
Benchmarking and Analyzing Deep Neural Network

Training

Hongyu Zhu

University of Toronto

Toronto, Canada

serailhydra@cs.toronto.edu

Mohamed Akrout

University of Toronto

Toronto, Canada

makrout@cs.toronto.edu

Bojian Zheng

University of Toronto

Toronto, Canada

bojian@cs.toronto.edu

Andrew Pelegris

University of Toronto

Toronto, Canada

andrew.pelegris@mail.utoronto.ca

Anand Jayarajan

University of British Columbia

Vancouver, Canada

anandj@cs.ubc.ca

Amar Phanishayee

Microsoft Research

Redmond, United States

amar@microsoft.com

Bianca Schroeder

University of Toronto

Toronto, Canada

bianca@cs.toronto.edu

Gennady Pekhimenko

University of Toronto

Toronto, Canada

pekhimenko@cs.toronto.edu

Abstract—The recent popularity of deep neural networks
(DNNs) has generated considerable research interest in perform-
ing DNN-related computation efficiently. However, the primary
focus is usually very narrow and limited to (i) inference – i.e.
how to efficiently execute already trained models and (ii) image
classification networks as the primary benchmark for evaluation.

Our primary goal in this work is to break this myopic view
by (i) proposing a new benchmark suite for DNN training, called
TBD

1, which comprises a representative set of eight DNN models
and covers six major machine learning applications: image
classification, machine translation, speech recognition, object
detection, adversarial networks, reinforcement learning, and (ii)
performing an extensive performance analysis of these models
on three major deep learning frameworks (TensorFlow, MXNet,
CNTK) across different hardware configurations (single-GPU,
multi-GPU, and multi-machine). We present a new toolchain for
performance analysis for these models that combines the targeted
usage of existing performance analysis tools, careful selection of
performance metrics, and methodologies to analyze the results.
We also build a new set of tools for memory profiling in three
major frameworks. These tools can shed light on precisely how
much memory is consumed by different data structures (weights,
activations, gradients, workspace) in DNN training. Using our
tools and methodologies, we make several important observations
and recommendations on where future DNN training research
and optimization should be focused.

I. INTRODUCTION

The availability of large datasets and powerful computing

resources has enabled a new type of artificial neural network—

the deep neural network (DNNs [16], [47])—to solve hard

problems such as image classification, machine translation,

and speech processing [13], [44], [46], [56], [82], [85]. While

this recent success of DNN-based learning algorithms has

naturally attracted a lot of attention, the primary focus of

researchers, especially in the systems and computer archi-

tecture communities is usually on inference—i.e. how to

efficiently execute already trained models, and image classi-

fication (which is used as the primary benchmark to evaluate

DNN computation efficiency).

1TBD is short for Training Benchmark for DNNs

While inference is inarguably an important problem, we

observe that efficiently training new models is becoming

equally important as machine learning is applied to an ever

growing number of domains, e.g., speech recognition [13],

[87], machine translation [15], [61], [79], the automobile

industry [19], [49], and recommendation systems [31], [45].

Researchers currently lack comprehensive benchmarks and

profiling tools for DNN training. In this paper, we present

a new benchmark for DNN training, called TBD, that uses

a representative set of DNN models covering a broad range

of machine learning applications: image classification, ma-

chine translation, speech recognition, adversarial networks,

and reinforcement learning. TBD also incorporates an analysis

toolchain for performing detailed resource and performance

profiling of these models, including the first publicly available

tool for profiling memory usage on major DNN frameworks.

Using TBD we perform a detailed performance analysis on

how these different applications behave on three DNN training

frameworks (TensorFlow [8], MXNet [22], CNTK [89]) across

different hardware configurations (single-GPU, multi-GPU,

and multi-machine), and gain some interesting insights.

TBD’s benchmark suite and analysis toolchain is driven by

the motivation to address three main challenges:

1. Training differs significantly from inference. The al-

gorithmic differences between training and inference lead to

differences in requirements for the underlying systems and

hardware architecture. First, the backward pass and weight

updates, operations, which are unique to training, and need to

stash a large number of intermediate results in GPU memory,

might require tens of gigabytes of main memory [72]. In

contrast, the memory footprint of inference is much smaller, on

the order of tens of megabytes [42]. Second, training usually

proceeds in waves of mini-batches, a set of inputs grouped and

processed in parallel [39], [88]. Throughput is thus the primary

performance metric of concern in training, while inference is

latency sensitive, but computationally less taxing.

