
Assignment 2: Iterative Dataflow Analysis Framework
Due Date: Mar. 8th, Total Marks: 100 pts

CSCD70H3 S (Winter) Compiler Optimization
Department of Computer Science, UTSC

ABSTRACT
In class, we discussed many interesting data flow analyses such
as Reaching Definitions, Liveness, and Available Expressions. Al-
though these analyses are different in certain ways, for example
they compute different program properties and analyze the pro-
gram in different directions (forwards, backwards), they share some
common properties such as iterative algorithms, transfer functions,
and meet operators. These commonalities make it worthwhile to
write a generic framework that can be parameterized appropriately
for solving a specific data flow analysis. In this assignment, you will
implement such an iterative data flow analysis framework in LLVM,
and use it to implement a forward data flow analysis (Reaching
Definitions) and a backward data flow analysis (Liveness). Although
Liveness and Reaching Definitions implementations are available
in some form in LLVM, they are not of the iterative flavor, and the
objective of this assignment is to create a generic framework for
solving iterative bit-vector dataflow analysis problems, and use it
to implement Liveness and Reaching Definitions analysis.

1 POLICY
1.1 Collaboration
You will work in groups of two people to solve the problems for
this assignment (you can also choose to work individually). Please
turn in a single writeup per group, indicating the names and
UTORid of all group members.

1.2 Submission
Please include the following items in an archive labeled with the
UTORid of all group members (a2-utorid1(-utorid2).tar.gz),
and submit the resulting file via Markus (https://markus.utsc.
utoronto.ca/cscd70w18/). Pleasemake sure thatwhen this archive
is extracted, the files appear as follows:
./a2-utorid1(-utorid2)/writeup.pdf

./a2-utorid1(-utorid2)/Dataflow/inc/Framework.hpp

./a2-utorid1(-utorid2)/Dataflow/src/AvailableExpr.cpp

./a2-utorid1(-utorid2)/Dataflow/src/Liveness.cpp

./a2-utorid1(-utorid2)/Dataflow/Makefile

./a2-utorid1(-utorid2)/Dataflow/tests/
1

• A report named writeup.pdf that briefly describes the im-
plementation of the framework and both passes, and has
answers to the theoretical questions in this assignment.

1You are free to organize your files (e.g. you can have two source files AvailableExpr.
cpp and AvailableExprSupport.cpp for the Available Expressions problem), but
please write your makefile accordingly.

• Well-commented source code for your iterative framework
and passes (AvailableExpr and Liveness), and associated
Makefile (please write your Makefile in such a way that all
passes can be built, integrated (and run) using the command
make all).
• A subfolder named tests that contains all the microbench-
marks that were used for verification of your code.

2 PROBLEM STATEMENT
2.1 Iterative Framework [40 pts]
A well written iterative data flow analysis framework significantly
reduces the burden of implementing new data flow passes, the
developer only writes pass specific details such as the meet operator,
transfer function, analysis direction etc. In particular, the frame-
work should solve any unidirectional data flow analysis as
long the analysis supplies the following:

(1) Domain (including the Semi-Lattice)
(2) Direction (Forwards/Backwards)
(3) Transfer Function
(4) Meet Operation
(5) Boundary Condition
(6) Initial Interior Points (Top)
To simplify the design process, the domain of values should be

represented as bit vectors so that the semi-lattice and set operations
(union, intersection) are easy to implement. Careful thought should
be given to how the analysis parameters are represented. For exam-
ple, direction could reasonably be represented as a boolean, while
function pointers may seem more appropriate for representing
transfer functions.

Please note that it will be worth your time putting more
thoughts and efforts on this part because you will be using
this framework in the upcoming Assignment 3.

Hint: If you are not sure where to get started, please first proceed
to the next section and start working on the Liveness and Available
Expressions problem, because you can have a better idea of what those
dataflow-analysis problems share in common.

2.2 Dataflow Analysis [40 pts]
2.2.1 Liveness [20 pts]. Upon convergence, your Liveness pass

should report all variables that are live at each program point. For
this assignment, we will only track the liveness of instruction-de-
fined values and function arguments. That is, when determin-
ing which values are used by an instruction, you will use code like
this:

CSCD70 H3, Winter 2018, University of Toronto CSCD70H3 S (Winter) Compiler Optimization

Instruction * inst = ...

for (auto iter = inst ->op_begin ();

iter != inst ->op_end (); ++iter)

{

Value * val = *iter;

if (isa < Instruction > (val) ||

isa < Argument > (val))

{

...

