
1

30 - http CSC309 1

Protocols and HTTP,
Web Browsers and Servers,

Caching, DNS

first some background on
network-based applications …

30 - http CSC309 2

how much
is this?

What’s a protocol?
human protocol network protocol:

hi
hello

$50

TCP connection
request

TCP connection
reply.
Get http://www.toronto.edu/index.html

<file>
time

I’ll give
you $40

2

30 - http CSC309 3

What’s a protocol?
Human Protocols:

“thank you … you’re
welcome”
“hello … hi … my name is
… pleased to meet you”
Price haggling

… specific msgs sent
… specific actions taken

when msgs received
… may be context or

culture sensitive

Network protocols:
drive device, rather than
human, interaction
all communication activity
in Internet is governed by
protocols

protocols define format &
order of messages sent and
received among network
entities, and actions taken on
message transmission, receipt

30 - http CSC309 4

Applications and application-layer
protocols

Application: communicating,
distributed processes

running in network hosts in
“user space”
exchange messages to
implement app
e.g., email, file transfer,
the Web

Application-layer protocols
one “piece” of an app
define messages
exchanged by apps and
actions taken
user services provided by
lower layer protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Internet

3

30 - http CSC309 5

Network applications: some jargon
A process is a program
that is running within a
host.
Within the same host,
two processes
communicate with
inter-process
communication defined
by the OS.
Processes running in
different hosts
communicate with an
application-layer
protocol

A user agent is an
interface between
the user and the
network
application.

Web:browser
E-mail: mail reader
streaming
audio/video: media
player

30 - http CSC309 6

Client-Server Paradigm
Typical network app has two

pieces: client and server
Client:

initiates contact with
server (“speaks first”)
typically requests service
from server,
for Web, client is
implemented in browser;
for e-mail, in mail reader

Server:
provides requested

service to client
e.g., Web server sends

requested Web page, mail
server delivers e-mail

application
transport
network
data link
physical

application
transport
network
data link
physical

request

reply

Internet

4

30 - http CSC309 7

Application-layer protocols (cont).

API: application
programming interface
defines interface
between application
and transport layer
socket: Internet API

two processes
communicate by sending
data into socket,
reading data out of
socket

Q: how does a process
“identify” the other
process with which it
wants to communicate?

IP address of host
running other process
“port number” - allows
receiving host to
determine to which
local process the
message should be
delivered

30 - http CSC309 8

Protocol layering

Application (FTP, Telnet, WWW, email)

User Datagram Protocol
(UDP)

Transmission Control Protocol
(TCP)

Internet Protocol (IP)

Network Interface (Ethernet, ATM)

Hardware (fiber, twisted-pair copper, coax, radio)

Physical
connection

Unreliable
best effort
end-end
datagram
delivery
(host-host)

Unreliable
best effort
datagram
delivery
(process-
process)

Reliable in-
order
byte stream
delivery
(process-
process)

point-point
datagram
delivery
(network
interface-
interface)

Protocols provide specialized services by
building on services provided by other protocols.

5

30 - http CSC309 9

Protocol stacks

Routers

Host A

Modulate raw bits
onto media – light
/electrical/radio
pulses

Framing, error
recovery, media
access

Routing,
Flow-control
Congestion-cntl

HTTP, FTP,
telnet, email

IP

TCP/UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Reliable, efficient
end user service

network

data link

physical

network

data link

physical

Ethernet, PPP,
802.11, FDDI

SONET, DSL

Bridges

Application
service across
abstract network

Repeaters

Host B

Protocols Examples

30 - http CSC309 10

Host A Host B

Routers

Modulate raw bits
onto media – light
/electrical/radio
pulses

Framing, error
recovery, media
access

Routing,
Flow-control
Congestion-cntl

HTTP, FTP,
telnet, email

IP

TCP/UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Reliable, efficient
end user service

data link

physical

data link

physical

Ethernet, PPP,
802.11, FDDI

SONET, DSL

Bridges

Application
service across
abstract network

Repeaters

Protocols Examples

Protocol Stacks

ordered byte stream

read/write from/to socket

network network

6

30 - http CSC309 11

Encapsulation
application data

Ethernet frame
header

IP datagram
header

TCP segment
header

application data

IP datagram
header

TCP segment
header

application data

Application (e.g. HTTP Web data)

Transport (e.g. TCP, UDP)

Network (e.g. IP)

Link (e.g. Ethernet)

TCP segment
header

application data

Physical
(e.g. SONET)

