Evolution of Object-Oriented Development Methods

» Midto late 1980s
— Object-Oriented Languages (esp. C++) were very much in vogue
— However, there was little guidance on how to divide a problem
into OO classes.

* 1990: Object Modeling
— All at around the same time, many were borrowing an argument
from structured design:

» The best organization for a software systemsis one that is cohesive in
the problem domain, not in the solution space

— Tendsto isolate changes
— Tends to make the program easier to understand
— Developed methods for applying this concept to OO design.
* Rumbaugh, Coad, Wirfs-Brock, Booch, Jacobson ...

05 - O0A CsCc407 1

Object Modeling Method

o Step 1. OOA
— Analyze the problem domain

* ldentify problem domain classes and relationships between
classes

* ldentify attributes and methods
* ldentify states and transitions
« Sample object structures and interactions

— Not programming! Abstracting the real-world.
o Step 2: OOD
— Use the OOA as the core of a solution to:
e User interface design
« Database design
e OO program design
05- O0A CSC407 2

UML

» Unified Modeling Language
— In early 90s, there were many competing
graphical notations all used for OOA.
— Three of the major players got together in
Booch's company
* Rational Software Corporation
— Booch, Rumbaugh, Jacobson
» Merged their ideas to produce
—UML (public domain)
— Associated tools (mainly Rational Rose)
— Rational Software Process (public domain)
— Acquired other companies (Purify, Quantify, ...)

05 - O0A CsCc407 3

Usesfor UML

« OOA

— A visual language for, in the problem domain,
« capturing knowledge about a subject
 expressing knowledge for the purposes of communication

« OOD
— A visual language for, in the solution space,
* capturing design ideas
e communicating design ideas

Related, but distinct usages
Must supplement both with written explanations

05 - O0A CSsc407 4

This Course and UML

Y ou will use UML for assignments

— Unfortunately, many of my slidesarein OMT,
asisthe Design Patterns book.

UML
— Has its warts

— Good enough when augmented by written
explanation

Cover only the most useful subset of UML
— Mainly class/object/use case/sequence charts.

05 - O0A CsCc407

Books on UML

* You must acquire reference materials on UML
— Some of these lecture materials prepared from
« UML In A Nutshell (O’ Reilly) by Sinan Si Alhir
— Also
» The Unified Modeling Language User Guide
— Booch et. al.
— Also
» Reference materials off the Web
Object Modeling books:
— Object Oriented Analysis and Design
* Boochet.al.
— Designing Object-Oriented Software
* Wirfs-Brock et. al.
— Object-Oriented Modeling and Design
* Rumbaugh et. al.
— Object-Oriented Analysis
» Coad and Y ourdon
05- O0A CSC407

UML Definition

* OMG-endorsed standard (Object Management
Group)

— UML Semantics Document
e “inside-view”
* gpecifies semantics of constructs

— UML Notation Guide
* “outside-view”
« gpecifies notation for expressing constructs

— Object Constraint Language specification document
« definition of a (textual) language for expressing logical

constraints
05 - OOA CSsc407
UML is For

 For Problems For Solutions
— Specifying — Specifying
— Visualizing — Visuaizing
— Promoting Understanding — Evaluating
— Documenting — Constructing

— Documenting
 For Problem Solving
— Capturing Attempts
— Communicating Attempts
— Leveraging Knowledge

05 - O0A CSsc407

Parts of UML

Class Diagrams

— models
Object Diagrams

— example models
Use Case Diagrams

— document who can do what in a system
Sequence Diagrams

— shows interactions between objects used to implement a use case
Collaboration Diagrams

— sameas above, different style
Statechart Diagrams

— possible states and responses of a class and what transitions them
Activity Diagrams

— describe the behaviour of a class in response to internal processing
Component Diagrams

— Organization of and dependencies amongst software implementation
components

Deployment Diagrams

- Dedscri be the mapping of software implementation components onto processing
nodes
05 - OOA CSC407 9

The World Out There

» Therea world isimpenetrably complex

— e.g., acomplete model of you would include DNA,
behaviour specifications, total history, parents’ history,
influences, ...

— for aparticular problem, abstracting you as

¢ last name

* first name

* student number

* course

« final grade
may be enough.

» The Object-Oriented paradigm is one method for
simplifying the world.

05 - O0A CSC407 10

Objects [Rumbaugh]

* Anobjectis
A concept, abstraction, or thing
with crisp boundaries and
meaning for the problem at hand
* Objects
— promote understanding of the real world
— provide apractical basis for computer implementation

» Decomposition of a problem into objects depends on
— Judgment

— The nature of the problem being solved

 Not only the domain: two analyses of the same domain will turn out
differently depending upon the kind of programs we wish to

produce.
05- O0A CSC407 11
Classes
» A class describes agroup of objects with similar
properties.