}

}

You should carefully consider how your analysis passes are af-
fected by the ϕ instructions. For example, your passes should not
output results for the program point preceding a ϕ instruction
since they are pseudo-instructions which will not appear in the
executable.

The fact that you are working on code in SSA form will have
ramifications on how your passes are implemented. Think carefully
about what this means to your implementation and briefly explain
this in your assignment report.

2.2.2 Available Expressions [20 pts]. Upon convergence, your
Available Expressions pass should report all the binary expressions
that are available at each program point. For this assignment, we
are only concerned with expressions represented by an in-
stance of BinaryOperator. Analyzing comparison instructions
and unary instructions such as negation is not required.

We will consider two expressions equal if the instructions that
calculate these expressions share the same opcode, left-hand-side
and right-hand-side operand. In addition to this, the expression x
op y is equal to expression y op x under the condition that the
operator op is commutative.

3 THEORY QUESTIONS
3.1 Loop Invariant Code Motion [10 pts]
Suppose that you are given the code shown in Figure 1.

(1) List the loop invariant instructions.
(2) Indicate if each loop invariant instruction can be moved to

the loop preheader, and give a brief justification.

y = 0
z = 4
a = 9

S1:
S2:
S3:

z = z + 1
y = 5
q = 7

(z < 50)?

S4:
S5:
S6:

a = a - 1
h = 3
x = 1

S7:
S8:
S9:

a = a + 2
h = 4
x = 1

(z < 100)?

S10:
S11:
S12:
S13:

m = y + 7
n = h + 2
y = 7

r = q + 5

print(a, h, m, n, q, x, y, z)

Exit

Entry

Figure 1: CFG for Analysis

3.2 Lazy Code Motion [10 pts]
Suppose that you are optimizing the code shown below in Listing 1.

(1) Build the control-flow graph for this code, indicating which
instructions from the original code will be in each basic block.
Using the algorithm described in class, provide anticipated
expressions for each basic block.

(2) Now, provide available expressions for each basic block,
and indicate the earliest basic block for each expression,
if applicable.

(3) Next, provide postponable expressions and used expres-
sions for each basic block, and indicate the latest basic block
for each expression, if applicable.

(4) Complete the final pass of lazy code motion by inserting
and replacing expressions. Provide the finished control-flow
graph, and label each basic block with its instruction(s).

Assignment 2: Iterative Dataflow Analysis Framework CSCD70 H3, Winter 2018, University of Toronto

foo(a, b, c)

{

if (a > 5)

{

g = b + c;

}

else

{

while (b < 5)

{

b = b + 1;

d = b + c;

}

}

e = b + c;

return e;

}

Listing 1: Source Code for Analysis

CSCD70 H3, Winter 2018, University of Toronto CSCD70H3 S (Winter) Compiler Optimization

APPENDICES
Appendix A Framework Instantiation
For your reference, given below is how those two problems should fit into the general framework that you have developed.

Liveness Available Expressions

Domain Sets of Variables Sets of Expressions

Directions
Backwards Forwards
IN[B] = fB (OUT[B]) OUT[B] = fB (IN[B])
OUT[B] = ∧S,succ(B) IN[S] IN[B] = ∧P,pred(B)OUT[P]

Transfer Function useB ∪ (x − defB) genB ∪ (x − killB)
Boundary IN[exit] = ∅ OUT[entry] = ∅
Meet (∧) ∪ ∩

Initial in[B] = ∅ OUT[B] = U

Assignment 2: Iterative Dataflow Analysis Framework CSCD70 H3, Winter 2018, University of Toronto

Appendix B Example on Liveness

1 int sum(int a, int b)

2 {

3 int res = 1;

4
5 for (int i = a; i < b; i++)

6 {

7 res *= i;

8 }

9 return res;

10 }

Listing 2: Example Source Code for Analysis

1 define i32 @sum(i32 , i32) #0 {

2 br label %3

3
4 ; <label >:3: ; preds = %7, %2

5 %.01 = phi i32 [1, %2], [%6, %7]

6 %.0 = phi i32 [%0, %2], [%8, %7]

7 %4 = icmp slt i32 %.0, %1

8 br i1 %4, label %5, label %9

9
10 ; <label >:5: ; preds = %3

11 %6 = mul nsw i32 %.01 , %.0

12 br label %7

13
14 ; <label >:7: ; preds = %5

15 %8 = add nsw i32 %.0, 1

16 br label %3

17
18 ; <label >:9: ; preds = %3

19 ret i32 %.01

20 }

Listing 3: LLVM Bytecode after llvm-dis

CSCD70 H3, Winter 2018, University of Toronto CSCD70H3 S (Winter) Compiler Optimization

