
1

03 - Parnas CSC407 1

A Sketchy Evolution of Software Design

• 1960s
– Structured Programming

• (“Goto Considered Harmful”, E.W.Dijkstra)
• Emerged from considerations of formally specifying the semantics of

programming languages, and proving programs satisfy a predicate.
• Adopted into programming languages because it’s a better way to think about

programming

• 1970s
– Structured Design

• Methodology/guidelines for dividing programs into subroutines.

• 1980s
– Modular (object-based) programming

• Ada, Modula, Euclid, …
• Grouping of sub-routines into modules with data.

• 1990s
– Object-Oriented Languages started being commonly used
– Object-Oriented Analysis and Design for guidance.

03 - Parnas CSC407 2

Three Papers by David Parnas

– “On the Criteria To Be Used in Decomposing Systems
into Modules”

• Comm. ACM 15, 12 (Dec. 1972), 1053-1058

– “On a ‘Buzzword’: Hierarchical Structure”
• IFIP Congress ‘74.

North Holland Publishing Company, 1974 pp. 336-339

– “On the design and development of program families”
• IEEE Trans. On SE., vol. SE-2, pp.1-9, Mar. 1976



2

03 - Parnas CSC407 3

Module Structure

• David Parnas
– “On the Criteria To Be Used in Decomposing Systems into

Modules”
• Comm. ACM 15, 12 (Dec. 1972), 1053-1058

• Discusses “modularization”
– Module = a collection of subroutines and data elements
– Critique of Procedural Design

• Pointing the way to object-based and OO design.

• Describes two ways to modularize a program that
generates KWIC (Key Word in Context) indices.
– Modularization 1

• Based on the sequence of steps to perform

– Modularization 2
• Based on the principle of “information hiding”

03 - Parnas CSC407 4

KWIC

• Input
Designing Software for Ease of Construction
Figs are Good

• Output
are Good Figs

for Ease of Construction Designing Software

of Construction Designing Software for Ease

Construction Designing Software for Ease of

Designing Software for Ease of Construction

Ease of Construction Designing Software for

Figs are Good

Good Figs are

Software for Ease of Construction Designing



3

03 - Parnas CSC407 5

KWIC Modularization 1

Master control

Input medium Output medium

Characters Index
Alphabetized

Index

Input Circular Shift Alphabetizer Output

03 - Parnas CSC407 6

KWIC Modularization 2

Master control

Input medium Output medium

Input Output

Lines

se
tc

(i,
w

,j,
c)

ge
tc

(i,
w

,j)

nW
or

ds
(i)

Circular Shifter

ge
tc

(i,
w

,j)

nW
or

ds
(i)

cs
se

tu
p

Alphabetizer

do
A

lp
h

Ith
(i)



4

03 - Parnas CSC407 7

Criteria for decomposition

• Modularization 1
– Each major step in the processing was a module

• Modularization 2
– Information hiding

• Each module has one or more "secrets”

• Each module is characterized by its knowledge of design decisions
which it hides from all others.

– Lines
• how characters/lines are stored

– Circular Shifter
• algorithm for shifting, storage for shifts

– Alphabetizer
• algorithm for alpha, laziness of alpha

03 - Parnas CSC407 8

General Comparison

• General
– Note: both systems might share the same data structures and the

same algorithms

– Differences are in the way they are divided into work assignments

– Systems are substantially different even if identical in the runnable
representation

• Possible because the runnable representation is used only for running

• Other representations are used for

– Changing

– Documenting

– Understanding

– …



5

03 - Parnas CSC407 9

Changeability Comparison

• Design decisions that may change
– Input format

• (1, 1)

– All lines stored in memory
• (all, 1)

– Pack characters 4 to a word
• (all, 1)

– Make an index for circular shifts rather than store them
• (3,1)

– Alphabetize once, rather than either
– Search for each item as needed

– Partially alphabetize, partially search

• (3,1)

03 - Parnas CSC407 10

Independent Development

• Modularization 1
– Must design all data structures before parallel work can proceed

– Complex descriptions needed

• Modularization 2
– Must design interfaces before parallel work can begin

– Simple descriptions only

• Comprehensibility
– Modularization 2 is better

• Parnas subjective judgment



6

03 - Parnas CSC407 11

Hierarchical Structure

• David Parnas
– “On a ‘Buzzword’: Hierarchical Structure”

• IFIP Congress ‘74.
North Holland Publishing Company, 1974 pp. 336-339

• Earliest abstract discussion of what has become
known as “software architecture”
– Debunks prevalent notion Hierarchical == good
– Seeks to demonstrate that the term is used for many

different things, often at the same time.

– Context is OS design
• T.H.E, MULTICS, RC4000

03 - Parnas CSC407 12

Types of Hierarchy

• Program Hierarchy
– Calls hierarchy
– Only useful when humans are working with the system

• E.g., inlines as semantically equivalent to calls

• Process Hierarchy
– Often mixed-up with other hierarchies
– E.g., “Give works to” in the T.H.E system.

• Resource Allocation Hierarchy
– RC4000

• Protection Hierarchy
– MULTICS

• Module Hierarchy
– Procedure or module part-of a higher-level module



7

03 - Parnas CSC407 13

Program Families

• David Parnas
– “On the design and development of program families”

• IEEE Trans. On SE., vol. SE-2, pp.1-9, Mar. 1976

• Family of Programs
– When it is worthwhile to

• First study common properties

• Then determine special properties of each family member

• Basis for
– Designing for change

– Reuse libraries

– OO Design

03 - Parnas CSC407 14

Methods

• Classical method: Sequential completion
– One member of the family developed completely
– Modify to get the next
– And so on

• New techniques
– Develop to an intermediate stage
– Different family members will proceed with different design

decisions from the intermediate stage onwards
– Must represent the intermediate stages:

• Stepwise refinement based
– Postpone implementation of operand types and operators until

later.
• Module based

– Specify module interface
– Substitute different implementations


