
Linearly Compressed Pages: A Main Memory Compression Framework
with Low Complexity and Low Latency

Gennady Pekhimenko, Todd C. Mowry, and Onur Mutlu
gpekhime@cs.cmu.edu, tcm@cs.cmu.edu, onur@cmu.edu

Categories and Subject Descriptors: B.3.2 [Design Styles]:
Primary Memory, Cache Memories
Keywords: Main memory compression, cache compression

1. Introduction and Motivation
Main memory is a critical resource in modern systems. Its ca-

pacity must be sufficiently provisioned to prevent the target appli-
cation’s working set from overflowing into the backing store (e.g.,
hard disk, flash storage) that is slower by orders of magnitude com-
pared to DRAM. Adding more DRAM to meet the increasing main
memory demand is ideally not desirable, because this will signifi-
cantly increase both the system’s cost and the power consumption.

One potential way of addressing DRAM capacity problem is by
using data compression. Data compression was previously used to
increase the effective cache size [2, 3, 5, 6, 7], and DRAM capac-
ity [1, 4], and to decrease bandwidth consumption [6]. One of the
primary concerns with data compression is that decompression lies
on the critical path of accessing any compressed data. To counter
this problem, prior work [2, 6, 7] has proposed specialized com-
pression algorithms that exploit some regular patterns present in
in-memory data, and has shown that such specialized algorithms
have high compression ratios while incurring relatively lower de-
compression latencies (1-5 cycles).

One of the primary reasons, why applying these works directly
to main memory is difficult, is a virtual to physical page map-
ping. When a virtual page is mapped to a compressed physical
page, the virtual page offset of a cache line can be different from
the corresponding physical page offset since each physical cache
line is expected to be smaller than the virtual cache line. In fact,
where a compressed cache line resides in a main memory page is
dependent on the sizes of the compressed cache lines that come
before it in the page. As a result, accessing a cache line within a
compressed page in main memory requires an additional layer of
indirection to compute the location of the cache line in main mem-
ory. This indirection not only increases complexity and cost, but
also can increase the latency of main memory access, and thereby
degrade system performance.

Our goal in this work is to build a main memory compres-
sion framework that neither incurs the latency penalty nor requires
power-inefficient hardware. To this end, we propose a new ap-
proach to compress pages, which we call Linearly Compressed
Pages (LCP). The key idea of LCP is that if all the cache lines
within a page are compressed to the same size, then the loca-
tion of a cache line within a compressed page is simply the prod-
uct of the index of the cache line and the compressed cache line
size. Based on this idea, each compressed page has a target com-
pressed cache line size. Cache lines that cannot be compressed to
this target size are called exceptions. All exceptions, along with
the metadata required to locate them, are stored separately on the
same compressed page. We adapt two previously proposed com-
pression algorithms (Frequent Pattern Compression [2] and Base-
Delta-Immediate Compression [6]) to fit the requirements of LCP,

Copyright is held by the author/owner(s).
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
ACM 978-1-4503-1182-3/12/09.

and show that the resulting designs can significantly improve ef-
fective main memory capacity on a wide variety of workloads.
2. Main Memory Compression Background

In summary, prior works on hardware-based main memory com-
pression mitigate the performance degradation due to the main
memory address computation problem by either adding large hard-
ware structures (e.g., 32MB L2 cache) that consume significant
area and power [1] or by using techniques that require energy-
inefficient hardware and lead to wasted energy [4]. In contrast, in
this work, we propose a new main memory compression frame-
work that simplifies the nature of the main memory address com-
putation, thereby significantly reducing the associated latency (com-
pared to prior approaches) without requiring energy-inefficient hard-
ware structures.
3. Our Approach: Key Idea

The key idea of LCP is to use a fixed size for compressed
cache lines within a page (which eliminates complex and long-
latency main memory address calculation problem that arises due
to variable-size cache lines), and still enable a page to be com-
pressed even if not all cache lines within the page can be com-
pressed to that fixed size (which enables high compression ratios).
Since all the cache lines within a page are compressed to the same
size, then the location of a compressed cache line within the page
is simply the product of the index of the cache line within the page
and the size of the compressed cache line – essentially a linear
scaling using the index of the cache line.

It is clear, that some cache lines within a page may not be com-
pressible to a specific fixed size (using some simple compression
mechanism as BDI). Also, a cache line which is originally com-
pressed to the target size may later become uncompressible due to
a write. LCP stores such uncompressible cache lines of a page sep-
arately from the compressed cache lines (but still within the page),
along with the metadata required to locate them.

There are two major benefits of having such a compressed page
organization. First, it is possible to avoid the accesses to the spe-
cial pages with metadata (as in MXT), and, hence, potentially
avoid additional DRAM row misses. Second, when the data and
the metadata are both located on the same page (e.g., 4kB in size),
it is then possible to pipeline the requests to both of the them, since
they are located on the same active DRAM row. Both these bene-
fits decrease the negative effect of a higher access latency.

We also propose three simple optimizations to our LCP frame-
work: (1) metadata cache, (2) memory bandwidth reduction, and
(3) exploiting zero pages and zero cache lines.
References
[1] B. Abali and et al. Memory expansion technology (MXT): software support and performance.

IBM J. Res. Dev., 45:287–301, 2001.
[2] A. R. Alameldeen and D. A. Wood. Adaptive cache compression for high-performance

processors. In ISCA-31, 2004.
[3] J. Dusser, T. Piquet, and A. Seznec. Zero-content augmented caches. In ICS, 2009.
[4] M. Ekman and P. Stenstrom. A robust main-memory compression scheme. In ISCA-32, 2005.
[5] E. G. Hallnor and S. K. Reinhardt. A unified compressed memory hierarchy. In HPCA-11,

2005.
[6] G. Pekhimenko and et al. Base-delta-immediate compression: A practical data compression

mechanism for on-chip caches. In PACT, 2012.
[7] J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in data caches. In MICRO-33,

2000.