SONET channel
header

Ethernet frame
header

IP datagram
header

TCP segment
header

application data

30 - http CSC309 12

Protocol layering and data
Each layer takes data from above and:

adds header information to create new
data unit
passes new data unit to layer below

application
transport
network

link
physical

application
transport
network

link
physical

source destination
M M message

segment
datagram
frame

M
M
M

Ht
HtHn

Ht
HtHn
HtHnHl

MHtHnHlHp MHtHnHlHp

M
M
M

Ht

HtHn

Ht
HtHn
HtHnHl

channel

7

30 - http CSC309 13

HTTP
HyperText Transfer Protocol
Created by Tim Berners-Lee at CERN

Physicists, not Computer Scientists
Share results from physics experiments
Defined 1989-1991

Standardized and much expanded by the IETF
Rides on top of TCP protocol

TCP provides: reliable, bi-directional, in-order byte
stream

Goal: transfer objects between systems
Do not confuse with other WWW concepts:

HTTP is not page layout language (that is HTML)
HTTP is not object naming scheme (that is URLs)

30 - http CSC309 14

The Web: some jargon

Web page:
consists of “objects”
addressed by a URL

Most Web pages
consist of:

base HTML page
one or more referenced
objects such as images

URL has two
components: host name
and path name: e.g.

User agent for Web is
called a browser:

MS Internet Explorer
Netscape Communicator

Server for Web is
called Web server:

Apache (public domain)
MS Internet
Information Server

www.toronto.edu/depts/cs/pratt.jpg

8

30 - http CSC309 15

The Web: HTTP protocol
HTTP: HyperText

Transfer Protocol
Web’s application layer
protocol
client/server model

client: browser that
requests, receives,
“displays” Web objects
server: Web server
sends objects in
response to requests

http1.0: RFC 1945
http1.1: RFC 2068

PC running
Explorer

Apache Web
server

Sun running
Navigator

HTTP requestHTTP response

http request

http response

30 - http CSC309 16

HTTP protocol (cont)

HTTP rides on top of TCP transport
service:
client initiates TCP connection (creates
socket) to server, port 80
server accepts TCP connection from client
http messages (application-layer protocol
messages) exchanged between browser
(http client) and Web server (http server)
TCP connection closed

9

30 - http CSC309 17

HTTP protocol (cont)
http is “stateless”

server maintains no information about past
client requests

Protocols that maintain “state” are complex
past history (state) must be maintained
if server/client crashes, their views of “state” may
be inconsistent, must be reconciled

30 - http CSC309 18

HTTP in operation
Suppose user enters URL

www.toronto.edu/cs/index.html

1a. http client initiates TCP
connection to http server
(process) at
www.toronto.edu. Port 80 is
default for http server.

2. http client sends http
request message
(containing URL) into TCP
connection socket

1b. http server at host
www.toronto.edu waiting for
TCP connection at port 80.
“accepts” connection,
notifying client

3. http server receives
request message, forms
response message
containing requested
object (/cs/index.html),
sends message into socket

(containing text and references to
10 jpeg images)

time

10

30 - http CSC309 19

http in operation (cont.)
5. http client receives

response message
containing html file,
displays html. Parsing html
file, finds 10 referenced
jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. http server closes TCP
connection. time

30 - http CSC309 20

Interaction between Web client (browser)
and Web server occurs in two phases:

Request phase:
Browser requests page
from Web server
Response phase:
Server sends back
requested page or code

Each phase consists of two parts:
Header (request line, response status, header
fields)
Body

HTTP 1.0

Request

Response

11

30 - http CSC309 21

HTTP request message: general format

HTTP method URL sp HTTP version cr lf

header field name : field value cr lf

request linesp

header field name : field value cr lf
cr lf

Entity Body

header
lines

…

30 - http CSC309 22

http message format: request
http request message:

Note all HTTP messages are in
ASCII (text format)

GET /somedir/page.html HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif,image/jpeg
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD
commands)

header
lines

Carriage return,
line feed

indicates end
of message

12

30 - http CSC309 23

HTTP 1.0 Request Phase
Request line

HTTP method
GET – return content of specified document
HEAD – return headers only of GET response
POST – execute specified doc with enclosed data

URL (only domain portion)
/host-identifier/path
e.g. /www.toronto.edu/headlines/

HTTP version
e.g. HTTP/1.0

HTTP method URL sp HTTP version cr lfsp

30 - http CSC309 24

header field name field value

HTTP 1.0 Request Phase (cont)
Header fields

Examples:
Accept: text/html
Accept: image/jpg
Accept-language: en; en-gr; fr
If-modified-since: 17 May 2001
Content-Length: 2540

