
1

07 - OOD CSC407 1

Software Design

• ‘Requirements’ defines
– The goals the system needs to satisfy.

• ‘Specification’ defines
– The externally-observable behaviour of the system.

• ‘Architecture’ defines
– The major system-level components

– Their methods of interaction

– Technology used

• ‘Design’ defines
– how the job will get done

– The code that needs to be written.

– We will focus exclusively on OO design.

07 - OOD CSC407 2

Software Design Is:

• The Process of figuring out:
– How it will get done

– How the classes described in the OOA will work together in
software

– How the links and associations should be implemented.

– How purchased or otherwise acquired components can help

– Improving our estimates of cost and time to market

– Assessing the prerequisites in terms of labor and
infrastructure



2

07 - OOD CSC407 3

A Good Design Process:

• Breaks into phases so progress is measurable.

• Is traceable, namely the decisions made during the design
can be reasonably directly attributed to requirements.

• Cheaper than “just doing it”.

• Reduces risk over “just doing it”.

• Accommodates experimentation to explore truly unknown
issues.

• Helps avoid “death marches” and wild cost overruns by
supporting the setting of reasonable costs and project
schedules.

07 - OOD CSC407 4

Object Oriented Design

• The process of further describing the classes we will build
our system out of in terms of their operations and
attributes.

• Adding classes that aren’t obviously part of the domain,
like abstract classes and interfaces.

• Describing how classes make up components.



3

07 - OOD CSC407 5

Where OOD Fits
• OOA

– Understand the problem domain: Requirements
• independent of any solution systems

– Provide a basis for design
– Use cases describe tasks the users require the system to support

• Architecture
– Decide on technology choices
– Decide on major sub-system breakdowns

• OOD
– Transform OOA according to the architecture into a class-level

design.

• OOP
– Program (according to OO precepts) based on the OOD.

07 - OOD CSC407 6

Where OOD Fits

A

B C

D

OOA

System
Architecture:

A

B C

D

a

x
f

OOP

A

B C

D

a

x
f

OOD



4

07 - OOD CSC407 7

Output of Design

• A document:
– Prose description

– UML
• Classes

– Associations

– Methods

– Attributes

• Object diagrams

• Sequence and collaboration diagrams

• Statechart and activity diagrams

– Formulae & algorithms

• Must relate to the architecture

• Can reference the requirements and specification

• Must be sufficient to allow coding to commence

07 - OOD CSC407 8

Necessary Background

• Experience in OO programming

• Experience in OO analysis

• An understanding of OO concepts
– Encapsulation (data hiding)

– Objects, classes, meta-classes

– Classes v.s. interfaces (types)

– Inheritance, multiple inheritance

– Polymorphism (run-time typing)

– Implementation inheritance v.s. interface inheritance



5

07 - OOD CSC407 9

Goal

• To teach you to create good OO designs.

• What you need:
– Tools (UML notation)

– Methods so you know what steps to go through

– Experience

• How we will teach you:
– UML

– Show you what to do
• but not how!

– Next best thing to experience:
• Other people’s experience

• Design Patterns

07 - OOD CSC407 10

Finding Appropriate Objects

• Hard part about OOD is decomposing a system into
objects.

• Many objects come directly from the
– analysis model (you know what that is)

or from
– the implementation space (databases, files, UIs, IPC, …)

• As well, there are other classes that have no such
counterparts.
– used to generalize what would otherwise be an overly-specific

design

– e.g., use of Strategy
• if you think an algorithm is likely to change

• add classes to implement a “strategy” pattern



6

07 - OOD CSC407 11

Why OOA first?

• OOA class diagrams
– divide the problem space into separate and (by definition) highly

cohesive pieces (classes)

– specify the associations between the pieces

• Design
– Each OOA class is transformed as directly as possible into a design

class

– These classes form the central component and the organizing
principle for the design

– The central classes are highly cohesive leading to good
maintainability

• ease of understanding

• isolation of changes

07 - OOD CSC407 12

OOA is a Prerequisite to many design tasks

OOA

OOD OOP

Data Design

file formats

RDBMS schema

OODB

UI Design screens

dialogs

unifying concepts

Architecture



7

07 - OOD CSC407 13

OOD: The Degenerate Case

• In our assignment, we apply a trivial case of design
– Unrealistic: there is 0 architecture required:

• Program is 1 monolithic program
• Invocation is via a simple command line
• Output is simple sequential ASCII
• Input is excluded from the design
• There is only one operation to perform (plan a release)

– Degenerate, but still not a walk in the park!
– OOD consists of:

• deciding how to implement associations
• deciding how to implement attributes
• deciding which classes should have which methods
• adding additional classes for solution-space concepts

– command line invocation (some kind of Main class)
– file input interface (some kind of DataInput class)
– output interfaces and implementation (DataOutput class)

07 - OOD CSC407 14

Completing the OOA

• So far, we have taught you how to do an OOA Class
diagram.

