
Assignment 3: Code Optimization and Profiling
Due Date: Apr. 5th, Total Marks: 100 pts

CSCD70H3 S (Winter) Compiler Optimization
Department of Computer Science, UTSC

ABSTRACT
In this assignment, you will write passes to improve code by LICM.
To convince yourself of the benefits of your code transformations,
you will measure the resulting program speedups.

1 POLICY
1.1 Collaboration
You will work in groups of two people to solve the problems for
this assignment (you can also choose to work individually). Please
turn in a single writeup per group, indicating the names and
UTORid of all group members.

1.2 Submission
Please include the following items in an archive labeled with the
UTORid of all group members (a3-utorid1(-utorid2).tar.gz),
and submit the resulting file via Markus (https://markus.utsc.
utoronto.ca/cscd70w18/). Pleasemake sure thatwhen this archive
is extracted, the files appear as follows:
./a3-utorid1(-utorid2)/writeup.pdf

./a3-utorid1(-utorid2)/licm/licm.cpp

./a3-utorid1(-utorid2)/licm/Makefile

./a3-utorid1(-utorid2)/licm/tests/

• A report named writeup.pdf that briefly describes the im-
plementation of the framework and both passes, and has
answers to the theoretical questions in this assignment.
• Well-commented source code for your optimization pass
licm, and associated Makefile (please write your Makefile
in such a way that the pass can be built (and run) using the
command make all).
• A subfolder named tests that contains all the microbench-
marks that were used for verification of your code.

2 PROBLEM STATEMENT
2.1 Loop Invariant Code Motion [60 pts]
In this pass, you will decrease the number of dynamic instructions
executed during a loop by identifying and hoisting out those that
are loop-invariant, as was discussed in class. Please call your pass
licm.

In addition to the usual preprocessing mem2reg, you should also
optimize your code using the LLVM built-in pass loop-simplify
to insert loop preheaders where appropriate. If this built-in pass is
unable to insert a preheader (i.e. loop->getLoopPreheader() ==
nullptr), you can ignore the loop.
It is recommended to derive from LLVM’s LoopPass. You are en-

couraged to use LLVM’s built-in pass DominatorTreeWrapperPass
and LoopInfoWrapperPass (please refer to the second tutorial on

how to achieve this using the LLVM’s optimization manager). You
are not allowed to use methods related to loop-invariance,
which includes but not limited to isLoopInvariant,
hasLoopInvariantOperands, makeLoopInvariant.You can, how-
ever, learn from LLVM’s way of doing this and write your
own equivalent implementation.

For each loop, compute the set of loop-invariant instructions. You
may ignore child nested loops that you have already processed, but
you should ensure that deeply-nested loop-invariant com-
putations can still bubble all the way out. When checking for
loop-invariance, you should also include the following additional
conditions in Listing 1 for determining whether an instruction
is invariant. Hoist to the preheader all loop-invariant instructions
that are candidates for code motion, ensuring that dependencies
are preserved.

bool isInvariant(Instruction * I)

{

bool is_invariant = // your

implementation goes here

return isSafeToSpeculativelyExecute(I)

&& !I->mayReadFromMemory ()

&& !isa < LandingPadInst > (I)

&& is_variant;

}

Listing 1: isInvariant Code Snippet

In your documentation, please make sure to describe at least
the following three points: (1) how you check for loop invari-
ance, and also, why you think we need the additional conditions in
Listing 1 (especially the first two) (2) how you hoist the code that
is loop-invariant to the loop preheader (3) how you handle cases
where there are nested for-loops .

2.2 LLVM Profiling [20 pts]
Programs can be profiled in multiple ways. You could simply time
your program over some number of iterations, but your results
would be highly dependent on your particular machine’s hardware
and software configuration; however, this requires no changes to
be made to the program under inspection.

Another way to estimate the performance of a program is to
simply measure how many LLVM instructions are dynamically exe-
cuted when it runs. To do this, you can use lli, the LLVM interpreter.
Ordinarily the interpreter will try to Just-In-Time (JIT) compile the
bytecode passed to it, but you can force it to take the slow path
(while counting instructions) by using the command:

$ lli -stats -force -interpreter my_test.bc

1



CSCD70 H3, Winter 2018, University of Toronto CSCD70H3 S (Winter) Compiler Optimization

You should always get the same instruction count every time
you run lli. This approach works best with test programs that have
a main() function. This is, of course, not a very good machine
model - for example, all instructions are assigned the same cost
(even pseudo-instructions, like getelementptr) and there is no
notion of memory latency. As a first pass, though, it provides a nice
way to measure the effectiveness of your passes. In your writeup,
please discuss the changes in dynamic instruction count on
the transformed bytecode after running your pass on each
microbenchmark.

3 THEORETICAL QUESTIONS
3.1 Register Allocation [20 pts]
Suppose that you have a processor with four registers. Consider
the following code, where only definitions and uses of interest are
shown. Perform the register allocation algorithm described in
class, showing the following steps for full marks: (1) live variables
(2) reaching definitions (3) live ranges (4) interference graph (5) final
colored graph .

Figure 1: Code for Register Allocation Analysis

2


	Abstract
	1 Policy
	1.1 Collaboration
	1.2 Submission

	2 Problem Statement
	2.1 Loop Invariant Code Motion [60 pts]
	2.2 LLVM Profiling [20 pts]

	3 Theoretical Questions
	3.1 Register Allocation [20 pts]