2. Workload diversity. Deep learning has achieved state-of-

the-art results in a very broad range of application domains,



Image Classification Only Broader (include non-CNN workloads)

Training [27] [32] [34] [48] [54] [55] [72] [78] [83] [8] [20] [51] [58] [67] [69] [86]

Inference [10] [11] [12] [23] [26] [34] [36] [38] [54] [59] [60] [66] [70] [74] [75] [76] [78] [90] [91] [8] [35] [41] [43] [53] [67]

TABLE I: The table above shows a categorization of major computer architecture and systems conference papers (SOSP,

OSDI, NSDI, MICRO, ISCA, HPCA, ASPLOS) since 2014. These papers are grouped by their focus along two dimensions:

Algorithmic and Application Breadth. There are more papers which optimize inference over training (25 vs. 16, 4 papers for

both training and inference). Similarly, more papers use image classification as the only application for evaluation (26 vs. 11).

yet most existing evaluations of DNN performance remain

narrowly focused on just image classification as their bench-

mark application, and convolutional neural networks (CNNs)

remain the most widely-used models for systems/architecture

researchers (Table I). Consequently, many important non-CNN

models have not received much attention. The computational

characteristics of image classification models are very different

from some of these networks. Furthermore, given the rapid

pace of innovation across the realms of algorithms, systems,

and hardware related to deep learning, such benchmarks risk

being quickly obsoleted if not maintained.

3. Identifying bottlenecks. There are several plausible can-

didates for the critical bottleneck of DNN training. Typical

convolutional neural networks (CNNs) are usually computa-

tionally intensive, making computation one of the primary

bottlenecks in single GPU training. Efficiently using modern

GPUs (or other hardware accelerators) requires training with

large mini-batches, which could be limited due to modern

GPU main memory capacity. Training DNNs in a distributed

environment with multiple GPUs and machines, brings with

it yet another group of potential bottlenecks, network and

interconnect bandwidths. Even for a specific model, setting up

implementation and hardware for pinpointing whether perfor-

mance is bounded by computation, memory, or communication

is not easy due to the limitations of existing profiling tools.

Our paper makes the following contributions.

• TBD, a new benchmark suite. We create a new bench-

mark suite for DNN training that currently covers six

major application domains and eight different state-of-

the-art models. We have open-sourced our benchmark

suite and intend to continually expand it with new appli-

cations and models based on feedback and support from

the community.

• Tools to enable end-to-end performance analysis. We

develop a toolchain for end-to-end analysis of DNN train-

ing. As part of the toolchain, we also build new memory

profiling tools for the major DNN frameworks we con-

sidered: TensorFlow [8], MXNet [22], and CNTK [89].

• Findings and Recommendations. Using our benchmark

suite and analysis tools, we make several important ob-

servations and recommendations on where to focus future

research and optimization of DNNs. These observations

suggest several interesting research directions, including

efficient RNN layer implementations and memory foot-

print reduction optimizations focused on feature maps for

various models.

Input

Weight 

Matrix 1

bw1

fw1

Weight 

Update 1

Layer1

Feature 

Maps 1

Gradient 

Maps 1

Weight 

Matrix 2

bw2

fw2

Weight 

Update 2

Layer2

Feature 

Maps 2

Gradient 

Maps 2

��

��

Feature 

Maps n-1

Gradient 

Maps n-1

Weight 

Matrix 2

bwn-1

fwn-1

Weight 

Update 2

Layern-1

Output

Ground 

Truth

Error

loss function

Fig. 1: Feed-forward and Back-propagation

II. BACKGROUND

A. Deep Neural Network Training

A neural network can be seen as a function which takes

data samples as inputs, and outputs certain properties of the

input samples (Figure 1). Neural networks are composed of

a series of neuron layers (e.g. fully-connected, convolutional,

pooling, recurrent, etc). Each layer is associated with its own

set of weights, and applies some mathematical transformation

to its input and weights, producing intermediate results for its

downsteam layers. The intermediate results generated by each

layer are often called feature maps (or activations).