• A second important part of OOA is enumerating and
elaborating the use cases.

• Moving towards OOD, but still with a foot on the OOA
side, comes:
sequence diagrams for how to implement use cases

assigning operations to OOA classes



8

07 - OOD CSC407 15

Pick Up From Previous Example
• We are asked to build a system for keeping track

of the time our workers spend working on
customer projects.

• We divide projects into activities, and the
activities into tasks. A task is assigned to a
worker, who could be a salaried worker or an
hourly worker.

• Each task requires a certain skill, and resources
have various skills at various level of expertise.

07 - OOD CSC407 16

Steps

• Analyze the written requirements
– Extract nouns: make them classes
– Extract verbs: make them associations
– Draw the OOA UML class diagrams
– Draw object diagrams to clarify class diagrams
– Determine attributes

• Determine the system’s use cases
– Identify Actors
– Identify use case
– Relate use cases

• Draw sequence diagrams
– One per use case
– Use to assign responsibilities to classes

• Add methods to OOA classes



9

07 - OOD CSC407 17

Use Cases

• Actors:
– Represent users of a system

• human users

• other systems

• Use cases
– Represent functionality or services required by

users

– Some uses cases will be assisted by the system
we build.

• Identifying system boundaries.

07 - OOD CSC407 18

Use Case Diagrams

Time & Resource Management System
(TRMS)

project
manager

resource
manager

worker

<<actor>>
Backup
System

Manage
Resources

Log Time

Manage
Projects

Administer
System

system
administrator



10

07 - OOD CSC407 19

Resource Manager Use Cases

resource
manager

Add
Skill

Remove
Skill

Update
Skill

Find
Skill

<<uses>>

<<uses>>

07 - OOD CSC407 20

More Resource Manager Use Cases

resource
manager

Add
Worker

Remove
Worker

Update
Worker

Find
Worker

Find
Skill

<<uses>>

Assign Skill
to Worker

Unassign Skill
from Worker

<<extends>>
<<extends>>

<<uses>>

<<uses>>



11

07 - OOD CSC407 21

Sequence Diagram – Assign Skill to Worker Use Case

resource
manager

Res. Mgr. Win: UI :Worker :Skill :SkillLevel

find worker

find skill

assign skill
to worker

find worker
by name

find skill by name

[worker does not currently have skill]
assign skill to worker

07 - OOD CSC407 22

Add Methods

• Read sequence diagrams to identify necessary methods

Worker

name: string

+ static Worker findWorker(String name);
+ static list of Workers getWorkers();



12

07 - OOD CSC407 23

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);
+ static int getNWorkers();
+ static Worker getWorker(int);

07 - OOD CSC407 24

In Design

• Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);

WorkList
Int getNumListElements();
String getListElement(int n);

ListModel
int getNumListElements();
String getListElement(int n);



13

07 - OOD CSC407 25

OOD: Assigning Methods

• For each system use case draw a sequence diagram
– while doing this, one must decide what operations will be

associated with which classes

• Decide how information is sent and returned
– parameters? (yes, mostly)

– global lookup?

– helper classes?

• Points the way to which attributes and associations are
required, and what the navigability of associations ought to
be.
– In OOA:

• record attribute access (public/private/protected)

• record navigability of associations

07 - OOD CSC407 26

OOD: Implementing Attributes

• Decide which OOA attributes will stay in the OOD, and which are not
required.

• Decide on public/private nature of attributes, and provide an interface
for accessing the (conceptually) public attribute.

• Decide if attributes are stored as part of the class
– May be more efficient to pack values into a big array somewhere and

extract them using accessor methods (or leave in an input file, or OODB,
or compute them on the fly in some way)

• Decide on a type for the attribute:
– depends on programming language
– may need to design new classes for a type

• e.g., Date class, or TransformationMatrix class

• OOA attributes may have multiplicities
– decide how to implement in the language

• simple array
• Vector type
• other



14

07 - OOD CSC407 27

OOD: Implementing Associations

• Decide which OOA associations will stay in the OOD, and which are
not required.

• Decide on navigability (which is the more commonly accessed
direction?)

• Decide on an interface for accessing associations
– adding (?removing?) links, traversing.

