
CSC D70: 
Compiler Optimization

LICM: Loop Invariant Code Motion

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of 
Todd Mowry and Phillip Gibbons



Announcements

• No lecture next week

– Traveling to SysML conference (Stanford, CA)

• Assignment 2 is out (due March 8)

• Midterm is March 1st (during the class)

2



Refreshing: Finding Loops

3



What is a Loop?

• Goals: 
– Define a loop in graph-theoretic terms (control flow graph)
– Not sensitive to input syntax
– A uniform treatment for all loops: DO, while, goto’s

• Not every cycle is a “loop” from an optimization perspective

• Intuitive properties of a loop
– single entry point
– edges must form at least a cycle

4

start

a b

c

d

Is this a 
loop?

Is this a 
loop?



Formal Definitions
• Dominators

– Node d dominates node n in a graph (d dom n) if every path from 
the start node to n goes through d

– Dominators can be organized as a tree
• a ->b in the dominator tree iff a immediately dominates b 

5

1

3

2

4

5 6

7

8



Natural Loops

• Definitions
– Single entry-point: header

• a header dominates all nodes in the loop

– A back edge is an arc whose head dominates its tail 
(tail -> head)
• a back edge must be a part of at least one loop

– The natural loop of a back edge is
the smallest set of nodes that
includes the head and tail of the back edge, and 
has no predecessors outside the set, 
except for the predecessors of the header.

6



Algorithm to Find Natural Loops

• Find the dominator relations in a flow graph

• Identify the back edges

• Find the natural loop associated with the back edge

7



Finding Back Edges
• Depth-first spanning tree

• Edges traversed in a depth-first search of the flow graph form a
depth-first spanning tree

• Categorizing edges in graph
• Advancing (A) edges: from ancestor to proper descendant
• Cross (C) edges: from right to left
• Retreating (R) edges: from descendant to ancestor (not necessarily proper)

8

1

3

2

4

5 6

7

8



Back Edges

• Definition
– Back edge: t->h, h dominates t

• Relationships between graph edges and back edges

• Algorithm

– Perform a depth first search
– For each retreating edge t->h, check if h is in t’s dominator list

• Most programs (all structured code, and most GOTO 
programs) have  reducible flow graphs
– retreating edges = back edges

9



Constructing Natural Loops

• The natural loop of a back edge is the smallest set of nodes that
includes the head and tail of the back edge, and has no predecessors 
outside the set, except for the predecessors of the header.

• Algorithm

• delete h from the flow graph

• find those nodes that can reach t
(those nodes plus h form the natural loop of t -> h) 

10

1

3

2

4

5 6

7

8



Inner Loops

• If two loops do not have the same header:

– they are either disjoint, or

– one is entirely contained (nested within) the other

• inner loop: one that contains no other loop.

• If two loops share the same header:

– Hard to tell which is the inner loop

– Combine as one 

11

a

b c



Preheader

• Optimizations often require code to be executed 
once before the loop

• Create a preheader basic block for every loop

12

rest of loop

header

rest of loop

header

preheader



Finding Loops: Summary

• Define loops in graph theoretic terms

• Definitions and algorithms for: 

– Dominators

– Back edges

– Natural loops

13



Loop-Invariant Computation and Code Motion
• A loop-invariant computation:

– a computation whose value does not change as long as 
control stays within the loop

• Code motion: 

– to move a statement within a loop to the preheader of the 
loop

14

A = B + C

F = A + 2

E = 3

D = A + 1

header

outside loop

yes

B, C defined 
outside
of the loop

yes
Function of 
loop inv

yes constant

no One def inside loop, 
and one outside



Algorithm

• Observations
– Loop invariant

• operands are defined outside loop or invariant themselves

– Code motion 
• not all loop invariant instructions can be moved to 

preheader

• Algorithm
– Find invariant expressions
– Conditions for code motion 
– Code transformation

15



Detecting Loop Invariant 
Computation
• Compute reaching definitions

• Mark INVARIANT if 
all the definitions of B and C that reach a statement A=B+C
are outside the loop
– constant B, C?

• Repeat: Mark INVARIANT if 
– all reaching definitions of B are outside the loop, or 
– there is exactly one reaching definition for B, and it is from a 

loop-invariant statement inside the loop
– similarly for C

until no changes to set of loop-invariant statements occur.

16



Example

17

E = 2 E = 3

D = A + 1

F = E + 2

A = B + C



Example

18



Conditions for Code Motion
• Correctness: Movement does not change semantics of program

• Performance: Code is not slowed down

• Basic idea: defines once and for all
• control flow: once?

