
Assignment 1: Introduction to LLVM
Due Date: Feb. 1st, Total Mark: 100 pts

CSCD70H3 S (Winter) Compiler Optimization
Department of Computer Science, UTSC

ABSTRACT
Welcome to CSCD70H3 S (Winter) Compiler Optimization. We will
be using the Low Level Virtual Machine (LLVM) Compiler infras-
tructure from University of Illinois Urbana-Champaign (UIUC) for
our programming assignments. While LLVM is currently supported
on a number of hardware platforms, we expect the assignments
to be completed on x86 machines, since that is where they will be
graded. We strongly recommend that assignments be done in the
Linux VM that we provide.

The objective of this first assignment is to introduce you to
LLVM and some ways that it can be used to make your programs
run faster. In particular, you will use LLVM to analyze code to
output interesting properties about your program (Section 4.1) and
to perform local optimizations (Section 4.2).

1 POLICY
1.1 Collaboration
You will work in groups of two people to solve the problems for
this assignment. Please turn in a single writeup per group, in-
dicating the names and UTORid of both group members.

1.2 Submission
Please include the following items in an archive labeled with the
UTORid of both group members (a1-utorid1-utorid2.tar.gz),
and email the resulting file to bojian@cs.toronto.edu. Please
make sure that when this archive is extracted, the files appear
as follows:
./a1-utorid1-utorid2/writeup.pdf

./a1-utorid1-utorid2/FunctionInfo/FunctionInfo.cpp

./a1-utorid1-utorid2/FunctionInfo/Makefile

./a1-utorid1-utorid2/FunctionInfo/tests/...

./a1-utorid1-utorid2/LocalOpts/LocalOpts.cpp

./a1-utorid1-utorid2/LocalOpts/Makefile

./a1-utorid1-utorid2/LocalOpts/tests/...
1

• A report named writeup.pdf that briefly describes the im-
plementation of both passes, and has answers to the theoret-
ical questions in this assignment.
• Well-commented source code for your passes (Function-
Info andLocalOpts), and associated Makefile (pleasewrite
your Makefile in such a way that all passes can be built and
integrated using the command make all).
• Two subfolders named tests that contain all the microbench-
marks that were used for verification of your code.

1You do not have to implement all your local optimization passes in one file.

2 SETUP: THE LLVM COMPILER
To ensure that all assignments are graded in the same environment
with LLVM 5.0.1, we will be distributing a virtual machine based on
32-bit Ubuntu 16.04 (Xenial). You must ensure that all of your
code works in this image, but you are not required to do all
of your development in it.

The VirtualBox software is available on several platforms from
https://www.virtualbox.org/. The provided image was built
with version 5.2. On some machines, you may need to enable vir-
tualization extensions in the BIOS. The virtual machine image is
available from /cmshome/pekhimen/cscd70w18_space. The ma-
chine name is CSCD70, and an account has been created with user
name cscd70 and password llvm. The LLVM source files are
located at /Workspace/LLVM/.

3 EXAMPLE: CREATING A PASS
The source file FunctionInfo/FunctionInfo.cpp that is provided
with this assignment contains a dummy LLVM pass for analyzing
the functions in a program. Currently it only prints out

CSCD70 Functions Information Pass

In the next section, you will extend this file to print out more
interesting information. For now, we will use the dummy LLVM
pass to demonstrate how to build and run LLVMpasses on programs.
Using the provided Makefile, make sure that you can make this
dummy pass.

Compile the source code tests/loop.c to an optimized LLVM
bytecode object (loop.bc) as follows:

clang -O -emit-llvm -c tests/loop.c -o tests/loop.bc

(clang is the LLVM’s frontend for the C language family), and
inspect the loop.bc generated bytecode using llvm-dis with the
command llvm-dis ./tests/loop.bc -o=./tests/loop.ll.
This will create a disassembly listing in loop.ll of the loop.bc
bytecode.

Now try running the dummy FunctionInfo pass on the byte-
code. To do this, use the opt command as follows:

opt -load FunctionInfo/FunctionInfo.so
-function-info loop.bc -o loop-finfo.bc

Note the use of flag -function-info to enable this pass (see if
you can locate the declaration of this flag).

If all goes well, CSCD70 Function Information Pass should
be printed to stdout. We also have another makefile Optimize.mk
that automatically goes through all the above process. Upon en-
tering make -f Optimize.mk all (you might need to clean the
previous output files using the command make clean), you should
be able to see the same output from the command line. It is up to
you to decide whether to keep the pass building and IR optimization
together or separate.



CSCD70H3 S, Spring 2018, UTSC CSCD70H3 S (Winter) Optimizing Compilers

4 PROBLEM STATEMENT
4.1 Function Information [40 pts]
Program analysis is an important prerequisite to applying optimiza-
tions, we want to improve code, not break it. For example, before
the optimizer can remove some piece of code to make program run
faster, it must examine other parts of the program to determine
whether the code is truly redundant. A compiler pass is the standard
mechanism for analyzing and optimizing programs.

You will extend the dummy FunctionInfo pass from the previ-
ous section to learn interesting properties about the functions in a
program. Your pass should report the following information about
all functions that appear in a program:

(1) Name
(2) Number of Arguments (* if applicable)
(3) Number of direct call sites in the same LLVM module (i.e.

locations where this function is explicitly called, ignoring
function pointers).

(4) Number of Basic Blocks
(5) Number of Instructions
As an example, the expected output of running FunctionInfo

on the optimized bytecode is shown in Table 1. As you can see, the
output in Table 1 is not that interesting, since loop.c is a fairly
trivial piece of code. Note, however, that although the source code
for loop.c has a call to g_incr in loop, this call is optimized away
in the LLVM bytecode, even when using the -O0 flag. When re-
porting the number of calls, please count the number that
appear in the bytecode, even if this does not match the num-
ber of calls in the original source code.

