
1

05 - OOA CSC407 1

Evolution of Object-Oriented Development Methods
• Mid to late 1980s

– Object-Oriented Languages (esp. C++) were very much in vogue

– However, there was little guidance on how to divide a problem
into OO classes.

• 1990: Object Modeling
– All at around the same time, many were borrowing an argument

from structured design:
• The best organization for a software systems is one that is cohesive in

the problem domain, not in the solution space

– Tends to isolate changes

– Tends to make the program easier to understand

– Developed methods for applying this concept to OO design.
• Rumbaugh, Coad, Wirfs-Brock, Booch, Jacobson …

05 - OOA CSC407 2

Object Modeling Method
• Step 1: OOA

– Analyze the problem domain
• Identify problem domain classes and relationships between

classes

• Identify attributes and methods

• Identify states and transitions

• Sample object structures and interactions

– Not programming! Abstracting the real-world.

• Step 2: OOD
– Use the OOA as the core of a solution to:

• User interface design

• Database design

• OO program design

2

05 - OOA CSC407 3

UML

• Unified Modeling Language
– In early 90s, there were many competing

graphical notations all used for OOA.
– Three of the major players got together in

Booch’s company
• Rational Software Corporation

– Booch, Rumbaugh, Jacobson
• Merged their ideas to produce

– UML (public domain)
– Associated tools (mainly Rational Rose)
– Rational Software Process (public domain)
– Acquired other companies (Purify, Quantify, …)

05 - OOA CSC407 4

Uses for UML
• OOA

– A visual language for, in the problem domain,
• capturing knowledge about a subject
• expressing knowledge for the purposes of communication

• OOD
– A visual language for, in the solution space,

• capturing design ideas
• communicating design ideas

• Related, but distinct usages
• Must supplement both with written explanations

3

05 - OOA CSC407 5

This Course and UML
• You will use UML for assignments

– Unfortunately, many of my slides are in OMT,
as is the Design Patterns book.

• UML
– Has its warts

– Good enough when augmented by written
explanation

• Cover only the most useful subset of UML
– Mainly class/object/use case/sequence charts.

05 - OOA CSC407 6

Books on UML
• You must acquire reference materials on UML

– Some of these lecture materials prepared from
• UML In A Nutshell (O’Reilly) by Sinan Si Alhir

– Also
• The Unified Modeling Language User Guide

– Booch et. al.
– Also

• Reference materials off the Web

• Object Modeling books:
– Object Oriented Analysis and Design

• Booch et.al.
– Designing Object-Oriented Software

• Wirfs-Brock et. al.
– Object-Oriented Modeling and Design

• Rumbaugh et. al.
– Object-Oriented Analysis

• Coad and Yourdon

4

05 - OOA CSC407 7

UML Definition
• OMG-endorsed standard (Object Management

Group)
– UML Semantics Document

• “inside-view”

• specifies semantics of constructs

– UML Notation Guide
• “outside-view”

• specifies notation for expressing constructs

– Object Constraint Language specification document
• definition of a (textual) language for expressing logical

constraints

05 - OOA CSC407 8

UML is For
• For Problems

– Specifying
– Visualizing
– Promoting Understanding
– Documenting

• For Problem Solving
– Capturing Attempts
– Communicating Attempts
– Leveraging Knowledge

• For Solutions
– Specifying
– Visualizing
– Evaluating
– Constructing
– Documenting

5

05 - OOA CSC407 9

Parts of UML
• Class Diagrams

– models
• Object Diagrams

– example models
• Use Case Diagrams

– document who can do what in a system
• Sequence Diagrams

– shows interactions between objects used to implement a use case
• Collaboration Diagrams

– same as above, different style
• Statechart Diagrams

– possible states and responses of a class and what transitions them
• Activity Diagrams

– describe the behaviour of a class in response to internal processing
• Component Diagrams

– Organization of and dependencies amongst software implementation
components

• Deployment Diagrams
– Describe the mapping of software implementation components onto processing

nodes

05 - OOA CSC407 10

The World Out There
• The real world is impenetrably complex

– e.g., a complete model of you would include DNA,
behaviour specifications, total history, parents’ history,
influences, …

– for a particular problem, abstracting you as
• last name
• first name
• student number
• course
• final grade

may be enough.

