
CSC D70:
Compiler Optimization

Dataflow Analysis

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Refreshing from Last Lecture

• Basic Block Formation

• Value Numbering

2

Partitioning into Basic Blocks

• Identify the leader of each basic block
– First instruction
– Any target of a jump
– Any instruction immediately following a jump

• Basic block starts at leader & ends at
instruction immediately before a leader (or
the last instruction)

3

4ALSU pp. 529-531

Value Numbering (VN)
• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value
– used to determine the value number of current expression

 r1 + r2 => var2value(r1)+var2value(r2)

5

Algorithm
Data structure:
 VALUES = Table of
 expression //[OP, valnum1, valnum2}
 var //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

 valnum1 = var2value(src1); valnum2 = var2value(src2);

 IF [OP, valnum1, valnum2] is in VALUES
 v = the index of expression
 Replace instruction with CPY dst = VALUES[v].var
 ELSE
 Add
 expression = [OP, valnum1, valnum2]
 var = dst
 to VALUES
 v = index of new entry; tv is new temporary for v
 Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
 CPY dst = tv;

 set_var2value (dst, v)

6

VN Example

Assign: a->r1,b->r2,c->r3,d->r4
a = b+c; ADD t1 = r2,r3
 CPY r1 = t1 //(a = t1)
b = a-d; SUB t2 = r1,r4
 CPY r2 = t2 //(b = t2)
c = b+c; ADD t3 = r2,r3
 CPY r3 = t3 //(c = t3)
d = a-d; CPY r2 = t2

7

Questions about Assignment #1

• Tutorial #1

• Tutorial #2 next week
– More in-depth LLVM coverage

8

Outline

9

1. Structure of data flow analysis

2. Example 1: Reaching definition analysis

3. Example 2: Liveness analysis

4. Generalization

What is Data Flow Analysis?

• Local analysis (e.g., value numbering)
– analyze effect of each instruction
– compose effects of instructions to derive information

from beginning of basic block to each instruction

• Data flow analysis
– analyze effect of each basic block
– compose effects of basic blocks to derive information

at basic block boundaries
– from basic block boundaries, apply local technique to

generate information on instructions

10

What is Data Flow Analysis? (2)

• Data flow analysis:
– Flow-sensitive: sensitive to the control flow in a function
– intraprocedural analysis

• Examples of optimizations:
– Constant propagation
– Common subexpression elimination
– Dead code elimination

11

What is Data Flow Analysis? (3)

12

For each variable x determine:

Value of x?

Which “definition” defines x?

Is the definition still meaningful (live)?

e = b + c a = 243

e = d+3
g = a

a = b + c
d = 7

Static Program vs. Dynamic Execution

• Statically: Finite program
• Dynamically: Can have infinitely many possible execution paths
• Data flow analysis abstraction:

– For each point in the program:
combines information of all the instances of the same program point.

• Example of a data flow question:
– Which definition defines the value used in statement “b = a”?

13

Effects of a Basic Block

• Effect of a statement: a = b+c
• Uses variables (b, c)
• Kills an old definition (old definition of a)
• new definition (a)

• Compose effects of statements -> Effect of a basic block
– A locally exposed use in a b.b. is a use of a data item

which is not preceded in the b.b. by a definition of the
data item

– any definition of a data item in the basic block kills all
definitions of the same data item reaching the basic block.

– A locally available definition = last definition of data item
in b.b.

14

Effects of a Basic Block
A locally available definition = last definition of data item in b.b.

15

t1 = r1+r2
r2 = t1
t2 = r2+r1
r1 = t2
t3 = r1*r1
r2 = t3
if r2>100 goto L1

Locally exposed uses? r1

Kills any definitions? Any other
definition
 of t2

Locally avail. definition? t2

Reaching Definitions

• Every assignment is a definition
• A definition d reaches a point p

if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

• Problem statement
– For each point in the program, determine if each definition in the

program reaches the point
– A bit vector per program point, vector-length = #defs

16

d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
 if e

B1

B2 B3

d1 reaches
 this point?

Reaching Definitions (2)

• Every assignment is a definition
• A definition d reaches a point p

if there exists path from the point immediately following d to p
such that d is not killed (overwritten) along that path.

