artefacts
» Dave Parnas. “A Rational Design Process. How
and when to fake it”
— Not important that the steps are followed in this order

— Only important that after the fact, there are documents
that make it appear as though the process was followed
in that order.

02 - Architecture Intro. CSC407 14

Documentation In Practice

As much requirements as you can manage without getting
bogged down.

As much architecture as you can manage without getting
bogged down

Some design

Some code

More design

More code

Refine architecture
Fix requirements

02 - Architecture Intro. CSC407 15

Why is architecture important?

Manifests early design decision

most difficult to get correct and hardest to change
defines constraints on the implementation
inhibits or enables quality attributes

Defines a work-breakdown structure

organization (especially important for long-distance devel opment)
estimation

A vehicle for stakeholder communication

an architecture is the earliest artefact that enables the priorities among
competing concernsto be analysed

Reviewable

02

architectural errors are vastly more expensive to fix once a system has been
coded

Can serve as a basis for training new developers

Asan indication of progress
- Architecture Intro. CSC407 16

Why is design important?

» When dealing with ~100s of packages and ~1000s of
classes, coderslose sight of the forest for the trees.
— Leadsto designsthat are muddled and inconsistent
« Buggy, requiring constant re-work
« Long learning curve for new developers
» Hard to fix bugs
— Long time to debug, lots of code to fix, introduce new bugs
« Hard to change
— Lots of timeto figure out how to change, lots of code to change,
introduce lots of new bugs
» Higher-level design descriptions lead to better designs
— Can grasp the design at its essence and in its entirety
— Canreview and correct early

e Can be used to leverage the skills and experience of better
designers across many developers

02 - Architecture Intro. CSC407 17

Where does architecture come from?

Developing

G Customers
organization

End Users

Current technical
environment

':> previous experience

Architect

02 - Architecture Intro. CSC407 18

What does architecture affect?

— The structure of the devel oping organisation

— The enterprise goals of the devel oping organisation
— customer requirements for the next system

— influence later architectural decisions

%1

02 - Architecture Intro. CSC407 19

Architecture process steps

* createthe business case

 understand the requirements

* create the architecture

* represent and communicate the architecture
 evauate the architecture

 implement based on the architecture
— ensuring conformance

* enhance/maintain based on the architecture
— ensuring conformance

02 - Architecture Intro. CSC407 20

10

Functionality & Quality Attributes

» Functionality usually takes 1% place during
development.

» Systems are more frequently re-designed not
because they are functionally deficient, but rather
because

— They are difficult to maintain
— Difficult to port

— Won't scale

— Too slow

— Too insecure

— Not fault tolerant

02 - Architecture Intro. CSC407 21

System Qualities

e Observable viaexecution
— Performance
— Security
— Availability
« Rdiability = mttf = mean timeto failure
 Availability = mttf/(mttf + time to repair)
— Functionality
— Usahility
* Not observable viaexecution
— Modifiability
Portability
Reusability
Integrability
Testability

02 - Architecture Intro. CSC407 22

11

Business Qualities

— Time-to-market

— Cost

— Projected lifetime

— Target market

— Rollout schedule

— Use of legacy systems

02 - Architecture Intro. CSC407

23

Architectural Qualities

Conceptual integrity
Correctness
Completeness
Buildability

— Completed by available teamin atimely
manner

02 - Architecture Intro. CSC407

24

12

Architectural Means of Achieving Quality

e Two questions

— What structure shall | employ to
» Assign workers
* Derive awork breakdown
 Exploit pre-packaged components
* Plan for modification
— What structure shall | employ so that the
system, at runtime, fulfillsits behavioral and
quality attributes.

J \\"7/
<

02 - Architecture Intro. CSC407 25

13

