
Assignment 1: Introduction to LLVM
Due Date: Jan. 31st (Thursday), Total Marks: 100 pts

CSCD70 Compiler Optimization
Department of Computer Science

University of Toronto

ABSTRACT
Welcome to CSCD70 Compiler Optimization. We will be
using the Low Level Virtual Machine (LLVM) Compiler in-
frastructure from University of Illinois Urbana-Champaign
(UIUC) for our programming assignments. While LLVM is
currently supported on a number of hardware platforms, we
expect the assignments to be completed on the undergraduate
workstations, since that is where they will be graded. The
objective of this first assignment is to introduce you to LLVM
and some ways that it can be used to make your programs
run faster. In particular, you will be using LLVM to analyze
code to output interesting properties about your program (Sec-
tion 3.1) and to perform local optimizations (Section 3.2).

1 POLICY
1.1 Collaboration
You will work in groups of two for the assignments in this
course. Please turn in a single writeup per group, indicating
the names and UTORid of both group members.

1.2 Submission
Please include all your files in an archive labeled with the
UTORid of both group members, and email the resulting file
to bojian@cs.toronto.edu. Make sure that when this archive
is extracted, the files appear as follows:
./a1-utorid1-utorid2/writeup.pdf

./a1-utorid1-utorid2/FunctionInfo/FunctionInfo.cpp

./a1-utorid1-utorid2/FunctionInfo/Makefile

./a1-utorid1-utorid2/FunctionInfo/tests/...

./a1-utorid1-utorid2/LocalOpts/LocalOpts.cpp

./a1-utorid1-utorid2/LocalOpts/Makefile

./a1-utorid1-utorid2/LocalOpts/tests/...
1

• A report named writeup.pdf that briefly describes the
implementation of both passes, and has answers to the theo-
retical questions in this assignment.

• Well-commented source code for your passes (Function-
Info and LocalOpts), and associated Makefile (please write

1You do not have to implement all your local optimization passes in one file.

your Makefile in such a way that all passes can be built,
integrated, and run using the command make all).

• Two subfolders named tests that contain all the microbench-
marks used for verification of your code.

2 EXAMPLE: CREATING A PASS
The source file FunctionInfo/FunctionInfo.cpp that is
provided with this assignment contains a dummy LLVM pass
for analyzing the functions in a program. Currently it only
prints out:

CSCD70 Functions Information Pass

In the next section, you will extend this file to print out
more interesting information. For now, we will use this pass to
demonstrate how to build and run LLVM passes on programs.

• Using the provided Makefile Build.mk, make sure that
you can build this pass with the command:

make -f Build.mk all

• Compile the source code tests/loop.c to an optimized
LLVM bytecode object (loop.bc) as follows:

clang-6.0 -O2 -emit-llvm -c tests/loop.c
-o tests/loop.bc

(clang is the LLVM’s frontend for the C language family),
and inspect the loop.bc generated bytecode using llvm-dis
with the command:

llvm-dis-6.0 ./tests/loop.bc -o=./tests/loop.ll

This will create a disassembly listing in loop.ll of the
loop.bc bytecode.

• Now try running the dummy FunctionInfo pass on the
bytecode. To do this, use the opt command as follows:

opt-6.0 -load FunctionInfo/FunctionInfo.so
-function-info loop.bc -o loop-opt.bc

Note the use of flag -function-info to enable this pass
(see if you can locate the declaration of this flag).

• If all goes well, CSCD70 Function Information Pass
should be printed to stdout.

• We also have another makefile Optimize.mk that auto-
matically goes through all the above process. Upon entering

make -f Optimize.mk all

You should be able to see the same output from the com-
mand line. For the programming assignments throughout this

1

mailto:bojian@cs.toronto.edu


CSCD70 Compiler Optimizations

course, we strongly recommend that you use Optimize.mk
as your primary Makefile.