— Class: Instructor
» Object: David Penny
* Object: Matthew Zaleski
— Class. Department
» Object: Department of Computer Science
« Object: Department of Electrical Engineering

Instructor Department

05 - O0A CSC407 12

Attributes

» Datavalues held by the objects of aclass

Instructor

name: string

age: integer
weight: integer

05 - O0A CSsCc407 13

Operations

A function or atransformation that may be applied to or by
objectsin aclass.
— Not often used (not often terribly useful) in an OOA

Instructor

name

age
weight

teach
mark
listen to _complaintg

05 - O0A CSC407 14

Links and Associations

» The means for establishing relationships among
objects and classes.
— link: a connection between two object instances

— association: acollection of links with common
structure and semantics.

teaches for
Instructor Department

» By default, read association names left to right and top to
bottom (override with < or »)

05 - O0A CSsCc407 15

Object Diagrams

Models instances of things contained in class diagrams.
» Shows aset of objects and their links at a point in time
» Useful preparatory to deciding on class structures.

Useful in order to better explain more complex class
diagrams by giving instance examples.

. Department
i: Instructor name = “DCS’
name = “Penny”
: Department
|: Instructor — T
- name = “ECE
name = “Zaeski”

05 - O0A CSC407 16

Multiplicity

» Used to indicate the number of potential instances involved
in the association when the other associated classes are

fixed.
teaches for

Instructor & — Department
A given instructor A given department
can teach for employs zero or
potentially many more instructors
departments (or
none)

05 - OOA CSsc407 17

Multiplicities Carry Important M essages

» Used to indicate the number of potential instances involved
in the association when the other associated class is fixed.

teaches for
Instructor 1" 01 Department

A given instructor can teach
for at most one department at
atime, or may not be
currently teaching for any
department

All departments
have at least one
instructor, but
probably more

05 - O0A CSC407 18

Instructor

N-Ary Associations

teaches
Ve N

There is exactly
one instructor
teaching agiven
course for agiven
department

Department

A given instructor

teaching f [
, 4 texchingforagiven

Course

Try to avoid them!

05 - O0A

CSsCc407

department may
teach zero or more
courses for that
department.

19

Attributes on Associations

pay

Instructor

teaches for

05 - OOA

CSC407

Department

20

10

Aggregation Indicators (Part-Of)

Department Window

[e

multiplicity of 1

Student Frame
Aggregation Composition
(no associated semantics) (strong ownership,
coincident lifetime)
05- O0A CSC407 21

Generalization (a.k.a. Inheritance, is-a)

Shape
JAN
I I
Rectangle Circle Triangle
Square
05- O0A CSC407 22

11

Avoiding Morphing Classes

» Analysis shown below may not be a good choice, as objects
of class 407Instructor may teach other things and different
things next term.

» Avoid situations where objects will need to morph classes

Instructor

i

407Instructor

05 - O0A CSsCc407 23

Example

» We are asked to build a system for keeping track
of the time our workers spend working on
customer projects.

» Wedivide projects into activities, and the
activities into tasks. A task isassigned to a
worker, who could be a salaried worker or an
hourly worker.

» Eachtask requires a certain skill, and resources
have various skills at various level of expertise.

05 - O0A CSC407 24

12

05-

Steps

Analyze the written requirements

— Extract nouns: make them classes
Extract verbs: make them associations
Draw the OOA UML class diagrams
Determine attributes

— Draw object diagramsto clarify class diagrams
Determine the system’ s use cases

— Identify Actors

— Identify use case

— Relate use cases

Draw sequence diagrams

— One per use case

— Useto assign responsibilities to classes
Add methods to OOA classes

OO0A CSsCc407 25

05-

Example

We are asked to build a system for keeping track
of the time our workers spend working on
customer projects.

Customer
Worker K 1
contracts
1 /7@0,
spenfls 4 :
. Project
Time -
OOA CSC407 26

13

Example

» Wedivide projectsinto activities, and the
activities into tasks. A task isassigned to a
worker, who could be a salaried worker or an

hourly worker.

spenton 4
Project
Tl..* Assignment .
Activity Wc;rﬁker
3
Tl__* &9 I
Task SalariedWorker HourlyWorker
05- O0A CSC407 27
Example

» Each task requires a certain skill, and workers
have various skills at various level of expertise.

05 - OOA

Worker Task
has . 1.*
- skll requires <
SkillLevel
CSC407

28

14

Steps

Analyze the written requirements
— Extract nouns: make them classes
Extract verbs: make them associations
Draw the OOA UML class diagrams
— Determine attributes
— Draw object diagrams to clarify class diagrams
» Determine the system'’s use cases
— ldentify Actors
— ldentify use case
— Relate use cases

» Draw sequence diagrams
— One per use case
— Useto assign responsibilities to classes

Add methods to OOA classes

05 - OOA CSsc407 29
Example
Customer
companyName
primeContact CoNtracts ™ proect
address
phone
fax
N.B.