It is recommended that you debug your pass with more complex
source files, as you can imagine grading will be done with complex
programs. Feel free to hand in your additional testing source files
in a separate directory together with your source code.

Table 1: Expected FunctionInfo Output for loop.c

Name # Args # Calls # Blocks # Insts

g_incr 1 0 1 4
loop 3 0 3 10

4.2 Local Optimizations [40 pts]
Now that you are familiar with LLVM passes, it is time to write a
pass for making programs faster. You will implement optimizations
on basic blocks as discussed in class. While there are many types of
local optimizations, we will keep things quite simple in this section
and focus only on the algebraic optimizations. Specifically, you will
implement the following local optimizations:

(1) Algebraic Identities

x + 0 = 0 + x ⇒ x

(2) Strength Reductions

2 × x = x × 2⇒ (x + x ) or x ≪ 1

(3) Multi-Inst. Optimization

a = b + 1, c = a − 1⇒ a = b + 1, c = b

This is a somewhat open-ended question. Please handle at
least the above cases, as well as one more in each category
that you come up with, for integer targets.

You should create a new LLVM pass in the file LocalOpts/
LocalOpts.cpp following the steps in Section 4.1. Because this
will be an optimization pass rather than an analysis pass, there will
be some small differences from the set up of the FunctionInfo
pass. Provide an appropriate Makefile at LocalOpts/Makefile
(again, please try to write your Makefile in such a way that the
pass can be built using the command make all).

To better test your pass, you should build unoptimized LLVM
bytecode from the test cases using the following commands:

clang -O0 -Xclang -disable-O0-optnone
-emit-llvm -c mytest.c

opt -mem2reg mytest.bc -o mytest-m2r.bc

(you may assume that all input to your pass will first go through
mem2reg pass as shown above).

In addition to transforming the bytecode, your pass should also
print to standard output a summary of the optimizations it per-
formed. There is no canonical format for this output, but you should
at least try to categorize and count the transformations your pass
applies, e.g.

Transformations applied:
Algebraic Identities: 2
Strength Reduction: 3
Multi-Inst. Optimization: 1

5 THEORETICAL QUESTIONS
5.1 Control Flow Graph (CFG) [5 pts]
Consider the following code and answer the questions below:

S1: x = x + 1
S2: if (y < 10) goto S5
S3: k = k + 1
S4: x = x + 1
S5: if (x < 100) goto S4
S6: y = y + 1
S7: x = 0
S8: if (y < 100) goto S1
S9: print x
S10: print y
S11: return

(1) Identify the leader instruction and their corresponding
basic blocks. Draw the CFG.

(2) Identify the back-edge(s) in the CFG drawn in the part 1.
Write them down using the form T → H , where T is the
basic block at the tail of the edge and H is the basic block at
the head of the edge.

5.2 Natural Loops [5 pts]
Find the describe the natural loops in the following code. For full
marks, be sure to show (1) basic blocks (2) CFG (3) dominator tree
(4) back-edges (head and tail) (5) basic blocks that comprise the
natural loop for each back-edge. Be sure to give your basic blocks
clear labels that match those in the original code:



Assignment 1: Introduction to LLVM CSCD70H3 S, Spring 2018, UTSC

x = 100
y = 0
go to L4

L1: y = x * y
if (x < 50) go to L2
y = x - y
go to L3

L2: y = x + y
L3: print y

if (y < 1000) go to L1
if (x <= 0) go to L5

L4: x = x - 1
go to L1

L5: return y

5.3 Available Expressions [10 pts]
An expression x ⊕y is available at a point p if every path from the
entry node to p evaluates x ⊕ y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.
For the available expressions dataflow schemawe say that a block
kills expression x ⊕ y if it assigns (or may assign) x or y and does
not subsequently recompute x ⊕ y. A block generates expression
x ⊕ y if it definitely evaluates x ⊕ y and does not subsequently
define x or y.

Based on this definition and the corresponding dataflow analysis
description in Table 2, perform available expressions analysis on
the code in Figure 1.

Table 2: Definitions of Available Expressions

Domain Sets of Expressions
Directions Forwards
Transfer Function genB ∪ (x − killB )
Boundary OUT[entry] = 0
Meet (∧) ∩

OUT Equation OUT[B] = fB (IN[B])
IN Equation IN[B] = ∧P,pred(B )OUT[P]
Initial OUT[B] = U

For each basic block, list the GEN, KILL, and final IN and OUT
sets, after the available expressions analysis is performed, as is
shown below in Table 3. You may ignore expressions inside condi-
tional statements.

Table 3: Solution Format

BB GEN KILL IN OUT

1
2
...

1

a = b + c
d = c * c
e = a * c
i = 1

2

b = d
f = b + c
y = i + 1
(c > d)?

3 c = 8
f = c * c 4 x = b + c

c = c * c

5 i = i + 1
(i < 100)?

Exit

Entry

Figure 1: Code for Analysis


	Abstract
	1 Policy
	1.1 Collaboration
	1.2 Submission

	2 Setup: the LLVM Compiler
	3 Example: Creating a Pass
	4 Problem Statement
	4.1 Function Information [20 pts]
	4.2 Local Optimizations [20 pts]

	5 Theoretical Questions
	5.1 Control Flow Graph (CFG) [10 pts]
	5.2 Natural Loops [10 pts]
	5.3 Available Expressions [20 pts]