3 PROBLEM STATEMENT
3.1 Function Information [40 pts]
Your job now is to extend the dummy FunctionInfo pass
from the previous section to learn interesting properties about
the functions in a program. Your pass should report the follow-
ing information about all functions that appear in a program:

(1) Name
(2) Number of Arguments (* if applicable)
(3) Number of Direct Call Sites in the same LLVM module

(i.e. locations where this function is explicitly called,
ignoring function pointers).

(4) Number of Basic Blocks
(5) Number of Instructions
The expected output of running FunctionInfo on the op-

timized bytecode is shown in Table 1. Note that although the
source code for loop.c has a call to g_incr in loop, this call
is optimized away in the LLVM bytecode. When reporting
the number of calls, please count the number that appear in
the bytecode, even if it does NOT match the number of calls
in the original source code.

It is recommended that you debug your pass with more
complex source files, as you can imagine your grade on this
assignment is directly related to the quality of your test cases.

Table 1: Expected FunctionInfo Output for loop.c

Name # Args # Calls # Blocks # Insts

g_incr 1 0 1 4
loop 3 0 3 10

3.2 Local Optimizations [40 pts]
Now that you are familiar with LLVM passes, it is time to
write a pass for making programs faster. You will implement
optimizations that have been covered in class. While there are
many types of optimizations, we will keep things simple in
this section and focus only on the algebraic optimizations, the
scope of which is a single basic block. Specifically, you will
implement the following local optimizations:

(1) Algebraic Identity

x+0 = 0+ x ⇒ x

(2) Strength Reductions

2× x = x×2 ⇒ x+ x or x ≪ 1

(3) Multi-Inst Optimization

a = b+1,c = a−1 ⇒ a = b+1,c = b

This is a somewhat open-ended question. Please handle at
least the above cases, as well as one more in each category
that you come up with, for integer targets.

You should create a new LLVM pass (or multiple passes)
following the steps in Section 3.1. Because this will be a
transformation pass rather than an analysis pass, there will be
some small differences from the setup of the FunctionInfo
pass. Please provide an appropriate Makefile at LocalOpts
and write it in such a way that all the pass(es) can be built and
run with the command make all).

To better test your pass(es), you should build unoptimized
LLVM bytecode from the test cases with the commands:

clang-6.0 -O0 -Xclang -disable-O0-optnone
-emit-llvm -c mytest.c

opt-6.0 -mem2reg mytest.bc -o mytest-m2r.bc
2

(you may assume that all input to your pass will first go
through the mem2reg pass as shown above).

In addition to transforming the bytecode, your pass should
also print to standard output a summary of the optimizations
it performed. There is no canonical format for this output, but
you should at least try to categorize and count the transforma-
tions your pass applies, e.g.,

Transformations applied:
Algebraic Identity: 2
Strength Reduction: 3
Multi-Inst Optimization: 1

4 THEORETICAL QUESTIONS
4.1 Control Flow Graph (CFG) [5 pts]
Consider the following code and answer the questions below:

(1) Identify the leader instruction and their corresponding
basic blocks. Draw the CFG.

(2) Identify the back-edge(s) in the CFG drawn in Ques-
tion (1). Write them down using the form T → H, where T is
the basic block at the tail of the edge and H is the basic block
at the head of the edge.

S1: x = y + z

S2: if (y < 100) goto S5

S3: x = x + 1

S4: z = z + 1

S5: if (x < 100) goto S3

S6: y = y + 1

S7: if (y < 50) goto S1

S8: print (x, y, z)

2If you do not add the -Xclang -disable-O0-optnone option, then further
optimizations such as mem2reg will be disabled. The mem2reg optimization
pass promotes the variables from memory to registers. You can try to ignore
the second command and check how the bytecode looks like.