• Problem statement
– For each point in the program, determine if each definition in the

program reaches the point
– A bit vector per program point, vector-length = #defs

17

d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
 if e

B1

B2 B3

d2 reaches
 this point?

Reaching Definitions (3)

18

L1: if input() GOTO L2

d0: a = x

L2: … d1: b = a
d2: a = y
GOTO L1

d2 reaches
 this point?

yes

Data Flow Analysis Schema

• Build a flow graph (nodes = basic blocks, edges = control flow)
• Set up a set of equations between in[b] and out[b] for all basic

blocks b
– Effect of code in basic block:

• Transfer function fb relates in[b] and out[b], for same b
– Effect of flow of control:

• relates out[b1], in[b2] if b1 and b2 are adjacent
• Find a solution to the equations 19

 f2

 f1

out[entry]
entry

exit

 f3

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

in[exit]

Effects of a Statement

• fs : A transfer function of a statement
– abstracts the execution with respect to the problem of interest

• For a statement s (d: x = y + z)
out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])
– Gen[s]: definitions generated: Gen[s] = {d}
– Propagated definitions: in[s] - Kill[s],

where Kill[s]=set of all other defs to x in the rest of program

20

d1: x = 10

d0: y = 3
in[B0]

d2: y = 11
out[B0]

fd0

fd1

fd2

Effects of a Basic Block

• Transfer function of a statement s:
• out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

• Transfer function of a basic block B:
• Composition of transfer functions of statements in B

• out[B] = fB(in[B]) = fd2fd1fd0(in[B])
= Gen[d2] U (Gen[d1] U (Gen[d0] U (in[B]-Kill[d0]))-Kill[d1])) -Kill[d2]
= Gen[d2] U (Gen[d1] U (Gen[d0] - Kill[d1]) - Kill[d2]) U
 in[B] - (Kill[d0] U Kill[d1] U Kill[d2])
= Gen[B] U (in[B] - Kill[B])
• Gen[B]: locally exposed definitions (available at end of bb)
• Kill[B]: set of definitions killed by B

21

d1: x = 10

d0: y = 3
in[B0]

d2: y = 11
out[B0]

fd0

fd1

fd2

fB =
fd2⋅fd1⋅fd1

Example

• a transfer function fb of a basic block b:
OUT[b] = fb(IN[b])

incoming reaching definitions -> outgoing reaching definitions
• A basic block b

• generates definitions: Gen[b],
– set of locally available definitions in b

• kills definitions: in[b] - Kill[b],
where Kill[b]=set of defs (in rest of program) killed by defs in b

• out[b] = Gen[b] U (in(b)-Kill[b])

22

d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
 if e

B1

B2 B3

Effects of the Edges (acyclic)

• out[b] = fb(in[b])
• Join node: a node with multiple predecessors
• meet operator:
 in[b] = out[p1] U out[p2] U ... U out[pn], where

 p1, ..., pn are all predecessors of b

23

 f2

 f1

out[entry]
entry

exit

 f3

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

in[exit]

Example

• out[b] = fb(in[b])
• Join node: a node with multiple predecessors
• meet operator:
 in[b] = out[p1] U out[p2] U ... U out[pn], where

 p1, ..., pn are all predecessors of b

24

f Gen Kill
1 {1,2} {0,2,3,4,6}
2 {3,4} {0,1,2,6}
3 {5,6} {1,3}

d3: x = x+1
d4: y = y+2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
 if e

B1

B2 B3

Cyclic Graphs

• Equations still hold
• out[b] = fb(in[b])
• in[b] = out[p1] U out[p2] U ... U out[pn], p1, ..., pn pred.

• Find: fixed point solution
25

Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
 out[Entry] = ∅

// Initialization for iterative algorithm
 For each basic block B other than Entry
 out[B] = ∅

// iterate
 While (Changes to any out[] occur) {
 For each basic block B other than Entry {
 in[B] = ∪ (out[p]), for all predecessors p of B
 out[B] = fB(in[B]) // out[B]=gen[B]∪(in[B]-kill[B])
 }

26

Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize
 out[Entry] = ∅ // can set out[Entry] to special def
 // if reaching then undefined use
 For all nodes i
 out[i] = ∅ // can optimize by out[i]=gen[i]
 ChangedNodes = N

// iterate
 While ChangedNodes ≠ ∅ {
 Remove i from ChangedNodes
 in[i] = U (out[p]), for all predecessors p of i
 oldout = out[i]
 out[i] = fi(in[i]) // out[i]=gen[i]U(in[i]-kill[i])
 if (oldout ≠ out[i]) {
 for all successors s of i
 add s to ChangedNodes
 }
 }

27

Example

28

Live Variable Analysis
• Definition

– A variable v is live at point p if
• the value of v is used along some path in the flow graph starting at p.

