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A Sketchy Evolution of Software Design

• 1960s
– Structured Programming

• (“Goto Considered Harmful”, E.W.Dijkstra)
• Emerged from considerations of formally specifying the semantics of

programming languages, and proving programs satisfy a predicate.
• Adopted into programming languages because it’s a better way to think about

programming

• 1970s
– Structured Design

• Methodology/guidelines for dividing programs into subroutines.

• 1980s
– Modular (object-based) programming

• Ada, Modula, Euclid, …
• Grouping of sub-routines into modules with data.

• 1990s
– Object-Oriented Languages started being commonly used
– Object-Oriented Analysis and Design for guidance.
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Three Papers by David Parnas

– “On the Criteria To Be Used in Decomposing Systems
into Modules”

• Comm. ACM 15, 12 (Dec. 1972), 1053-1058

– “On a ‘Buzzword’: Hierarchical Structure”
• IFIP Congress ‘74.

North Holland Publishing Company, 1974 pp. 336-339

– “On the design and development of program families”
• IEEE Trans. On SE., vol. SE-2, pp.1-9, Mar. 1976
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Module Structure

• David Parnas
– “On the Criteria To Be Used in Decomposing Systems into

Modules”
• Comm. ACM 15, 12 (Dec. 1972), 1053-1058

• Discusses “modularization”
– Module = a collection of subroutines and data elements
– Critique of Procedural Design

• Pointing the way to object-based and OO design.

• Describes two ways to modularize a program that
generates KWIC (Key Word in Context) indices.
– Modularization 1

• Based on the sequence of steps to perform

– Modularization 2
• Based on the principle of “information hiding”
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KWIC Modularization 1
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KWIC Modularization 2
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Criteria for decomposition

• Modularization 1
– Each major step in the processing was a module

• Modularization 2
– Information hiding

• Each module has one or more "secrets”

• Each module is characterized by its knowledge of design decisions
which it hides from all others.

– Lines
• how characters/lines are stored

– Circular Shifter
• algorithm for shifting, storage for shifts

– Alphabetizer
• algorithm for alpha, laziness of alpha
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General Comparison

• General
– Note: both systems might share the same data structures and the

same algorithms

– Differences are in the way they are divided into work assignments

– Systems are substantially different even if identical in the runnable
representation

• Possible because the runnable representation is used only for running

• Other representations are used for

– Changing

– Documenting

– Understanding

– …
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Changeability Comparison

• Design decisions that may change
– Input format

• (1, 1)

– All lines stored in memory
• (all, 1)

– Pack characters 4 to a word
• (all, 1)

– Make an index for circular shifts rather than store them
• (3,1)

– Alphabetize once, rather than either
– Search for each item as needed

– Partially alphabetize, partially search

• (3,1)

03 - Parnas CSC407 10

Independent Development

• Modularization 1
– Must design all data structures before parallel work can proceed

– Complex descriptions needed

• Modularization 2
– Must design interfaces before parallel work can begin

– Simple descriptions only

• Comprehensibility
– Modularization 2 is better

• Parnas subjective judgment
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Hierarchical Structure

• David Parnas
– “On a ‘Buzzword’: Hierarchical Structure”

• IFIP Congress ‘74.
North Holland Publishing Company, 1974 pp. 336-339

• Earliest abstract discussion of what has become
known as “software architecture”
– Debunks prevalent notion Hierarchical == good
– Seeks to demonstrate that the term is used for many

different things, often at the same time.

– Context is OS design
• T.H.E, MULTICS, RC4000
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Types of Hierarchy

• Program Hierarchy
– Calls hierarchy
– Only useful when humans are working with the system

• E.g., inlines as semantically equivalent to calls

• Process Hierarchy
– Often mixed-up with other hierarchies
– E.g., “Give works to” in the T.H.E system.

• Resource Allocation Hierarchy
– RC4000

• Protection Hierarchy
– MULTICS

• Module Hierarchy
– Procedure or module part-of a higher-level module
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Program Families

• David Parnas
– “On the design and development of program families”

• IEEE Trans. On SE., vol. SE-2, pp.1-9, Mar. 1976

• Family of Programs
– When it is worthwhile to

• First study common properties

• Then determine special properties of each family member

• Basis for
– Designing for change

– Reuse libraries

– OO Design
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Methods

• Classical method: Sequential completion
– One member of the family developed completely
– Modify to get the next
– And so on

• New techniques
– Develop to an intermediate stage
– Different family members will proceed with different design

decisions from the intermediate stage onwards
– Must represent the intermediate stages:

• Stepwise refinement based
– Postpone implementation of operand types and operators until

later.
• Module based

– Specify module interface
– Substitute different implementations


