
1

40 - CGI CSC309 1

CGI An Example
go to http://127.0.0.1/cgi-bin/hello.pl This

causes the execution of the perl script
hello.pl

Note: Although our examples use Perl, CGI
scripts can be written in any language Perl,
C, C++, VB, Python, SmallTalk, Assembly,
Lisp etc...

40 - CGI CSC309 2

CGI Model (Pieces)

• Clients: web browsers ie IE, Netscape
• Web Server (WS): Apache, Netscape

Enterprise, IIS
• CGI Protocol: Specifying what a

request/responce looks like
• Handler programs: Any executable

residing on the web server

2

40 - CGI CSC309 3

Interaction
• Client makes a request by specifying a

URL+additional info.
• WS (in the URL) receives the request.
• WS identifies the request as a CGI request
• WS locates the program corresponding to the

request.
• WS starts up the handling program (heavy weight

process creation!!)
• WS feeds request parameters to handler

(through stdin or environment variables).

40 - CGI CSC309 4

Interaction (continued)

• Handler executes
• Output of the handler is sent via

stdout back to the webserver for
rerouting back to the requesting web
browser.

• Output is typically a web page.
• Handler terminates.

3

40 - CGI CSC309 5

Interaction (continued)

40 - CGI CSC309 6

CGI

• Together the HTTP server and the CGI
script are responsible for servicing a client
request by sending back responses.

• The client request comprises
• a Universal Resource Identifier (URI)
• a request method
• additional information about the request

provided by the transport mechanism

4

40 - CGI CSC309 7

CGI

• CGI defines the abstract parameters,
known as metavariables, which
describe the client's request.
Together with a concrete
programmer interface this specifies a
platform-independent interface
between the script and the HTTP
server.

40 - CGI CSC309 8

Script URI

• The Script-URI has the syntax of generic-RL as
defined in section 2.1 of RFC 1808

<scheme>://<host><port>/<path>?<query>

• The various components of the Script-URI are
defined by some of the metavariables (see
Metavariables below);

5

40 - CGI CSC309 9

Script URI (more detail)
script-uri = protocol "://" SERVER_NAME
":" SERVER_PORT enc-script enc-path-
info "?" QUERY_STRING

where 'protocol' is obtained from
SERVER_PROTOCOL,

'enc-script' is a URL-encoded version of
SCRIPT_NAME

'enc-path-info' is a URL-encoded version of
PATH_INFO

40 - CGI CSC309 10

Script URI (example)
script-uri = protocol "://" SERVER_NAME ":"

SERVER_PORT enc-script enc-path-info "?"
QUERY_STRING

http://finance.yahoo.com/q?s=NT.TO&d=t

Item Value
protocol http
SERVER_NAME finance.yahoo.com
SERVER_PORT not specified (default to 80)
enc-script q
enc-path-info not specified
QUERY_STRING s=NT.TO&d=t

6

40 - CGI CSC309 11

Data Input to the CGI
Script

• Information about a request comes
from
– the request header
– associated message-body.

• Servers MUST make portions of this
information available to scripts.

40 - CGI CSC309 12

Request Metadata
(Metavariables)

AUTH_TYPE

CONTENT_LENGTH

CONTENT_TYPE

GATEWAY_INTERFACE

PATH_INFO

PATH_TRANSLATED

QUERY_STRING

REMOTE_ADDR

REMOTE_HOST

REMOTE_IDENT

REMOTE_USER

REQUEST_METHOD

SCRIPT_NAME

SERVER_NAME

SERVER_PORT

SERVER_PROTOCOL

SERVER_SOFTWARE

7

40 - CGI CSC309 13

GET (part of http-spec)
• Default method for communicating query information to the

script

• Simply specify the URL as above

• Don't need a form

• Everything after the ? in the URL appears in the
QUERY_STRING environment variable

• Limited amount of information can be passed this way

• URL may have a length restriction on the server

• Environment variable may be restricted

40 - CGI CSC309 14

GET (part of http-spec)
• You must do your own URL-Encoding (see below). URL-

Encoding in this case is up to the web page designer and
script writer. It is a good idea to conform to standards (see
below).

• In forms

• Can specify method=get

• Form data will be URL-Encoded (see below) by the
browser before sent to the server.