• The Object-Oriented paradigm is one method for
simplifying the world.

6

05 - OOA CSC407 11

Objects [Rumbaugh]
• An object is

A concept, abstraction, or thing
with crisp boundaries and
meaning for the problem at hand

• Objects
– promote understanding of the real world
– provide a practical basis for computer implementation

• Decomposition of a problem into objects depends on
– Judgment
– The nature of the problem being solved

• Not only the domain: two analyses of the same domain will turn out
differently depending upon the kind of programs we wish to
produce.

05 - OOA CSC407 12

Classes
• A class describes a group of objects with similar

properties.
– Class: Instructor

• Object: David Penny

• Object: Matthew Zaleski

– Class: Department
• Object: Department of Computer Science

• Object: Department of Electrical Engineering

Instructor Department

7

05 - OOA CSC407 13

Attributes

• Data values held by the objects of a class

Instructor

name: string
age: integer

weight: integer

05 - OOA CSC407 14

Operations

• A function or a transformation that may be applied to or by
objects in a class.
– Not often used (not often terribly useful) in an OOA

Instructor

name
age

weight

teach
mark

listen_to_complaints

8

05 - OOA CSC407 15

Links and Associations

• The means for establishing relationships among
objects and classes.
– link: a connection between two object instances

– association: a collection of links with common
structure and semantics.

Instructor Department
teaches for

• By default, read association names left to right and top to
bottom (override with ◄ or ►)

05 - OOA CSC407 16

Object Diagrams

• Models instances of things contained in class diagrams.

• Shows a set of objects and their links at a point in time

• Useful preparatory to deciding on class structures.

• Useful in order to better explain more complex class
diagrams by giving instance examples.

i: Instructor
name = “Penny”

j: Instructor
name = “Zaleski”

: Department
name = “DCS”

: Department
name = “ECE”

9

05 - OOA CSC407 17

Multiplicity

• Used to indicate the number of potential instances involved
in the association when the other associated classes are
fixed.

Instructor Department
teaches for

A given instructor
can teach for
potentially many
departments (or
none)

**

A given department
employs zero or
more instructors

05 - OOA CSC407 18

Multiplicities Carry Important Messages

• Used to indicate the number of potential instances involved
in the association when the other associated class is fixed.

Instructor Department
teaches for

1..* 0..1

A given instructor can teach
for at most one department at
a time, or may not be
currently teaching for any
department

All departments
have at least one
instructor, but
probably more

10

05 - OOA CSC407 19

N-Ary Associations

Instructor Department
teaches

1 1

Course

*

A given instructor
teaching for a given
department may
teach zero or more
courses for that
department.

There is exactly
one instructor
teaching a given
course for a given
department

Try to avoid them!

05 - OOA CSC407 20

Attributes on Associations

Instructor Department
teaches for

pay

11

05 - OOA CSC407 21

Aggregation Indicators (Part-Of)

Department

Student

Implied
multiplicity of 1

Window

Frame

Composition
(strong ownership,
coincident lifetime)

Aggregation
(no associated semantics)

05 - OOA CSC407 22

Generalization (a.k.a. Inheritance, is-a)

Shape

Rectangle Circle Triangle

Square

12

05 - OOA CSC407 23

Avoiding Morphing Classes

• Analysis shown below may not be a good choice, as objects
of class 407Instructor may teach other things and different
things next term.

• Avoid situations where objects will need to morph classes

Instructor

407Instructor

05 - OOA CSC407 24

Example
• We are asked to build a system for keeping track

of the time our workers spend working on
customer projects.

• We divide projects into activities, and the
activities into tasks. A task is assigned to a
worker, who could be a salaried worker or an
hourly worker.

• Each task requires a certain skill, and resources
have various skills at various level of expertise.

13

05 - OOA CSC407 25

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Determine attributes
– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

05 - OOA CSC407 26

Example
• We are asked to build a system for keeping track

of the time our workers spend working on
customer projects.