The goal of training is to find optimal weight values for

each layer, so that the network as a whole can produce the

desired outputs. Training a neural network is an iterative al-

gorithm, where each iteration consists of a forward pass and a

backward pass. Since the backward pass requires feature maps

generated in the forward pass, they must be stashed in memory

temporarily, mandating great GPU memory capacity [50].

Since modern training datasets are extremely large, it is

impractical to use the entire set of the training data in each

iteration. Instead, a training iteration randomly samples a mini-

batch from the full dataset, and uses it as input [57].

Fully training a DNN is extremely time-consuming, but

using modern GPUs can significantly reduce the training time

(e.g. months to days). One way to further speed up neural

network training is to parallelize the training procedure. A

simple and effective approach is data parallelism [33], where

the full dataset is partitioned into n subsets, one for each

worker. Each worker trains a single network replica with

its own subset of data respectively, periodically exchanging

weight updates with all other workers.

B. DNN Frameworks and Low-level Libraries

DNN frameworks and low-level libraries are designed to

simplify the life of ML programmers and to help them effi-

ciently utilize existing complex hardware. A DNN framework

(e.g., TensorFlow or MXNet) usually provides users with

portable APIs to define computation logic, transforming the

user program into an internal intermediate representation (e.g.,



dataflow graph representation [8], [17], [22]), which then

becomes a basis for backend execution, including data trans-

fers, memory allocations, and low-level CPU function calls or

GPU kernel2 invocations. Such low-level functions are usually

provided by libraries such as cuDNN [25], cuBLAS [4],

MKL [84], and Eigen [6], which provide efficient implementa-

tions of basic vector and multi-dimensional matrix operations

(some operations are NN-specific such as convolutions or

poolings) in C/C++ (CPU) or CUDA (GPU).

III. METHODOLOGY

A. Application and Model Selection

Based on a careful survey of existing literature and in-depth

discussions with machine learning researchers and industry

developers at several institutions (Google, Microsoft, and

Nvidia), we identified an initial diverse set of interesting

application domains, where deep learning has been emerging

as the most promising solution: image classification, object

detection, machine translation, speech recognition, generative

adversarial nets, and deep reinforcement learning. Table II

summarizes the models and datasets we chose for each ap-

plication domain. When selecting the models, our emphasis

has been on picking the most recent models capable of

producing state-of-the-art results (rather than, for example,

classical models of historical significance). The reasons are

that these models are the most likely to serve as foundations

for the development of future algorithms and also that they

often use new types of layers not present in older models,

with new resource profiles. Moreover, the design of models

is often constrained by hardware limitations, which will have

changed since the introduction of older models.

1) Image Classification: Image classification is the archety-

pal deep learning application, being the first domain where a

deep neural network (AlexNet [56]) proved to be a watershed,

beating all prior traditional methods. In our work, we use two

very recent models, Inception-v3 [80] and Resnet [44], which

are broadly similar to AlexNet, but improve accuracy through

novel improvements that enable extremely deep networks.

2) Object Detection: Object detection applications, such as

face detection, are another popular deep learning application

and can be considered an extension of image classification,

where an algorithm usually first breaks down an image

into regions of interest and then applies image classification

to each region. We choose to include Faster R-CNN [71],

which achieves state-of-the-art results on the Pascal VOC

datasets [37]. The convolution stack in a Faster R-CNN

network is usually a standard image classification network,

in our work a 101-layer ResNet.

3) Machine Translation: Unlike image processing, machine

translation involves the analysis of sequential data and typi-

cally relies on RNNs using LSTM cells as its core model. We

select NMT [85] and Sockeye [46], developed by TensorFlow

and Amazon Web Service teams, respectively, as representative

2A GPU kernel is a routine that is executed by an array of CUDA threads
on GPU cores.

RNN-based models in this area. We also include an imple-

mentation of the recently introduced [82] Transformer model,

which achieves a new state-of-the-art in translation quality

using attention layers as an alternative to recurrent layers.

4) Speech Recognition: Deep Speech 2 [13] is an end-to-

end speech recognition model from Baidu Research. It is able

to accurately recognize both English and Mandarin Chinese,

two very distant languages, with a unified model architecture

and shows great potential for deployment in industry. The

Deep Speech 2 model contains two convolutional layers,

plus seven regular recurrent layers or Gated Recurrent Units

(GRUs), different from the RNN models in machine translation

included in our benchmark suite, which use LSTM layers.