– consistency is good

– iterators?, pass entire relationship as a class?, …

• Decide how to implement
– Does association have an association class?

• If so, how will data be stored?

– pointers?, store all in some big central lookup dictionary?, …

– 1-1 association: embedded data?

– 1-*: array or Vector data type?

– *-*: need to invent a new class

07 - OOD CSC407 28

OOD: Implementing Operations

• Most operations will show up in an OOD as methods
– In addition to methods required to modify/access attributes and

associations.

• How will operations be implemented?
– need for additional data members?

• e.g., for cached values, to store the state of iterations, …

– algorithms



15

07 - OOD CSC407 29

Components

• The OOA is transformed into the
Problem Domain Component

of the solution program.
• There are many other components required as well

– though not so many for assignment #1!

• OOA will also form the basis for the design of
– input and output file formats

• model classes straight into XML elements

– persistence design
• relational database tables
• OODB

– UI
• e.g., web pages corresponding with objects

07 - OOD CSC407 30

Components of the Solution
• The precise set of components is architecture dependent

– Problem Domain Component
• a.k.a. the Domain Object Model for the application

– Data Management Component
• how will data be input into the system?
• how will modified data be saved back and under what conditions?
• how will transactions (if required) be done?
• does design need to be re-targetable to other data back-ends?

– Reporting Component
• how will report data be gathered and output?

– Task Management Component
• how will commands be invoked?
• and possibly undone?
• multi-threaded?

– Human Interaction Component
• how will the user interface interact with the rest of the program?
• Re-targetable?

– IPC (Inter-Process Communications) Component
• how will this tier of the solution interact with other tiers?



16

07 - OOD CSC407 31

Problem Domain Component

• Reuse design and programming classes.

• Group problem-domain-specific classes and establish a
protocol by adding generalization classes.

• Accommodate inheritance limitations in implementation
language.

• Add design classes
– Associations

– Run-time modifiability

– …

• Improve performance
– Speed, memory, perceived speed

• Support the data management component

07 - OOD CSC407 32

How to do it?

• Now we know what to do in general terms:
– Start from OOA

– Come up with an architecture (trivial for assignment #1)

– Elaborate use cases → sequence diagrams → add operations

– Design problem domain component

– Design other program components

– Design UI, db schemas, file structures, output formats

• How do we do it?



17

07 - OOD CSC407 33

The Bad News

• There is no step-by-step method to get from the OOA to an OOD.
– At least the OOA gives you the problem domain component in a fairly

direct manner.

– For the rest, you need experience.

OOA

Architecture

OOD OOP

UML

? magic ?

07 - OOD CSC407 34

Experience

• Seasoned designers see the same old problems come up again and
again:
– how to design the classes for my 5th user interface

– how to design the classes to support persistence to a database for the 3rd

time

– how to organize classes for reporting for the 5th time

– …

• Each time a similar problem comes up, designers will typically start
with something that has worked for them before
– but then usually add a wrinkle inspired by something they could have

done better the last time

• Technology keeps changing under our feet, and so our design
experience is quickly made obsolete
– (3-5 year half-life)



18

07 - OOD CSC407 35

Design Patterns

• In an attempt to ensure that design experience is not
– lost

– obsoleted over quickly

experienced designers have contributed design patterns to
the world knowledge base.

• Design Patterns are the core of solutions to commonly
arising problems.

• To help you to move forward on the “magic goes here”
process of design, we will study a number of the basic
design patterns.

07 - OOD CSC407 36

Design Patterns

• Designing good and reusable OO software is hard.
– Mix of specific + general

– Impossible to get it right the first time

• Experienced designers will use solutions that have worked
for them in the past.

• Design patterns
– Systematically

• names,

• explains,

• and evaluates

important, recurring designs in OO systems.



19

07 - OOD CSC407 37

Using Design Patterns

• When faced with a design problem, a good designer will
look for a published pattern that
– solves that problem

– or a closely related one

• Step 1: Understand the pattern

• Step 2: Use the pattern.
– Either re-use it as is, adapting it to the specific situation

• adaptation is always required

– Use it as inspiration to come up with something that
• either fits your problem more precisely

• is a better solution than the published pattern

• Step 3: Write a book about it!

07 - OOD CSC407 38

Genesis

• Christopher Alexander, et. al.
– A Pattern Language

– Oxford University Press, 1977

“Each pattern describes a problem which occurs over and over again
in our environment, and then describes the core of a solution to
that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.”

– Talking about buildings, bridges and towns.