• QUERY_STRING is visible in the URL (at the browser) and
appear in server logs (which are sometimes public).

8

40 - CGI CSC309 15

POST (part of http-spec)
• In forms

• Can specify method=post
• Form data will be URL-Encoded (see below) by the

browser before sent to the server.

• Can not be used from URL
• Form data appears in the scripts stdin (standard

in)
• Can still populate QUERY_STRING using the URL
• Arbitrarily long form data can be communicated

(some browsers may have limits (ie 7k)).
• Form data is not visible in the URL, usually does

not appear in server logs.

40 - CGI CSC309 16

URL-Encoding
• Standard way to send many name/value pairs in a

single string (QUERY_STRING or stdin)
• Specified in RFC 2396 'Uniform Resource

Identifiers (URI): Generic Syntax'
• Why encode?

• Prevent confusion between CGI URL and HTML tags
• Can think of a CGI script as a function, send arguments

by specifying name/value pairs.
• Forms consist of many elements, usually want all available

to the script so need a way to pack and unpack them into
a single string (QUERY_STRING or stdin)

• Use a standard set of libraries to pack and unpack cgi
arguments

9

40 - CGI CSC309 17

Rules of URL-Encoding
• All submitted form data will be concatenated into a single

string of ampersand (&) separated name=value pairs, one pair
for each form tag. Like this:
form_tag_name_1=value_1&form_tag_name_2=value_2
&...

• Spaces in a name or value are replaced by a plus (+) sign.
This is because url's cannot have spaces in them and under
METHOD=GET, the form data is supplied in the query string in
the url.

• Other characters (ie, =, &, +) are replaced by a percent sign
(%) followed by the two-digit hexadecimal equivalent of the
punctuation character in the Ascii character set.
– Otherwise, it would be hard to distinguish these characters

inside a form variable from those between the form variables in
the first rule above.

40 - CGI CSC309 18

Hello Example
Follow http://127.0.0.1/cgi-bin/hello.pl
Taking this one step at a time:
Using the command prompt, telnet to

127.0.0.1, port 80 and issue the following
HTTP Get

get /cgi-bin/hello.pl http/1.0

This executes the script hello.pl. The
transcript is here Notice the http header
that comes back to the client!

10

40 - CGI CSC309 19

Environment Example
Follow http://127.0.0.1/cgi-

bin/environment.pl?var1=val1&var2=val2&var3=val3

Taking this one step at a time
telnet to 127.0.0.1, port 80 and issue the following

HTTP Get

get /cgi-
bin/environment.pl?var1=val1&var2=val2&var3=val3
http/1.0

This executes the script environment.pl which prints its
environment. The transcript is here Notice where
the query variables end up?

40 - CGI CSC309 20

Form Example

See form.html
Notes:

• Observe the url-encoded form variables
in the GET form

• Observe stdin in the POST form
• Observe the hidden variables in both

forms

11

40 - CGI CSC309 21

Output from the CGI Script
• Standard output (stdout) is redirected to the webserver for

relay to the client (browser)
• May or may not include a header
• Non-Parsed Header Output

• Output not parsed by the web server
• consists of a complete http response message.

• Parsed Header Output: Server creates a complete http
response
Consists of:
header <-see below

<-blank line separating header/body
body <-message body (optionally null)

where header consists of HTTP-fields (relayed to the client)
as well as the additional CGI-Fields (interpreted by the
server)

40 - CGI CSC309 22

Parsed Header Output
Header Explanation
Content-type MIME Type
Location specify to the server that the

cript is returning a reference to a
document. Causes the webserver to
generate a redirect. A browser may
choose to load the specified page.

Status Becomes the status code in the servers
responce message extension-header
additional fields recognized by the server

12

40 - CGI CSC309 23

Parsed Header Example
Content-type: text/html (source webPage.pl)
Content-type: image/jpeg (source getImage.pl)
Location http://127.0.0.1/cgi-bin/redirect.pl (source

redirect.pl)
Note: This could have redirected to yahoo.com or
any other URL.

Taking this one step at a time
telnet to 127.0.0.1, port 80 and issue the following
HTTP Get

get /cgi-bin/redirect.pl http/1.0

The transcript is here