5) Generative Adversarial Networks: A generative adver-

sarial network (GAN) trains two networks, one generator

network and one discriminator network. The generator is

trained to generate data samples that mimic the real samples,

and the discriminator is trained to distinguish whether a data

sample is genuine or synthesized. While GANs are powerful

generative models, training a GAN suffers from instability.

The WGAN [14] is a milestone as it makes great progress

towards stable training. Recently Gulrajani et al. [40] proposes

an improvement based on the WGAN to enable stable training

on a wide range of GAN architectures. We include this model

into our benchmark suite as it is one of the leading DNN

algorithms in the area of unsupervised learning.

6) Deep Reinforcement Learning: Deep neural networks

are also responsible for recent advances in reinforcement

learning, which has contributed to the creation of the first

artificial agents to achieve human-level performance across

challenging domains, such as the game of Go and various

classical computer games. We include the A3C algorithm [62]

in our benchmark suite, as it has become one of the most

popular deep reinforcement learning techniques, surpassing the

DQN training algorithms [63], and works in both single and

distributed machine settings. A3C relies on asynchronously

updated policy and value function networks trained in parallel

over several processing threads.

B. Framework Selection

There are many open-source DNN frameworks, such as

TensorFlow [8], Theano [17], MXNet [22], CNTK [89],

Caffe [52], Chainer [81], Torch [30], Keras [28], PyTorch [68].

Since no single framework has emerged as the dominant leader

in the field and since different framework-specific design

choices and optimizations might lead to different results, we

include several frameworks in our work. In particular, we

aWe use the convolution stack of ResNet-101 to be the shared convolution
stack between Region Proposal Network and the detection network.

bThe official Deep Speech 2 model has 2 convolutional layers plus 7 RNN
layers. Due to memory issue, we use the default MXNet configuration which
has 5 RNN layers instead.

cBoth the WGAN generator and discriminator are 4 residual block CNNs.
dWe use the train+val set of Pascal VOC 2007 dataset.
eThe entire LibriSpeech dataset consists of 3 subsets with 100 hours, 360

hours and 500 hours respectively. By default, the MXNet implementation uses
the 100-hour subset as the training dataset.



Application Model Number of Layers Dominant Layer Implementations Dataset

Image classification
ResNet-50 [56] 50 (152 max)

CONV TensorFlow, MXNet, CNTK ImageNet1K [73]
Inception-v3 [80] 42

Machine translation
Seq2Seq [79] 5 LSTM TensorFlow, MXNet IWSLT15 [21]

Transformer [82] 12 Attention TensorFlow WMT-14 [18]

Object detection Faster R-CNN [71] 101a CONV TensorFlow, MXNet Pascal VOC 2007 [37]

Speech recognition Deep Speech 2 [13] 9b RNN MXNet LibriSpeech [64]

Adversarial learning WGAN [40] 14+14c CONV TensorFlow
Downsampled
ImageNet [29]

Deep reinforcement
learning

A3C [62] 4 CONV MXNet Atari 2600

TABLE II: Suite Overview: models and datasets used, major layer types and counts, and frameworks with implementations.

Dataset Number of Samples Size Special

ImageNet1K 1.2million 3x256x256 per image N/A

IWSLT15 133k 20-30 words long per sentence vocabulary size of 17188 (English to Vietnamese)

WMT-14 4.5million up to 50 words (most sentences) vocabulary size of 37000 (English to German)

Pascal VOC 2007 5011d around 500x350 12608 annotated objects

LibriSpeech 280k 1000 hourse N/A

Downsampled ImageNet 1.2million 3x64x64 per image N/A

Atari 2600 N/A 4x84x84 per image N/A

TABLE III: Training Datasets

choose TensorFlow [8], MXNet [22], and CNTK [89], as

all three platforms have a large number of active users, are

actively evolving, have many of the implementations for the

models we are interested in3, and support hardware accelera-

tion using single and multiple GPUs.

C. Training Benchmark Models

To ensure that the results we obtain from our measurements

are representative, we need to verify that the training process

for each model results in classification accuracy comparable to

state of the art results published in the literature. To achieve

this, we train the benchmark models in our suite until they

converge to some expected accuracy rate (based on results

from the literature).