:

13

30 - http CSC309 25

HTTP 1.0 Response Phase
Response consists of

Status line:
HTTP version
3-digit status code (success, error, redirection, etc)
Brief text explanation of status code (e.g. OK)

Response Header fields:
Other page attributes (content type, content length,
expiration, last modified, server type, etc)
Additional information (if redirection, other location)

blank line (delimiter between header and body)
Response body

30 - http CSC309 26

HTTP response message: general format

HTTP version status code sp status phrase cr lf

header field name : field value cr lf

response linesp

header field name : field value cr lf
cr lf

Response Body

header
lines

…

14

30 - http CSC309 27

Response status codes

3 digit response code
1XX – informational
2XX – success
3XX – redirection
4XX – client error
5XX – server error

Response code text phrase

30 - http CSC309 28

Response status codes

200 OK
request succeeded, requested object later in
this message

301 Moved Permanently
requested object moved, new location specified
later in this message (Location:)

400 Bad Request
request message not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few commonly occurring sample codes:

15

30 - http CSC309 29

http message format: response
HTTP/1.0 200 OK
Date: Thu, 25 Aug 2001 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Aug 2001 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...
data data data data data ...
data data data data data ...

header
lines

status line:
(protocol

status code
status phrase)

data, e.g.,
requested
html file

30 - http CSC309 30

Try out HTTP (client side) for yourself

1. Telnet to your favorite Web server, e.g.:

Open TCP connection to port 80 (default http server port) at
www.utsc.utoronto.ca. Anything typed is sent to port 80 at
www.utsc.utoronto.ca

telnet www.utsc.utoronto.ca 80

2. Type in a GET HTTP request:
GET /~rosselet/cscc09/index.html HTTP/1.0

Type this at the prompt (followed by two carriage returns)
to send this minimal GET request to the HTTP server

3. Look at response message sent by http server!

16

30 - http CSC309 31

HTTP 1.0 other features

POST
Client can send information to server
Forms, annotations

If-modified-since request header
Client tells server it has data and asks
server whether it has fresher version or
client is up to date

30 - http CSC309 32

User-server interaction: conditional GET
Goal: don’t send object
if client has up-to-date
copy (cached)
client: specify date of
cached copy in http
request
If-modified-since:
<date>

server: response
contains no object if
cached copy is up-to-
date:
HTTP/1.0 304 Not
Modified

client server

object
not

modified

object
modified

http request msg
If-modified-
since: <date>

time
http response

HTTP/1.0
304 Not Modified

http request msg
If-modified-
since: <date>

http response
HTTP/1.1 200 OK

… <data>

17

30 - http CSC309 33

HTTP 1.0 authentication

Basic authentication.
When challenged, client sends user id
and password in clear to server
Not secure enough (snooping is easy) but
useful for simple things

30 - http CSC309 34

User-server interaction:
authentication

Authentication goal: control
access to server documents
stateless: client must
present authorization in each
request
authorization: typically name,
password

authorization: header line
in request
if no authorization presented,
server refuses access, sends
“WWW authenticate:”

header line in response

client server

time

Browser caches name & password so
that user does not have to repeatedly enter it.

normal http
request msg

401: authorization req.
WWW authenticate:

usual http request msg
+ Authorization:line

normal http response msg

usual http request msg
+ Authorization:line

normal http response msg

18

30 - http CSC309 35

Cookies
Problem: HTTP is stateless

Server does not maintain status
information across client requests
No way to correlate multiple request
from same user

Solution: store cookie on client side.
Small amount of information (typically
server-generated user id)
Sent by client with each request
Updated by server with response

30 - http CSC309 36

User-server interaction: cookies
server sends “cookie”
to client in response
msg
Set-cookie: 1678453

client presents cookie
in later requests
cookie: 1678453

server matches
presented-cookie with
server-stored info

authentication
remembering user
preferences,
previous choices

client server

cookie-
specific
action

normal http
request msg

normal http response +
Set-cookie: #

normal http request
cookie: #

normal http
response

time

19

30 - http CSC309 37

HTTP 1.0: Problems

Each request opens new connection
Starting up is slow (why?)
Takes several packets (why?)