2



Assignment 1: Introduction to LLVM

S9: return

4.2 Natural Loops [5 pts]
Find and describe the natural loop(s) in the following code.
For full marks, be sure to show (1) basic blocks (2) CFG (3)
dominator tree (4) back-edges (head and tail) (5) basic blocks
that comprise the natural loop for each back-edge. Be sure
to give your basic blocks clear labels that match those in the
original code:

x, y = ...

goto L4

L1: y = x * x

if (x < 50) goto L2

y = x + y

goto L3

L2: y = x - y

x = x + 1

L3: print y

if (y < 10) goto L1

if (x <= 0) goto L5

L4: x = x / 2

goto L1

L5: return y

4.3 Available Expressions [10 pts]
An expression x⊕ y is available at a point p if every path
from the entry node to p evaluates x⊕ y, and after the last
such evaluation prior to reaching p, there are no subsequent
assignments to x or y. For the available expressions dataflow
analysis we say that a block kills expression x⊕ y if it assigns
(or may assign) x or y and does not subsequently recompute
x⊕ y. A block generates expression x⊕ y if it definitely eval-
uates x⊕ y and does not subsequently define x or y.

(1) Table 2 shows the definitions of available expressions
dataflow analysis, with the Meet Operator entry left unspeci-
fied deliberately. Please answer what it should be and explain.
(Hint: Your explanation should be based on the definitions we
have provided.)

(2) Perform available expressions analysis on the code in
Figure 1. For each basic block, list the final GEN, KILL, IN
and OUT sets. Your answer should be what the sets are upon
convergence, and in the format shown in Table 3.

5 FAQ
Given below is the questions asked during previous offering of
the class. If you do not think they fully answer your question,
please open a new thread on Piazza.

Table 2: Available Expressions Dataflow Analysis

Domain Sets of Expressions
Direction Forward
Transfer Function fB B genB ∪

(
x−killB

)
Meet Operator ∧B _
OUT Equation OUT

[
B
]
= fB

(
IN

[
B
])

IN Equation IN
[
B
]
= ∧p∈pred

(
B
)OUT

[
p
]

Initial Condition OUT
[
B
]
= U

Boundary Condition OUT
[
entry

]
= /0

Figure 1: Code for Analysis

Table 3: Solution Format

BB GEN KILL IN OUT

1
2
...

Q: Can I work in group of one? A: Yes. You can, but we
want to remind you that working in group of one would not
give you any advantage in terms of grading.

For people working in group of two, although it is up to
you to decide how to distribute the work evenly between the
group members, both of you are responsible for knowing all
the assignment materials as they will be tested in the exams.

3

www.piazza.com


CSCD70 Compiler Optimizations

Q: Are we allowed to include headers other than those
that are provided by LLVM (e.g., STL, Boost)? Yes. You
can, but we strongly doubt whether this is truly necessary to
use libraries beyond those of LLVM and STL in this course.

Q: How do we know what each type of instruction does?
For most instructions you can directly infer from their names.
Please refer to the LLVM Language Reference Manual for
more detailed information.

Q: Do we need to develop our own test cases? What is
your expectation on test cases? A: Yes. You have to write

your own test cases and provide explanations on why they
justify the correctness of your programs.

By “complex source files”, we are not saying that the test
cases have to be long, as it makes it hard for both you and us
to verify the correctness of your programs. What we really
mean is that the test cases should cover all the corner cases
you have in mind when you develop your optimization passes.

Q: Suppose that we have the statement i = i+1. Should
we treat expression i+1 as available after the statement?
No. It is not. The reason is because – Suppose that we have
statement j = i+1 right after i= i+1, clearly we cannot obtain
the value of j directly from the previously computed i+1.

4

https://llvm.org/docs/LangRef.html

	Abstract
	1 Policy
	1.1 Collaboration
	1.2 Submission

	2 Example: Creating a Pass
	3 Problem Statement
	3.1 Function Information [40 pts]
	3.2 Local Optimizations [40 pts]

	4 Theoretical Questions
	4.1 Control Flow Graph (CFG) [5 pts]
	4.2 Natural Loops [5 pts]
	4.3 Available Expressions [10 pts]

	5 FAQ