Code dominates all exists 
• other definitions: for all?

No other definition
• other uses: for all?

Dominates use or no other reaching defs to use

19

...
A = B + C

...

A = B + C

...

...



Code Motion Algorithm

Given: a set of nodes in a loop
• Compute reaching definitions
• Compute loop invariant computation
• Compute dominators
• Find the exits of the loop (i.e. nodes with successor outside loop)
• Candidate statement for code motion:

– loop invariant
– in blocks that dominate all the exits of the loop
– assign to variable not assigned to elsewhere in the loop
– in blocks that dominate all blocks in the loop that use the variable 

assigned

• Perform a depth-first search of the blocks
– Move candidate to preheader if all the invariant operations it depends 

upon have been moved

20



Examples

21

E = 2 E = 3

D = A + 1

F = E + 2

A = B + C

A = B + C E = 3

D = A + 1

header

outside loop



More Aggressive Optimizations
• Gamble on: most loops get executed 

– Can we relax constraint of dominating all exits?

• Landing pads
While p do s    if p {

preheader
repeat

s
until not p;

}

22

A = B + C

E = A + D

D = …
exit



LICM Summary

• Precise definition and algorithm for loop 

invariant computation

• Precise algorithm for code motion

• Use of reaching definitions and dominators in 

optimizations

23



Induction Variables and 

Strength Reduction

I. Overview of optimization

II. Algorithm to find induction variables

24



Example

FOR i = 0 to 100

A[i] = 0;

i = 0

L2: IF i>=100 GOTO L1

t1 = 4 * i

t2 = &A + t1

*t2 = 0

i = i+1

GOTO L2

L1:

25



Definitions

• A basic induction variable is
– a variable X whose only definitions within the loop are 

assignments of the form: 
X = X+c or  X = X-c, 

where c is either a constant or a loop-invariant variable.

• An induction variable is 
• a basic induction variable, or
• a variable defined once within the loop, whose value is a linear 

function of some basic induction variable at the time of the definition:
A = c1 * B + c2

• The FAMILY of a basic induction variable B is
• the set of induction variables A such that each time A is assigned in 

the loop, the value of A is a linear function of B.

26



Optimizations

1.Strength reduction:

– A is an induction variable in family of basic 
induction variable B (A = c1 *B + c2) 
• Create new variable: A’

• Initialization in preheader: A’= c1 * B + c2;

• Track value of B: add after B=B+x:  A’=A’+x*c1;

• Replace assignment to A: A=A’

27



2. Optimizing non-basic induction variables
– copy propagation 
– dead code elimination

3. Optimizing basic induction variables
– Eliminate basic induction variables used only for

• calculating other induction variables and loop tests

– Algorithm:
• Select an induction variable A in the family of B, preferably with 

simple constants (A = c1 * B + c2). 
• Replace a comparison such as 

if B > X goto L1

with
if (A’ > c1 * X + c2) goto L1 (assuming c1 is positive)

• if B is live at any exit from the loop, recompute it from A’

– After the exit, B = (A’ - c2) / c1

Optimizations (continued)

28



II. Basic Induction Variables

• A BASIC induction variable in a loop L
– a variable X whose only definitions within L are assignments of the form:      

X = X+c or X = X-c, where c is either a constant or a loop-invariant 
variable. 

• Algorithm: can be detected by scanning L

• Example:
k = 0;

for (i = 0; i < n; i++) {
k = k + 3;
… = m;
if (x < y)

k = k + 4;
if (a < b)

m = 2 * k;
k = k – 2;
… = m;

Each iteration may execute a different number of increments/decrements!!

29



Strength Reduction Algorithm

• Key idea:

– For each induction variable A, (A = c1*B+c2 at time 
of definition) 
• variable A’ holds expression c1*B+c2 at all times

• replace definition of A with A=A’ only when executed

• Result:

– Program is correct

– Definition of A does not need to refer to B

30



Finding Induction Variable Families

• Let B be a basic induction variable
– Find all induction variables A in family of B:

• A = c1 * B + c2
(where B refers to the value of B at time of definition)

• Conditions:
– If A has a single assignment in the loop L, and assignment 

is one of:

A = B * c
A = c * B
A = B / c  (assuming A is real)
A = B + c
A = c + B
A = B – c
A = c – B

– OR, ... (next page) 

31



Finding Induction Variable Families 
(continued)

Let D be an induction variable in the family of B  (D = c1* B 
+ c2)

• If A has a single assignment in the loop L, and assignment is 
one of:

A = D * c
A = c * D
A = D / c  (assuming A is real)
A = D + c
A = c + D
A = D – c
A = c – D