– Otherwise, the variable is dead.
• Motivation

• e.g. register allocation
 for i = 0 to n
 … i …
 …
 for i = 0 to n
 … i …
• Problem statement

– For each basic block
• determine if each variable is live in each basic block

– Size of bit vector: one bit for each variable

29

v live at this point?

Transfer Function
• Insight: Trace uses backwards to the definitions

• A basic block b can
• generate live variables: Use[b]

– set of locally exposed uses in b
• propagate incoming live variables: OUT[b] - Def[b],

– where Def[b]= set of variables defined in b.b.
• transfer function for block b:

in[b] = Use[b] U (out(b)-Def[b])

30

Flow Graph

• in[b] = fb(out[b])
• Join node: a node with multiple successors
• meet operator:
 out[b] = in[s1] U in[s2] U ... U in[sn], where
 s1, ..., sn are all successors of b

31

 f2

 f1

out[entry]
entry

exit

 f3

in[1]

out[1]

in[2]

out[2]

in[3]

out[3]

in[exit]

Flow Graph (2)

• in[b] = fb(out[b])
• Join node: a node with multiple successors
• meet operator:
 out[b] = in[s1] U in[s2] U ... U in[sn], where
 s1, ..., sn are all successors of b

32

f Use Def
1 {} {a,b}
2 {b} {a,c}
3 {a} {b,d}

Liveness: Iterative Algorithm
input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
 in[Exit] = ∅

// Initialization for iterative algorithm
 For each basic block B other than Exit
 in[B] = ∅

// iterate
 While (Changes to any in[] occur) {
 For each basic block B other than Exit {
 out[B] = ∪ (in[s]), for all successors s of B
 in[B] = fB(out[B]) // in[B]=Use[B]∪(out[B]-Def[B])
 }

33

Example

34

Framework
Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] = ∧ out[pred(b)]

backward:
in[b] = fb(out[b])
out[b] = ∧ in[succ(b)]

Transfer function fb(x) = Genb ∪ (x –Killb) fb(x) = Useb ∪ (x -Defb)

Meet Operation (∧) ∪ ∪

Boundary Condition out[entry] = ∅ in[exit] = ∅

Initial interior points out[b] = ∅ in[b] = ∅

35

Other examples (e.g., Available expressions), defined in ALSU 9.2.6

Thought Problem 1. “Must-Reach” Definitions

• A definition D (a = b+c) must reach point P iff
– D appears at least once along on all paths leading

to P
– a is not redefined along any path after last

appearance of D and before P
• How do we formulate the data flow

algorithm for this problem?

36

Thought Problem 2: A legal solution to
(May) Reaching Def?

• Will the worklist algorithm generate this answer?

37

Questions
• Correctness

• equations are satisfied, if the program terminates.

• Precision: how good is the answer?
• is the answer ONLY a union of all possible executions?

• Convergence: will the analysis terminate?
• or, will there always be some nodes that change?

• Speed: how fast is the convergence?
• how many times will we visit each node?

38

Foundations of Data Flow Analysis

1. Meet operator

2. Transfer functions

3. Correctness, Precision, Convergence

4. Efficiency

•Reference: ALSU pp. 613-631
•Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
•Marlowe & Ryder, Properties of data flow frameworks: a unified model.
Rutgers tech report, Apr. 1988

39

A Unified Framework

• Data flow problems are defined by
• Domain of values: V
• Meet operator (V ∧ V → V), initial value
• A set of transfer functions (V → V)

• Usefulness of unified framework
• To answer questions such as

correctness, precision, convergence, speed of convergence
for a family of problems
– If meet operators and transfer functions have properties X, then

we know Y about the above.