Figure 2 shows the classification accuracy observed over

time for four representative models in our benchmark suite,

Inception-v3, ResNet-50, Seq2Seq, and A3C, when trained

on the single Quadro P4000 GPU hardware configuration

described in Section IV. We observe that the training outcome

of all models matches results in the literature. For the two

image classification models (Inception-v3 and ResNet-50), the

Top-1 classification accuracy reaches 75–80% and the the Top-

54 accuracy is above 90%, both in agreement with previously

reported results for these models [44]. The accuracy of

the machine translation models is measured using the BLEU

score [65] metric, and we trained ours to achieve a BLEU

score of around 20. For reinforcement learning, since the

models are generally evaluated by Atari games, the accuracy

of the A3C model is directly reflected by the score of the

corresponding game. The A3C curve we show in this figure

3Note that implementing a model on a new framework from scratch is a
highly complex task beyond the scope of our work. Hence in this paper we use
the existing open-source implementations provided by either the framework
developers on the official github repository, or third-party implementations
when official versions are not available.

4In the Top-5 classification the classifier can select up to 5 top prediction
choices, rather than just 1.

is from the Atari Pong game and matches previously reported

results for that game (19–20) [62]. The training curve shape

for different implementations of the same model on different

frameworks can vary, but most of them usually converge to

similar accuracy at the end of training.

D. Performance Analysis Framework and Tools

In this section, we describe our analysis toolchain, which is

designed to help us understand for each benchmark, where the

training time goes, how well hardware resources are utilized

and how to efficiently improve training performance.

1) Making implementations comparable across frame-

works: Implementations of the same model on different

frameworks might vary in a few aspects that can impact

performance profiling results. Different implementations might

have different hard-coded values for key hyper-parameters

(e.g., learning rate, momentum, dropout rate, weight decay)

in their code. To make sure that benchmarking identifies

model-specific performance characteristics, rather than just

implementation-specific details, we adapt implementations of

the same model to make them comparable across frameworks.

We also ensure that they define the same network, i.e., the

same types and sizes of corresponding layers and layers are

connected in the same way. Moreover, we make sure that the

key properties of the training algorithm are the same across

implementations. This is important for models, such as Faster

R-CNN [71], where there are four different ways in which the

training algorithm can share the internal weights.

2) Accurate and time-efficient profiling via sampling: The

training of a deep neural network can take days or even weeks,

making it impractical to profile the entire training process.

Fortunately, as the training process is an iterative algorithm and

almost all the iterations follow the same computation logic, we

find that accurate results can be obtained via sampling only

for a short training period (on the order of minutes) out of

the full training run. In our experiments, we sample 50-1000





and transferring data between the CPU and GPU. We report

CPU utilization as the average utilization across all cores:

CPU utilization =

∑
c

total active time of core c × 100

CPU core count × total elapsed time
%

(3)

• Memory consumption: In addition to compute cycles, the

physical memory capacity has become a limiting factor in

training big DNNs. In order to optimize memory usage during

DNN training, it is important to understand where memory

goes, i.e., what data structures occupy most of the memory.

Unfortunately, there are no open-source tools currently avail-

able for existing frameworks that can provide this analysis.

Hence we build our own memory profilers for three main

frameworks (TensorFlow, MXNet, and CNTK). We have open-

sourced our memory profiling tool for MXNet, and will release

tools for other frameworks in the future. We expect them to

be useful to others in developing and analyzing their models.

When building our memory profiler, we carefully inspect

how the different DNN frameworks in our benchmark allocate

their memory and identify the data structures that are the main

consumers of memory. We observe that most data structures

are allocated before the training iterations start for these three

frameworks. Each of the data structures usually belongs to

one of the three types: weights, weight gradients and feature

maps (similarly to prior works [72]). These data structures are

allocated statically. In addition, a framework might allocate

some workspace as a temporary container for intermediate

results in a kernel function, which gives us another type of

data structure. The allocation of workspace can be either static,

before the training iterations, or dynamic, during the training

iterations. We observe that in MXNet, data structures other

than workspace are allocated during the training iterations

(usually for the momentum computation) as well. We assign

these data structures to a new type called ”dynamic”. As

memory can be allocated and released during the training, we

measure the memory consumption by the maximal amount of

memory ever allocated for each type.

