Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency

Gennady Pekhimenko
Advisers: Todd C. Mowry & Onur Mutlu
Executive Summary

- Main memory is a limited shared resource
- **Observation**: Significant data redundancy
- **Idea**: Compress data in main memory
- **Problem**: How to avoid latency increase?
- **Solution**: Linearly Compressed Pages (LCP): fixed-size cache line granularity compression
 1. Increases capacity (69% on average)
 2. Decreases bandwidth consumption (46%)
 3. Improves overall performance (9.5%)
Challenges in Main Memory Compression

1. Address Computation

2. Mapping and Fragmentation

3. Physically Tagged Caches
Address Computation

Uncompressed Page

Address Offset | 0 | 64 | 128 | (N-1)*64

Cache Line (64B)

Compressed Page

Address Offset | 0 | ? | ? | ?
Mapping and Fragmentation

Virtual Page
(4kB)

Virtual Address

Physical Page
(? kB)

Physical Address

Fragmentation
Physically Tagged Caches

Critical Path

Virtual Address

Address Translation

Physical Address

L2 Cache Lines
Shortcomings of Prior Work

<table>
<thead>
<tr>
<th>Compression Mechanisms</th>
<th>Access Latency</th>
<th>Decompression Latency</th>
<th>Complexity</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM MXT [IBM J.R.D. ’01]</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Shortcomings of Prior Work

<table>
<thead>
<tr>
<th>Compression Mechanisms</th>
<th>Access Latency</th>
<th>Decompression Latency</th>
<th>Complexity</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM MXT [IBM J.R.D. ’01]</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Robust Main Memory Compression [ISCA’05]</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>
Shortcomings of Prior Work

<table>
<thead>
<tr>
<th>Compression Mechanisms</th>
<th>Access Latency</th>
<th>Decompression Latency</th>
<th>Complexity</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM MXT [IBM J.R.D. ’01]</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Robust Main Memory Compression [ISCA’05]</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>LCP: Our Proposal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Linearly Compressed Pages (LCP): Key Idea

Uncompressed Page (4kB: 64*64B)

4:1 Compression

Compressed Data (1kB)

Metadata (64B): ? (compressible)
LCP Overview

• Page Table entry extension
 – compression type and size
 – extended physical base address

• Operating System management support
 – 4 memory pools (512B, 1kB, 2kB, 4kB)

• Changes to cache tagging logic
 – physical page base address + cache line index
 (within a page)

• Handling page overflows

• Compression algorithms: BDI [PACT’12], FPC [ISCA’04]
LCP Optimizations

- **Metadata** cache
 - Avoids additional requests to metadata

- Memory bandwidth reduction:
 - Zero pages and zero cache lines
 - Handled separately in TLB (1-bit) and in metadata (1-bit per cache line)

- Integration with cache compression
 - BDI and FPC

1 transfer instead of 4

![Diagram showing memory bandwidth reduction](image)
Methodology

• Simulator
 – x86 event-driven simulators
 • Simics-based \cite{Magnusson+02} for CPU
 • Multi2Sim \cite{Ubal+12} for GPU

• Workloads
 – SPEC2006 benchmarks, TPC, Apache web server, GPGPU applications

• System Parameters
 – L1/L2/L3 cache latencies from CACTI \cite{Thoziyoor+08}
 – 512kB - 16MB L2, simple memory model
Compression Ratio Comparison

SPEC2006, databases, web workloads, 2MB L2 cache

GeoMean

LCP-based frameworks achieve competitive average compression ratios with prior work
Bandwidth Consumption Decrease

SPEC2006, databases, web workloads, 2MB L2 cache

LCP frameworks significantly reduce bandwidth (46%)
Performance Improvement

<table>
<thead>
<tr>
<th>Cores</th>
<th>LCP-BDI</th>
<th>(BDI, LCP-BDI)</th>
<th>(BDI, LCP-BDI+FPC-fixed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1%</td>
<td>9.5%</td>
<td>9.3%</td>
</tr>
<tr>
<td>2</td>
<td>13.9%</td>
<td>23.7%</td>
<td>23.6%</td>
</tr>
<tr>
<td>4</td>
<td>10.7%</td>
<td>22.6%</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

LCP frameworks significantly improve performance
Conclusion

• A new main memory compression framework called **LCP**(Linearly Compressed Pages)
 – **Key idea:** fixed size for compressed cache lines within a page and **fixed compression algorithm** per page

• LCP evaluation:
 – Increases capacity (**69%** on average)
 – Decreases bandwidth consumption (**46%**)
 – Improves overall performance (**9.5%**)
 – Decreases energy of the off-chip bus (**37%**)

Linearly Compressed Pages: A Main Memory Compression Framework with Low Complexity and Low Latency

Gennady Pekhimenko
Advisers: Todd C. Mowry & Onur Mutlu