Table 1: Expected Output according to the Bytecode above

%0, %1

br label %3

-

%.01 = phi i32 [1, %2], [%6, %7]
-

%.0 = phi i32 [%0, %2], [%8, %7]
%.01, %0, %.0, %1

%4 = icmp slt i32 %.0, %1
%.01, %0, %.0, %1, %4

br i1 %4, label %5, label %9

%.01, %0, %.0, %1

%6 = mul nsw i32 %.01 , %.0
%0, %6, %.0, %1

br label %7

%0, %6, %.0, %1

%8 = add nsw i32 %.0, 1
%0, %6, %8, %1

br label %3

%.01

ret i32 %.01

Assignment 2: Iterative Dataflow Analysis Framework CSCD70 H3, Winter 2018, University of Toronto

Appendix C Example on Available Expression

1 int main(int argc , char * argv [])

2 {

3 int a, b, c, d, e, f;

4
5 a = 50;

6 b = argc + a;

7 c = 96;

8 e = b + c;

9
10 if (a < b)

11 {

12 f = b - a;

13 e = c * b;

14 }

15 else

16 {

17 f = b + a;

18 e = c * b;

19 }

20 b = a - c;

21 d = b + f;

22
23 return 0;

24 }

Listing 4: Example Source Code for Analysis

1 define i32 @main(i32 , i8**) #0 {

2 %3 = add nsw i32 %0, 50

3 %4 = add nsw i32 %3, 96

4 %5 = icmp slt i32 50, %3

5 br i1 %5, label %6, label %9

6
7 ; <label >:6: ; preds = %2

8 %7 = sub nsw i32 %3, 50

9 %8 = mul nsw i32 96, %3

10 br label %12

11
12 ; <label >:9: ; preds = %2

13 %10 = add nsw i32 %3, 50

14 %11 = mul nsw i32 96, %3

15 br label %12

16
17 ; <label >:12: ; preds = %9, %6

18 %.0 = phi i32 [%7, %6], [%10, %9]

19 %13 = sub nsw i32 50, 96

20 %14 = add nsw i32 %13, %.0

21 ret i32 0

22 }

Listing 5: LLVM Bytecode after llvm-dis

CSCD70 H3, Winter 2018, University of Toronto CSCD70H3 S (Winter) Compiler Optimization

Table 2: Expected Output according to the Bytecode above

∅

%3 = add nsw i32 %0, 50
[add %0, 50]

%4 = add nsw i32 %3, 96
[add %0, 50], [add %3, 96]

%5 = icmp slt i32 50, %3
[add %0, 50], [add %3, 96]

br i1 %5, label %6, label %9
[add %0, 50], [add %3, 96]

%7 = sub nsw i32 %3, 50
[add %0, 50], [add %3, 96], [sub %3, 50]

%8 = mul nsw i32 96, %3
[add %0, 50], [add %3, 96], [sub %3, 50], [mul 96, %3]

br label %12
[add %0, 50], [add %3, 96], [sub %3, 50], [mul 96, %3]

%10 = add nsw i32 %3, 50
[add %0, 50], [add %3, 96], [add %3, 50]

%11 = mul nsw i32 96, %3
[add %0, 50], [add %3, 96], [add %3, 50], [mul 96, %3]

br label %12
[add %0, 50], [add %3, 96], [add %3, 50], [mul 96, %3]

%.0 = phi i32 [%7, %6], [%10, %9]
[add %0, 50], [add %3, 96], [mul 96, %3]

%13 = sub nsw i32 50, 96
[add %0, 50], [add %3, 96], [mul 96, %3], [sub 50, 96]

%14 = add nsw i32 %13, %.0
[add %0, 50], [add %3, 96], [mul 96, %3]
[sub 50, 96], [add %13, %.0]

ret i32 0
[add %0, 50], [add %3, 96], [mul 96, %3]
[sub 50, 96], [add %13, %.0]

	Abstract
	1 Policy
	1.1 Collaboration
	1.2 Submission

	2 Problem Statement
	2.1 Iterative Framework [40 pts]
	2.2 Dataflow Analysis [40 pts]

	3 Theory Questions
	3.1 Loop Invariant Code Motion [10 pts]
	3.2 Lazy Code Motion [10 pts]

	APPENDICES
	Appendix A Framework Instantiation
	Appendix B Example on Liveness
	Appendix C Example on Available Expression

