
1

02 - Architecture Intro. CSC407 1

• A “software architecture” is the structure (or
structures) of a system,
which comprise
– software components,

– the externally visible properties of those
components,

– and the relationships among them.
Logic

App

Generic
GUI

Win32

Architecture Definition

02 - Architecture Intro. CSC407 2

• Architecture defines “components”
– an abstraction

– suppresses details not pertinent to its interactions with
other components

• An architecture comprises more than one structure
• modular structure (calls/uses)

• process structure (invokes, communicates with,
synchronises with)

• physical structure (libraries, DLL’s, processors)

• inheritance structures (inherits)

• …

Components & Structures



2

02 - Architecture Intro. CSC407 3

In Practice
• Divide into two levels:

– System-Level Architecture

– Programming-Level Design

[User Interface
– Sometimes also referred to as “design” (or even

“architecture”)

– Different topic. Not covered in this course.

]

02 - Architecture Intro. CSC407 4

Requirements

Architecture

Code
&

Unit
Test

C&ut C&ut C&ut C&ut C&ut C&ut

Integration Test

System Test

Design & Architecture in the Development Process

Design Design Design Design



3

02 - Architecture Intro. CSC407 5

Software Architecture
• Specifying at the highest level the construction of

the system:
– Technology choices

• Platforms, language, database, middleware, …

– System construction
• Overall pattern: Monolithic, RDBMS, client/server, 3-tiered, n-

tiered, distributed, …

• Hardware interfaces (if any)

– Division into programs
• E.g. a program for data entry, another for data analysis, a Web-

oriented interface, …

– Division of programs into major subsystems
• Reuse strategy (shared subsystems)
• Calls constraints
• Major strategies (e.g., for persistence, IPC, …)

02 - Architecture Intro. CSC407 6

Software Design
• We are now considering how to lay down code.
• E.g., Object-Oriented

– What classes? What inheritance amongst the classes?
– What classes will call what other classes?
– How are classes grouped into subsystems (e.g. Java

packages)?
– What data members of classes

• Must decide these things at some point during the
coding process.
– Wish to minimize re-writes now and down the line
– Danger in early over-complexity (c.f. Extreme

Programming)



4

02 - Architecture Intro. CSC407 7

Architecture & Design

• Architecture
– High-level

– Major decisions

– Not even thinking about programming

• Design
– “Laying out” the programming language code

used to implement the architecture

– Organizing programming language concepts

But, … N.B. no standard terminology

02 - Architecture Intro. CSC407 8

Documentation of an Architecture
• Golden Rule of Software Development:

– If it’s not reviewable (written down), it doesn’t exist.

• Architectures sometime suffer from over-elaborate
documentation
– Unnecessary. Simply document your decisions.
– Most systems don’t deserve elaborate architectural documentation

• Dealing with unknowns
– Indicate they are unknown for the present
– Cycle back later and add new decisions taken
– But beware of costs of postponing decisions

• Must religiously keep architecture document up-to-date
– Very hard to do in practice: takes effort
– Therefore keep it simple as possible (but no simpler)



5

02 - Architecture Intro. CSC407 9

How do we describe an architecture?

• What is the nature of the components?
• What is the nature of the links?
• Does the layout have any significance?
• How does it operate at runtime

– Dataflow
– Control flow

• Can we evaluate this architecture?

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

02 - Architecture Intro. CSC407 10

Two Main Architectural Structures
• Modular structure

– Purely static

– Disappears at run-time

• Structures that survive through execution
– E.g., pipes, processes, networks, objects, …

• Both views need to be considered (not the
same)



6

02 - Architecture Intro. CSC407 11

The Essence of the Architecture Document

• Imagine after the system has been built attempting to
describe as cogently and in as compact a form as
possible how the system has been put together.

• Be utterly clear

• you only have an hour in which to do it.

• your target audience is knowledgeable professionals
in the field, but unfamiliar with the domain.

• They will wish to evaluate your choices

02 - Architecture Intro. CSC407 12

Documentation of a Design
• UML (Unified Modeling Language)

– Expresses OO design using diagrammatic notation
– Complete UML for a typical system is very large.
– A selection must be made for presentation

• Choose the most illuminating parts
• Simplify w.r.t. the actual code
• Divide into small sections (< 1 page)
• Add written text to describe the whys and wherefores.