30 - http CSC309 38

Web Page with Single Image
Client Server

SYN
SYN

SYN

SYN

ACK

ACK

ACK

ACK

ACK

DAT

DAT

DAT

DAT

FIN

ACK

0 RTT

1 RTT

2 RTT

3 RTT

4 RTT

Server reads from disk

FIN

Server reads from disk

Client opens TCP connection

Client sends HTTP request for HTML

Client parses HTML
Client opens TCP connection

Client sends HTTP request for image

Image begins to arrive

Internet

20

30 - http CSC309 39

More Problems

Short transfers are hard on TCP
Stuck in “slow start” phase of TCP connection
Loss recovery is poor when windows are small

Lots of extra connections
Increases server state/processing

Server also forced to keep TIME_WAIT
connection state

Why must server keep these?

30 - http CSC309 40

Netscape Solution
Use multiple concurrent connections to
improve response time

Different parts of Web page arrive
independently
Can grab more of the network bandwidth than
other users

Doesn’t necessarily improve response time
TCP loss recovery ends up being timeout
dominated because windows are small

21

30 - http CSC309 41

HTTP 1.1: Persistent Connections
Keeps connection open for a time after
server response so that multiple
requests can ride on single connection
-> reduced connection setup overhead.
GET index.html
Connection: keep-alive
… multiple HTTP requests …

Get banner.gif
Connection: close

30 - http CSC309 42

Persistent Connections
Client Server

ACK

ACK

DAT

DAT

ACK

0 RTT

1 RTT

2 RTT

Server reads from disk
Client sends HTTP request for HTML

Client parses HTML
Client sends HTTP request for image

Image begins to arrive

DAT

Server reads from disk

DAT

22

30 - http CSC309 43

Connection length

When does the data end?
Without persistent connections, when
connection closes.
With persistent connections, reply
header includes content length.

30 - http CSC309 44

Non-persistent and persistent
connections

Non-persistent
HTTP/1.0
server parses request,
responds, and closes
TCP connection
2 RTTs to fetch each
object
Each object transfer
suffers from slow
start

Persistent
default for HTTP/1.1
on same TCP
connection: server,
parses request,
responds, parses new
request,..
Client sends requests
for all referenced
objects as soon as it
receives base HTML.
Fewer RTTs and less
slow start.

But most 1.0 browsers use
parallel TCP connections.

23

30 - http CSC309 45

Persistent Connections
Serialized requests do not improve
response time.
Pipelining requests.

Getall – request HTML document and all embeds
Requires server to parse HTML files
Doesn’t consider client cached documents

Getlist – request a set of documents
Implemented as a simple set of GETs

Prefetching
Must carefully balance impact of unused data
transfers.

30 - http CSC309 46

Persistent Connection
Performance

Benefits greatest for small objects.
Server resource utilization reduced due to
fewer connection establishments and fewer
active connections.
TCP behavior improved.

Longer connections help adaptation to available
bandwidth.
Larger congestion window improves loss
recovery.

24

30 - http CSC309 47

Caching
Improve performance

Scalability
Response time
Load balancing
Availability
Saves network and server resources

Proxy cache
Done at the client side

30 - http CSC309 48

Web Caches (proxy server)

user sets browser:
Web accesses via web
cache
client sends all http
requests to web
cache

if object at web cache,
web cache immediately
returns object in http
response
else requests object
from origin server,
then returns http
response to client

Goal: fill client request without going to origin server

client

Proxy
server

client

http request

http request

http response

http response

http request

http response

http requesthttp response

“origin”
server

“origin”
server

25

30 - http CSC309 49

Internet

Benefits of Web Caching

Assume: cache is “close”
to client (e.g., in same
network)
smaller response time:
cache “closer” to
client
decrease traffic to
distant servers

link out of
institutional/local ISP
network often
bottleneck

institutional
proxy server

origin
servers

institutional
network 100 Mbps LAN

1.5 Mbps
access link

30 - http CSC309 50

Caching architectures
Proxy Caches

Serve a specific client population.
Can store recently accessed documents.

Lower latency for the end user.
Better use of wide area bandwidth by avoiding
repeated transfers of recently-used information.

Cooperative caching.
Multiple communicating caches.
… to increase hit rate and reduce access
latency.
Approaches to cooperative caching

Hierarchical caches.
Non-hierarchical routable cache systems.

26

30 - http CSC309 51

How do hosts find one another?

Client

Internet

30 - http CSC309 52

DNS: Domain Name System
People: many

identifiers:
SSN, name,
Passport #

Internet hosts,
routers:

IP address (32 bit)
- used for
addressing
datagrams
“name”, e.g.,
www.scar.utoronto.c
a - used by humans

Q: map between IP
addresses and
name ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers
to communicate to resolve
names (address/name
translation)

note: core Internet
function implemented as
application-layer protocol
complexity at network’s
“edge”

27

30 - http CSC309 53

Finding IP Address:
Domain Name System (DNS)

What’s the IP address for www.utoronto.ca?