* Project has no attribute in Customer
* association is enough
* no database id for Customer shown
*inan OOA, only include an id if visible to users
» may include such things during database design or OOD

05 - OOA CSC407 30

15

Example

Project

name
description
startDate: date

contracts «

Customer

T

Activity

name

description
startDate: date
estHours: int
deliverable: string

Task

05 - O0A

CSsCc407 31

Activity

T

Task

description
startDate; date
estHours: int

Example

Constraint: A task may only
be assigned to aworker who
has the required skill.

requires

Skill

assigned o

.

has

Worker

05 - OOA

CSC407 32

16

SkillLevel has Skill
level-int e name: string
rateMultiplier: real

: Worker
Task assigned to .
name: string
SalariedWorker HourlyWorker
salary: real hourlyWage: real
vacationDays: int

05 - O0A

CSsCc407

33

Example

Time

start: dateTime
end: dateTime
hours: red

spent on

Assignment

Task

05 - OOA

assigned to

CSC407

Worker

17

05-

Steps

Analyze the written requirements

— Extract nouns: make them classes

Determine attributes

Extract verbs. make them associations
Draw the OOA UML class diagrams

— Draw object diagrams to clarify class diagrams

Determine the system’ s use cases

— Identify Actors
— Identify use case
— Relate use cases
Draw sequence diagrams
— One per use case

— Useto assign responsibilities to classes

Add methods to OOA classes

OO0A CSsCc407

35

Object Diagrams

‘Time

hours: 4.2

start: Jan.23, 2002, 8:00
end: Jan.23, 2002, 18:00

Assignment

‘Task

‘Worker

description: “develop class diagrams”

05-

OO0A CSC407

name: “Matt”

36

18

Steps

» Anayze the written requirements
Extract nouns: make them classes
Extract verbs: make them associations
Draw the OOA UML class diagrams
Draw object diagrams to clarify class diagrams
Determine attributes
» Determine the system’s use cases

— Identify Actors

— Identify use case

— Relate use cases
» Draw sequence diagrams

— One per use case

— Useto assign responsibilities to classes

* Add methods to OOA classes

05 - O0A CSsCc407 37

Use Cases

Actors.

— Represent users of a system
* human users
e other systems
e Use cases

— Represent functionality or services
provided by asystem to its users

05 - OOA CSC407 38

19

Use Case Diagrams

Time & Resource Management System
(TRMS)

;(); E— Manage
resource Resources o
manager Manage .
Projects project
manager

\ @
worker

m <<actor>>
System Backup
U Sygem

system
administrator
05- O0A Ccsc4o07 39
Resource Manager Use Cases
resource
manager
05- O0A CsCao7 ©

20

More Resource Manager Use Cases

resource
manager

<<USES

05 - O0A CSsCc407 %

41

Steps

Analyze the written requirements
Extract nouns: make them classes
Extract verbs: make them associations
Draw the OOA UML class diagrams
Draw object diagramsto clarify class diagrams
— Determine attributes
» Determine the system'’s use cases
— Identify Actors
— Identify use case
— Relate use cases
» Draw sequence diagrams
— One per use case
— Useto assign responsibilities to classes
Add methods to OOA classes

05 - OOA CSC407

42

21

Sequence Diagram — Assign Skill to Worker Use Case

resource Res. Mgr. Win: Ul

:Worker :Skill [SkillLevel

manager

[1_find worker .__

find skill >

find worker
by name ’ |]

find skill by natne ’[]

05 - O0A CSsCc407

assign skill
to worker [worker does hot currently have skill]
assign sKill to:worker >|:|

Steps

Extract nouns. make them classes

— Determine attributes

Analyze the written requirements

Extract verbs: make them associations
Draw the OOA UML class diagrams
Draw object diagramsto clarify class diagrams

» Determine the system'’s use cases

— Identify Actors
— Identify use case
— Relate use cases
» Draw sequence diagrams
— One per use case

— Useto assign responsibilities to classes

Add methods to OOA classes

05 - OOA CSC407

22

Add Methods

» Read sequence diagrams to identify necessary methods

Worker

name: string

+ static Worker findWorker(String name);
+ static list of Workers getWorkers();

05 - O0A CSsCc407 45

In Design

» Bring methods closer to implementation

Worker

name: string

+ static Worker findWorker(String name);
+ static int getNWorkers();
+ static Worker getWorker(int);

05 - O0A CSC407 46

23

In Design

» Bring methods closer to implementation

WorkList

Int getNumL.istElements();
String getListElement(int n);

ListModel

SA

int getNumListElements();
String getListElement(int n);

Worker

name: string

+ static Worker findWorker(String name);

05 - O0A

CSsCc407

47

24