• Reuse code

40

Meet Operator
• Properties of the meet operator

• commutative: x ∧ y = y ∧ x

• idempotent: x ∧ x = x
• associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z
• there is a Top element T such that x ∧ T = x

• Meet operator defines a partial ordering on values
• x ≤ y if and only if x ∧ y = x (y -> x in diagram)

– Transitivity: if x ≤ y and y ≤ z then x ≤ z

– Antisymmetry : if x ≤ y and y ≤ x then x = y
– Reflexitivity: x ≤ x

41

x y

x ∧
y

Partial Order
• Example: let V = {x | such that x ⊆ { d1, d2}}, ∧ = ∩

• Top and Bottom elements
• Top T such that: x ∧ T = x
• Bottom ⊥ such that: x ∧ ⊥ = ⊥

• Values and meet operator in a data flow problem define a
semi-lattice:
– there exists a T, but not necessarily a ⊥.

• x, y are ordered: x ≤ y then x ∧ y = x (y -> x in diagram)
• what if x and y are not ordered?

• x ∧ y ≤ x, x ∧ y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x ∧ y

42

One vs. All Variables/Definitions
• Lattice for each variable: e.g. intersection

• Lattice for three variables:

43

1

0

Descending Chain
• Definition

• The height of a lattice is the largest number of > relations that will fit in a
descending chain.

 x0 > x1 > x2 > …

• Height of values in reaching definitions?

• Important property: finite descending chain
• Can an infinite lattice have a finite descending chain?

• Example: Constant Propagation/Folding
• To determine if a variable is a constant

• Data values
• undef, ... -1, 0, 1, 2, ..., not-a-constant

44

Height n – number of definitions

yes

Transfer Functions

• Basic Properties f: V → V
– Has an identity function

• There exists an f such that f (x) = x, for all x.

– Closed under composition
• if f1, f2 ∈ F, then f1 ⋅ f2 ∈ F

45

Monotonicity

• A framework (F, V, ∧) is monotone if and only if
• x ≤ y implies f(x) ≤ f(y)

• i.e. a “smaller or equal” input to the same function will
always give a “smaller or equal” output

• Equivalently, a framework (F, V, ∧) is monotone if and
only if

• f(x ∧ y) ≤ f(x) ∧ f(y)

• i.e. merge input, then apply f is small than or equal to apply
the transfer function individually and then merge the result

46

Example
• Reaching definitions: f(x) = Gen ∪ (x - Kill), ∧ = ∪

– Definition 1:
• x1 ≤ x2, Gen ∪ (x1 - Kill) ≤ Gen ∪ (x2 - Kill)

– Definition 2:
• (Gen ∪ (x1 - Kill)) ∪ (Gen ∪ (x2 - Kill))

= (Gen ∪ ((x1 ∪ x2) - Kill))

• Note: Monotone framework does not mean that f(x) ≤ x
• e.g., reaching definition for two definitions in program
• suppose: fx: Genx = {d1, d2} ; Killx= {}

• If input(second iteration) ≤ input(first iteration)
• result(second iteration) ≤ result(first iteration)

47

Distributivity

• A framework (F, V, ∧) is distributive if and only if
• f(x ∧ y) = f(x) ∧ f(y)

• i.e. merge input, then apply f is equal to apply the transfer function
individually then merge result

• Example: Constant Propagation is NOT distributive

48

 a = 2
 b = 3

 a = 3
 b = 2

 c = a + b

Data Flow Analysis
• Definition

– Let f1, ..., fm : ∈ F, where fi is the transfer function for node i
• fp = fnk ⋅ … ⋅ fn1 , where p is a path through nodes n1, ..., nk
• fp = identify function, if p is an empty path

• Ideal data flow answer:
– For each node n:
 ∧ fpi (T), for all possibly executed paths pi reaching n.

• But determining all possibly executed paths is undecidable

49

 x = 0 x = 1

if sqrt(y) >= 0

Meet-Over-Paths (MOP)
• Error in the conservative direction
• Meet-Over-Paths (MOP):

• For each node n:
 MOP(n) = ∧ fpi (T), for all paths pi reaching n

• a path exists as long there is an edge in the code

• consider more paths than necessary
• MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths
• MOP ≤ Perfect-Solution
• Potentially more constrained, solution is small

• hence conservative
• It is not safe to be > Perfect-Solution!