Client

142.150.160.42

DNS
Server

30 - http CSC309 54

Addressing
Domain name (e.g. www.utoronto.ca)

Globally valid, human readable name.
DNS translates name to IP address. (e.g.
142.150.160.42)

Globally valid, understood by all networks.
Finally, we need local area net address.

E.g., Ethernet (08-00-4a-22-1b-98)
Globally unique, but used only within a particular
local area network (LAN)
… more on this later …

28

30 - http CSC309 55

DNS name servers
no server has all name-
to-IP address mappings

local name servers:
each ISP, company has
local (default) name server
host DNS query first goes
to local name server

authoritative name server:
for a host: stores that
host’s IP address, name
can perform name/address
translation for that host’s
name

Why not centralize
DNS?
single point of failure
traffic volume
distant centralized
database
maintenance

doesn’t scale!

30 - http CSC309 56

DNS: Root name servers
contacted by local
name server that can
not resolve name
root name server:

contacts
authoritative name
server if name
mapping not known
gets mapping
returns mapping to
local name server

~ dozen root name
servers worldwide

29

30 - http CSC309 57

Simple DNS example
Host lab15.scar.utoronto.ca

wants IP address of
ftp.cs.cornell.edu

1. Contacts its local DNS server,
dns1.scar.utoronto.ca

2. dns1.scar.utoronto.ca
contacts root name server, if
necessary

3. root name server contacts
authoritative name server,
dns.cornell.edu, if necessary

requesting host
lab15.scar.utoronto.ca

ftp.cs.cornell.edu

root name server

authoritative name server
dns.cornell.edu

local name server
dns1.scar.utoronto.ca

1

2
3

4
5

6

30 - http CSC309 58

DNS example

Root name server:
may not know
authoritative name
server
may know
intermediate name
server: who to
contact to find
authoritative name
server

requesting host
lab15.scar.utoronto.ca

ftp.cs.cornell.edu

root name server

local name server
dns.scar.utoronto.ca

1

2
3

4 5

6

authoritative name server
dns.cs.cornell.edu

intermediate name server
dns.cornell.edu

7

8

30

30 - http CSC309 59

DNS: iterated queries
recursive query:

puts burden of
name resolution
on contacted
name server
heavy load?

iterated query:
contacted server
replies with name
of server to
contact
“I don’t know the
answer, ask this
server”

requesting host
lab15.scar.utoronto.ca

ftp.cs.cornell.edu

root name server

local name server
dns1.scar.utoronto.ca

1

2
3

4

5 6

authoritative name server
dns.cs.cornell.edu

intermediate name server
dns.cornell.edu

7

8

iterated
query

30 - http CSC309 60

DNS: caching and updating
records

once (any) name server learns mapping, it
caches mapping

cache entries timeout (disappear)
after some time

update/notify mechanisms under design
by IETF

RFC 2136
http://www.ietf.org/html.charters/dnsind-
charter.html

31

30 - http CSC309 61

Domain tree
Hierarchical name space

Example: www.cs.ucl.ac.uk
TLD: Top Level Domain
gTLD: generic TLD
ccTLD: Country Code TLD
SLD: Second Level Domain

uk orgca

.

onco adac

…

ccTLD

cs

kcucl

SLD

cnn

com

Root Domain

www.cs.ucl.ac.uk

eng

wide

gTLD

wwwftp

…

… …

…
… … …

30 - http CSC309 62

Domains and Zones
•Partition hierarchy into
data administration units
called “zones”

•Each zone implemented by
a set of name servers uk orgca

.

onco adac

…

ccTLD

cs

kcucl

SLD

cnn

com

Root Domain

www.cs.ucl.ac.uk

eng

wide

gTLD

wwwftp

…

… …

…
… … …

32

30 - http CSC309 63

DNS records
DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A
name is hostname
value is IP

Type=NS
name is domain (e.g.
foo.com)
value is IP address of
authoritative name
server for this domain
address

Type=CNAME
name is an alias name
for some “cannonical”
(the real) name
value is canonical
name

Type=MX
value is hostname of
mailserver associated
with name

30 - http CSC309 64

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
identification: 16 bit #
for query, reply to
query uses same #
flags:

query or reply
recursion desired
recursion available
reply is
authoritative

33

30 - http CSC309 65

DNS protocol, messages
Name, type fields

for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