• During the last decade, a “pattern community” has
developed in the field of software design.



20

07 - OOD CSC407 39

Design Patterns in General

• Pattern name
– A word or two that increases our design vocabulary

• Problem
– Describes when to apply the pattern.

• Solution
– Describes the elements that make up the design:

• Responsibilities, relationships, collaborations
• A general arrangement of classes

– Must be adapted for each use

• Consequences
– Results and trade-offs of applying the pattern

• Space & time
• Implementation issues
• Impact on flexibility, extensibility, portability

07 - OOD CSC407 40

Design Patterns Specifically

• Pattern name and classification
• Intent

– What does it do? What’s its rationale

• Also knows as
• Motivation

– A use scenario

• Applicability
– In what situations can you apply it? How can you recognize these situations.

• Structure
– UML

• Participants
• Collaborations
• Consequences

– Trade-offs in applying this pattern

• Implementation
– Any implementation tips when applying the pattern

• Sample code
• Known uses
• Related patterns



21

07 - OOD CSC407 41

Design Pattern Coverage

• In this course, we will cover a limited number of very
basic design patterns.

• This is only a fraction of what a real expert might know.

• However,
– you must know all these basic patterns

– you must study easier patterns so that you understand how to read
patterns, write patterns, and apply patterns

07 - OOD CSC407 42

GofF Design Pattern Space

Object

Class

BehavioralStructuralCreational

Chain of Responsibility

Command

Iterator

Mediator

Memento

Flyweight

Observer

State

Strategy

Visitor

Adapter

Bridge

Composite

Decorator

Façade

Proxy

Abstract Factory

Builder

Prototype

Singleton

Interpreter

Template Method

Adapter

Template Base

Factory methodScope

Purpose



22

07 - OOD CSC407 43

Scope

• Class
– Relationships between classes and their subclasses

– No need to execute any code to set them up

– Static, fixed at compile-time

• Object
– Relies on object pointers.

– Can be changed at run-time, are more dynamic.

07 - OOD CSC407 44

Purpose

• Creational
– Concerns the process of object creation

• Structural
– Concerns the relationships between classes and objects

• Behavioral
– Concerns the ways objects and classes distribute responsibility for

performing some task.

• Storage
– Concerns the ways objects can be made persistent.

• Distributed
– Concerns the ways server objects are represented on a client.



23

07 - OOD CSC407 45

Creational Patterns

Class
– Factory Method

• Define an interface for creating an object, but let subclasses decide which
class to instantiate.

Object
– Abstract Factory

• Provide an interface for creating families of related objects without specifying
their concrete classes.

– Builder
• Separate the construction of a complex object from its representation so that

the same construction process can create different representations.

– Prototype
• Specify the kinds of objects to create using a prototypical instance, and create

new objects by copying this prototype.

– Singleton
• Ensure a class only has one instance, and provide a global point of access to it.

07 - OOD CSC407 46

Structural Patterns
Class

– Adapter
• Convert the interface of a class into another interface clients expect.

– Template Base
• Implement associations using template base classes

Object
– Adapter

• Convert the interface of a class into another interface clients expect.

– Bridge
• Decouple an abstraction from its implementation so that the two can vary

independently (run-time inheritance)

– Composite
• Compose objects into tree structures to represent part-whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly.



24

07 - OOD CSC407 47

Structural Patterns (cont’d)

• Object (cont’d)
– Decorator

• Attach additional responsibilities to an object dynamically.

– Façade
• Provide a unified interface to a set of interfaces in a subsystem.

– Flyweight
• Use sharing to support large numbers of fine-grained objects

efficiently.

– Proxy
• Provide a surrogate or placeholder for another object to control access

to it.

07 - OOD CSC407 48

Behavioral Patterns

• Class
– Interpreter

• Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the language.

– Template Method
• Let subclasses redefine certain steps of an algorithm without changing the

algorithm's structure.

• Object
– Chain of Responsibility

• Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request.

– Command
• Encapsulate a request as an object.

– Iterator
• Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

– Mediator
• Define an object that encapsulates how a set of objects interact.



25

07 - OOD CSC407 49

Behavioral Patterns (cont’d)

Object (cont’d)
– Memento

• Capture and externalize an object's internal state so that the object can
be restored to this state later.

– Observer
• When one object changes state, all its dependents are notified and

updated automatically.

– State
• Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.

– Strategy
• Define a family of algorithms, encapsulate each one, and make them

interchangeable.

– Visitor
• Represent an operation to be performed on the elements of an object

structure.

07 - OOD CSC407 50

Relationships Between Patterns