• Danger of UML and code getting out of synch over time
– Automated tools to keep the two in-synch

• E.g., Rational Rose
– Problem with these tools:

• Not literate
• Don’t work as well as we would want, cumbersome to use
• Eliding detail is difficult, simplifying (lying) is difficult
• Selection of parts for presentation is primitive

• Strive to explain (in writing) your choices to another programmer



7

02 - Architecture Intro. CSC407 13

Documentation

• Architecture
– Informal diagrams

– Written explanations

– Bullet points

• Design
– Formal UML

– Reflects and in-synch with program structure

– Simplify and divide into small chunks for
presentation

– Add written explanations.

02 - Architecture Intro. CSC407 14

The Waterfall Model
• Requirements → Architecture → Design →

Code → Test
– Variations: Spiral, prototyping, …

• All will have architecture and design artefacts

• Dave Parnas: “A Rational Design Process: How
and when to fake it”
– Not important that the steps are followed in this order

– Only important that after the fact, there are documents
that make it appear as though the process was followed
in that order.



8

02 - Architecture Intro. CSC407 15

Documentation In Practice

• As much requirements as you can manage without getting
bogged down.

• As much architecture as you can manage without getting
bogged down

• Some design

• Some code

• More design

• More code

• Refine architecture

• Fix requirements

• …

02 - Architecture Intro. CSC407 16

• Manifests early design decision
– most difficult to get correct and hardest to change
– defines constraints on the implementation
– inhibits or enables quality attributes

• Defines a work-breakdown structure
– organization (especially important for long-distance development)
– estimation

• A vehicle for stakeholder communication
– an architecture is the earliest artefact that enables the priorities among

competing concerns to be analysed

• Reviewable
– architectural errors are vastly more expensive to fix once a system has been

coded
– Can serve as a basis for training new developers
– As an indication of progress

Why is architecture important?



9

02 - Architecture Intro. CSC407 17

Why is design important?

• When dealing with ~100s of packages and ~1000s of
classes, coders lose sight of the forest for the trees.
– Leads to designs that are muddled and inconsistent

• Buggy, requiring constant re-work
• Long learning curve for new developers
• Hard to fix bugs

– Long time to debug, lots of code to fix, introduce new bugs
• Hard to change

– Lots of time to figure out how to change, lots of code to change,
introduce lots of new bugs

• Higher-level design descriptions lead to better designs
– Can grasp the design at its essence and in its entirety
– Can review and correct early

• Can be used to leverage the skills and experience of better
designers across many developers

02 - Architecture Intro. CSC407 18

Developing
organization

Architect

Marketing

End Users

Customers

Current technical
environment

previous experience

Where does architecture come from?



10

02 - Architecture Intro. CSC407 19

– The structure of the developing organisation

– The enterprise goals of the developing organisation

– customer requirements for the next system

– influence later architectural decisions

What does architecture affect?

02 - Architecture Intro. CSC407 20

• create the business case

• understand the requirements

• create the architecture

• represent and communicate the architecture

• evaluate the architecture

• implement based on the architecture
– ensuring conformance

• enhance/maintain based on the architecture
– ensuring conformance

Architecture process steps



11

02 - Architecture Intro. CSC407 21

Functionality & Quality Attributes

• Functionality usually takes 1st place during
development.

• Systems are more frequently re-designed not
because they are functionally deficient, but rather
because
– They are difficult to maintain

– Difficult to port

– Won’t scale

– Too slow

– Too insecure

– Not fault tolerant

02 - Architecture Intro. CSC407 22

System Qualities
• Observable via execution

– Performance
– Security
– Availability

• Reliability = mttf = mean time to failure
• Availability = mttf/(mttf + time to repair)

– Functionality
– Usability

• Not observable via execution
– Modifiability
– Portability
– Reusability
– Integrability
– Testability



12

02 - Architecture Intro. CSC407 23

Business Qualities

– Time-to-market

– Cost

– Projected lifetime

– Target market

– Rollout schedule

– Use of legacy systems

02 - Architecture Intro. CSC407 24

Architectural Qualities

• Conceptual integrity

• Correctness

• Completeness

• Buildability
– Completed by available team in a timely

manner



13

02 - Architecture Intro. CSC407 25

Architectural Means of Achieving Quality

• Two questions
– What structure shall I employ to

• Assign workers

• Derive a work breakdown

• Exploit pre-packaged components

• Plan for modification

– What structure shall I employ so that the
system, at runtime, fulfills its behavioral and
quality attributes.