• No definition of D outside L reaches the assignment to A 

• Between the lone point of assignment to D in L and the 
assignment to A,
there are no definitions of B

32



Summary

• Precise definitions of induction variables

• Systematic identification of induction variables

• Strength reduction

• Clean up: 

– eliminating basic induction variables
• used in other induction variable calculations

• replacement of loop tests

– eliminating other induction variables
• standard optimizations

33



Partial Redundancy Elimination

Global code motion optimization
1. Remove partially redundant expressions

2. Loop invariant code motion

3. Can be extended to do Strength Reduction

• No loop analysis needed

• Bidirectional flow problem

34



Redundancy

• A Common Subexpression is a Redundant Computation

• Occurrence of expression E at P is redundant if E is available there:
– E is evaluated along every path to P, with no operands redefined since.

• Redundant expression can be eliminated

35

t1 = a + b t2 = a + b 

t3 = a + b  



Partial Redundancy
• Partially Redundant Computation

• Occurrence of expression E at P is partially redundant if E is 
partially available there:
– E is evaluated along at least one path to P, with no operands redefined 

since.

• Partially redundant expression can be eliminated if we can insert 
computations to make it fully redundant.

36

t1 = a + b 

t3 = a + b  



Loop Invariants are Partial Redundancies

• Loop invariant expression is partially redundant

• As before, partially redundant computation can be eliminated if we 
insert computations to make it fully redundant.

• Remaining copies can be eliminated through copy propagation or 
more complex analysis of partially redundant assignments.

37

t1 = a + b 

a = …      



Partial Redundancy Elimination (PRE)

• The Method:
1. Insert Computations to make partially redundant expression(s) 

fully redundant.
2. Eliminate redundant expression(s).

• Issues [Outline of Lecture]:
1. What expression occurrences are candidates for elimination?
2. Where can we safely insert computations?
3. Where do we want to insert them?

• For this lecture, we assume one expression of interest, a+b.
– In practice, with some restrictions, can do many expressions in 

parallel.

38



Which Occurrences Might Be 
Eliminated?
• In CSE,

– E is available at P if it is previously evaluated along every
path to P, with no subsequent redefinitions of operands.

– If so, we can eliminate computation at P.

• In PRE,
– E is partially available at P if it is previously evaluated 

along at least one path to P, with no subsequent 
redefinitions of operands.

– If so, we might be able to eliminate computation at P, if we 
can insert computations to make it fully redundant.

• Occurrences of E where E is partially available are 
candidates for elimination.

39



Finding Partially Available Expressions
• Forward flow problem

– Lattice = { 0, 1 }, meet is union (), Top = 0 (not PAVAIL), entry = 0

• PAVOUT[i] = (PAVIN[i] – KILL[i])  AVLOC[i]

• PAVIN[i] =

• For a block: Expression is locally available (AVLOC) 

downwards exposed; Expression is killed (KILL) if any 

assignments to operands.

40


0                      i = entry

 PAVOUT[p]     otherwise
p  preds(i)

… = a + b 

a = …

a = …     

… = a + b



Partial Availability Example
• For expression a+b. 

• Occurrence in loop is partially redundant.

41

t1 = a + b 

a  = …     

a  = …    

t2 = a + b 

KILL = 1

AVLOC = 0

KILL = 0

AVLOC = 1

KILL = 1

AVLOC = 1

PAVIN = 

PAVOUT =

PAVIN = 

PAVOUT =

PAVIN = 

PAVOUT =



Where Can We Insert Computations?
• Safety: never introduce a new expression along any path.

– Insertion could introduce exception, change program behavior.
– If we can add a new basic block, can insert safely in most cases.
– Solution: insert expression only where it is anticipated.

• Performance: never increase the # of computations on any path.

– Under simple model, guarantees program won’t get worse.
– Reality: might increase register lifetimes, add copies, lose.

42

t1 = a + b 

t3 = a + b  



Finding Anticipated Expressions
• Backward flow problem

– Lattice = { 0, 1 }, meet is intersection (), top = 1 (ANT), exit = 0

• ANTIN[i] = ANTLOC[i]  (ANTOUT[i] - KILL[i]) 

• ANTOUT[i] =

• For a block: Expression locally anticipated (ANTLOC) if 
upwards exposed.


0                      i = exit

 ANTIN[s]     otherwise
s  succ(i)

… = a + b 

a = …

a = …     

… = a + b



Anticipation Example
• For expression a+b. 

• Expression is anticipated at end of first block.
• Computation may be safely inserted there.