• Desirable solution: as close to MOP as possible

50

MOP Example

51

Solving Data Flow Equations
• Example: Reaching definitions

• out[entry] = {}
• Values = {subsets of definitions}
• Meet operator: ∪

• in[b] = ∪ out[p], for all predecessors p of b
• Transfer functions: out[b] = genb ∪ (in[b] -killb)

• Any solution satisfying equations = Fixed Point Solution (FP)
• Iterative algorithm

• initializes out[b] to {}
• if converges, then it computes Maximum Fixed Point (MFP):

• MFP is the largest of all solutions to equations
• Properties:

• FP ≤ MFP ≤ MOP ≤ Perfect-solution
• FP, MFP are safe
• in(b) ≤ MOP(b)

52

Partial Correctness of Algorithm
• If data flow framework is monotone, then if the algorithm

converges, IN[b] ≤ MOP[b]
• Proof: Induction on path lengths

– Define IN[entry] = OUT[entry]
and transfer function of entry = Identity function

– Base case: path of length 0
• Proper initialization of IN[entry]

– If true for path of length k, pk = (n1, ..., nk), then
true for path of length k+1: pk+1 = (n1, ..., nk+1)
• Assume: IN[nk] ≤ fnk-1(fnk-2(... fn1(IN[entry])))

• IN[nk+1] = OUT[nk] ∧ ...
 ≤ OUT[nk]

 ≤ fnk (IN[nk])
 ≤ fnk-1(fnk-2(... fn1(IN[entry])))

53

Precision

• If data flow framework is distributive,then if the
algorithm converges, IN[b] = MOP[b]

• Monotone but not distributive: behaves as if there
are additional paths

54

 a = 2
 b = 3

 a = 3
 b = 2

 c = a + b

Additional Property to Guarantee Convergence

• Data flow framework (monotone) converges if there
is a finite descending chain

• For each variable IN[b], OUT[b], consider the sequence
of values set to each variable across iterations:

– if sequence for in[b] is monotonically decreasing
• sequence for out[b] is monotonically decreasing

• (out[b] initialized to T)

– if sequence for out[b] is monotonically decreasing
• sequence of in[b] is monotonically decreasing

55

Speed of Convergence
• Speed of convergence depends on order of

node visits

• Reverse “direction” for backward flow
problems

56

Reverse Postorder
• Step 1: depth-first post order

main() {
 count = 1;

 Visit(root);
}
Visit(n) {

 for each successor s that has not been visited
 Visit(s);
 PostOrder(n) = count;
 count = count+1;
}

• Step 2: reverse order
For each node i

 rPostOrder = NumNodes - PostOrder(i)

57

Depth-First Iterative Algorithm
(forward)
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */

 out[entry] = init_value
 For all nodes i
 out[i] = T
 Change = True
/* iterate */

 While Change {
 Change = False
 For each node i in rPostOrder {
 in[i] = ∧(out[p]), for all predecessors p of i
 oldout = out[i]

 out[i] = fi(in[i])
 if oldout ≠ out[i]
 Change = True
 }
 }

58

Speed of Convergence

• If cycles do not add information
• information can flow in one pass down a series of nodes of

increasing order number:
• e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...

• passes determined by number of back edges in the path
• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic
path + 2
• (2 are necessary even if there are no cycles)

• What is the depth?
– corresponds to depth of intervals for “reducible” graphs
– in real programs: average of 2.75

59

A Check List for Data Flow Problems

• Semi-lattice
– set of values
– meet operator
– top, bottom
– finite descending chain?

• Transfer functions

– function of each basic block
– monotone
– distributive?

• Algorithm

– initialization step (entry/exit, other nodes)
– visit order: rPostOrder
– depth of the graph

60

Conclusions

• Dataflow analysis examples
– Reaching definitions
– Live variables

• Dataflow formation definition
– Meet operator
– Transfer functions
– Correctness, Precision, Convergence
– Efficiency

61

CSC D70:
Compiler Optimization

Dataflow Analysis

Prof. Gennady Pekhimenko
University of Toronto

Winter 2019

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