Worker

Customer

Project

Time

assigned to

against
spends *

1*

*

*

**

1 contracts

14

05 - OOA CSC407 27

Example
• We divide projects into activities, and the

activities into tasks. A task is assigned to a
worker, who could be a salaried worker or an
hourly worker.

Project

Worker

SalariedWorker HourlyWorker

Activity
1..*

Task

1..*
*

1
Assignment

Time
spent on ◄

assig
ned to

05 - OOA CSC407 28

Example
• Each task requires a certain skill, and workers

have various skills at various level of expertise.

Worker

Skill

Task

requires ◄
has

SkillLevel

1..*

* *

1..*

15

05 - OOA CSC407 29

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Determine attributes
– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

05 - OOA CSC407 30

Example

Customer

companyName
primeContact
address
phone
fax

Projectcontracts

N.B.
• Project has no attribute in Customer

• association is enough
• no database id for Customer shown

• in an OOA, only include an id if visible to users
• may include such things during database design or OOD

16

05 - OOA CSC407 31

Example

Project

name
description
startDate: date

Customercontracts ◄

Activity

name
description
startDate: date
estHours: int
deliverable: string

Task

05 - OOA CSC407 32

Example

Task

description
startDate: date
estHours: int

Activity

Skill

Worker

requires

assigned to

has

Constraint: A task may only
be assigned to a worker who
has the required skill.

17

05 - OOA CSC407 33

Example

Worker

name: string

SalariedWorker

salary: real
vacationDays: int

HourlyWorker

hourlyWage: real

SkillLevel

level: int
rateMultiplier: real

Task
assigned to

Skill

name: string

has

05 - OOA CSC407 34

Example

Time

start: dateTime
end: dateTime
hours: real

Assignment

Task Workerassigned to

spent on

18

05 - OOA CSC407 35

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Determine attributes
– Draw object diagrams to clarify class diagrams

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

05 - OOA CSC407 36

Object Diagrams

:Time

start: Jan.23, 2002, 8:00
end: Jan.23, 2002, 18:00
hours: 4.2

:Assignment

:Task
description: “develop class diagrams”

:Worker
name: “Matt”

19

05 - OOA CSC407 37

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Draw object diagrams to clarify class diagrams
– Determine attributes

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

05 - OOA CSC407 38

Use Cases

• Actors:
– Represent users of a system

• human users

• other systems

• Use cases
– Represent functionality or services

provided by a system to its users

20

05 - OOA CSC407 39

Use Case Diagrams

Time & Resource Management System
(TRMS)

project
manager

resource
manager

worker

<<actor>>
Backup
System

Manage
Resources

Log Time

Manage
Projects

Administer
System

system
administrator

05 - OOA CSC407 40

Resource Manager Use Cases

resource
manager

Add
Skill

Remove
Skill

Update
Skill

Find
Skill

<<uses>>

<<uses>>

21

05 - OOA CSC407 41

More Resource Manager Use Cases

resource
manager

Add
Worker

Remove
Worker

Update
Worker

Find
Worker

Find
Skill

<<uses>>

Assign Skill
to Worker

Unassign Skill
from Worker

<<extends>>
<<extends>>

<<uses>>

<<uses>>

05 - OOA CSC407 42

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Draw object diagrams to clarify class diagrams
– Determine attributes

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

22

05 - OOA CSC407 43

Sequence Diagram – Assign Skill to Worker Use Case

resource
manager

Res. Mgr. Win: UI :Worker :Skill :SkillLevel

find worker

find skill

assign skill
to worker

find worker
by name

find skill by name

[worker does not currently have skill]
assign skill to worker

05 - OOA CSC407 44

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Draw object diagrams to clarify class diagrams
– Determine attributes

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes

23

05 - OOA CSC407 45

Add Methods

• Read sequence diagrams to identify necessary methods

Worker

name: string

+ static Worker findWorker(String name);
+ static list of Workers getWorkers();

05 - OOA CSC407 46

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);
+ static int getNWorkers();
+ static Worker getWorker(int);

24

05 - OOA CSC407 47

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);

WorkList
Int getNumListElements();
String getListElement(int n);

ListModel
int getNumListElements();
String getListElement(int n);