44

t1 = a + b 

a  = …     

a  = …    

t2 = a + b 

KILL = 1

ANTLOC = 0

KILL = 0

ANTLOC = 1

KILL = 1

ANTLOC = 0

ANTIN = 

ANTOUT =

ANTIN = 

ANTOUT =

ANTIN = 

ANTOUT =



Where Do We Want to Insert 
Computations?
• Morel-Renvoise and variants: “Placement Possible” 

– Dataflow analysis shows where to insert:
• PPIN = “Placement possible at entry of block or before.”
• PPOUT = “Placement possible at exit of block or before.”

– Insert at earliest place where PP = 1.
– Only place at end of blocks,

• PPIN really means “Placement possible or not necessary in each 
predecessor block.”

– Don’t need to insert where expression is already available.
• INSERT[i] = PPOUT[i]  (PPIN[i]  KILL[i])  AVOUT[i]

– Remove (upwards-exposed) computations where PPIN=1.
• DELETE[i] = PPIN[i]  ANTLOC[i]

45



Where Do We Want to Insert?  

46

t1 = a + b 

a  = …     

a  = …    

t2 = a + b 

PPIN = 

PPOUT = 

PPIN =

PPOUT =

PPIN =

PPOUT =



Formulating the Problem

• PPOUT: we want to place at output of this block only if
– we want to place at entry of all successors

• PPIN: we want to place at input of this block only if (all of):

– we have a local computation to place, or a placement at the end of 
this block which we can move up

– we want to move computation to output of all predecessors where 
expression is not already available (don’t insert at input)

– we can gain something by placing it here (PAVIN)

• Forward or Backward? 

– BOTH! 

• Problem is bidirectional, but lattice {0, 1} is finite, so

– as long as transfer functions are monotone, it converges.

47



Computing “Placement Possible”
• PPOUT: we want to place at output of this block only if

– we want to place at entry of all successors

• PPOUT[i] = 

• PPIN: we want to place at start of this block only if (all of):
– we have a local computation to place, or a placement at the 

end of this block which we can move up
– we want to move computation to output of all predecessors 

where expression is not already available (don’t insert at input)
– we gain something by moving it up (PAVIN heuristic)

• PPIN[i] = 

48


0                      i = entry

 PPIN[s]         otherwise
s  succ(i)


0                                         i = exit

([ANTLOC[i]  (PPOUT[i] – KILL[i])]

 (PPOUT[p]  AVOUT[p])       otherwise

 PAVIN[i])
p  preds(i)




“Placement Possible” Example 1

49

t1 = a + b 

a  = …     

a  = …    

t2 = a + b 

KILL = 1

AVLOC = 0

ANTLOC = 0

KILL = 0

AVLOC = 1

ANTLOC = 1

KILL = 1

AVLOC = 1

ANTLOC = 0

PAVIN = 0

PAVOUT = 0

AVOUT = 0

PAVIN = 1

PAVOUT = 1

AVOUT = 1

PAVIN = 1 

PAVOUT = 1

AVOUT = 1

PPIN = 

PPOUT =

PPIN = 

PPOUT =

PPIN = 

PPOUT =



“Placement Possible” Example 2

50

a = …   

a  = … 

t1 = a + b

t2 = a + b 

KILL = 1

AVLOC = 1

ANTLOC = 0

KILL = 1

AVLOC = 0

ANTLOC = 0

KILL = 0

AVLOC = 1

ANTLOC = 1

PAVIN = 0

PAVOUT = 1

AVOUT = 1

PAVIN = 0

PAVOUT = 0

AVOUT = 0

PAVIN = 1 

PAVOUT = 1

AVOUT = 1

PPIN = 

PPOUT =

PPIN = 

PPOUT =

PPIN = 

PPOUT =



“Placement Possible” Correctness

• Convergence of analysis: transfer functions are monotone.
• Safety: Insert only if anticipated.

PPIN[i]  (PPOUT[i] – KILL[i])  ANTLOC[i]

PPOUT[i] = 

• INSERT  PPOUT  ANTOUT, so insertion is safe.

• Performance: never increase the # of computations on any path 

• DELETE = PPIN  ANTLOC
• On every path from an INSERT, there is a DELETE.
• The number of computations on a path does not increase.

51


0                      i = exit

 PPIN[s]         otherwise
s  succ(i)



CSC D70: 
Compiler Optimization

LICM: Loop Invariant Code Motion

Prof. Gennady Pekhimenko

University of Toronto

Winter 2018

The content of this lecture is adapted from the lectures of 
Todd Mowry and Phillip Gibbons



Backup Slides

53