IV. EVALUATION

In this section, we use the methodology and frameworks

described in the previous section for a detailed performance

evaluation and analysis of the models in TBD benchmark suite.

A. Experimental Setup

We use Ubuntu 16.04 OS, TensorFlow v1.3, MXNet

v0.11.0, CNTK v2.0, with CUDA 8 and cuDNN 6. All of our

experiments are carried out on an 8-machine cluster, where

each node is equipped with a Xeon E5-2680 28-core CPU

and one to four NVidia Quadro P4000 GPUs (connected with

128 Gbps PCIe). Machines are connected with both Ethernet

(1 Gbps) and high speed InfiniBand (100 Gbps) network cards.

As different GPU models provide a tradeoff between cost,

performance, area and power, it is important to understand

how different GPUs affect the key metrics in DNN training.

We therefore also repeat a subset of our experiments using a

second type of GPU, the NVidia TITAN Xp GPU. Table IV

compares the technical specifications of the two GPUs in our

work. We compare our metrics between TITAN Xp and P4000

in Section IV-C.

TITAN
Xp

Quadro P4000 Xeon E5-2680

Multiprocessors 30 14

Core Count 3840 1792 28

Max Clock Rate (MHz) 1582 1480 2900

Memory Size (GB) 12 8 128

LLC Size (MB) 3 2 35

Memory Bus Type GDDR5X GDDR5 DDR4

Memory BW (GB/s) 547.6 243 76.8

Bus Interface PCIe 3.0 PCIe 3.0

Memory Speed (MHz) 5705 3802 2400

TABLE IV: Hardware specifications

B. Performance Analysis

As previously explained, our analysis focuses on a set of key

metrics: throughput, GPU and CPU compute utilization, FP32

utilization, as well as the memory consumption breakdown.

We pay particular attention to how the above metrics vary

across applications, models and frameworks.

Moreover, we use our setup to study the effects of a key

hyper-parameter, the mini-batch size, on our metrics. It has

been shown that to achieve high training throughput with the

power of multiple GPUs using data parallelism, one must

increase the mini-batch size, and additional work needs to be

done on model parameters such as learning rate to preserve

training accuracy [39], [88]. In the single-GPU case, it is often

assumed that larger mini-batch sizes translate to higher GPU

utilization, but the exact effects of varying mini-batch size are

not well understood. In this work, we use our setup to quantify

in detail how mini-batch size affects key performance metrics.

1) Throughput: Figure 4 shows the average training

throughput for models from the TBD suite when varying the

mini-batch size (the maximum mini-batch size is bounded by

the GPU memory capacity). For Faster R-CNN, the number

of images processed per iteration is fixed to be just one on

a single GPU, hence we do not present a separate graph for

Faster R-CNN. Both TensorFlow and MXNet implementations

achieve a throughput of 2.3 images per second for this model.

We make the following three observations from this figure.

Observation 1: Performance increases with mini-batch size

for all models. As expected, the larger the mini-batch size, the

higher the throughput for all models we study. We conclude

that to achieve high training throughput on a single GPU, one

should use reasonably large mini-batches, especially for non-

convolutional models. We explain this behavior as we analyze

the GPU and FP32 utilization metrics later in this section.

Observation 2: The performance of RNN-based models

is not saturated within the GPU’s memory constraints. The

relative benefit of further increasing the mini-batch size differs

vastly among different applications. For example, for the NMT

model increasing mini-batch size from 64 to 128 increases

training throughput by 25%, and the training throughput of

Deep Speech 2 scales almost linearly. These two models’

throughput (and hence performance) are essentially limited by





hardware resources well, and further research should be done

to optimize LSTM cells on GPUs. Moreover, it is important

to note that the low compute utilization problem applies to the

layer type, not the application – the Transformer model also

used in machine translation does not suffer from low compute

utilization as it uses Attention layers without recurrence.

3) GPU FP32 utilization: Figure 6 shows GPU FP32

utilization (formally defined by equation 2 in Section III)

for different benchmarks as we change the mini-batch size

(as far as memory capacity permits). For Faster R-CNN,

the MXNet/TensforFlow implementations achieve an average

utilization of 70.9%/58.9% correspondingly. We make three

major observations from this figure.

Observation 6: Mini-batches should be large enough to

exploit the FP32 computational power of GPU cores. As

expected, we note that using larger batches also improves GPU

FP32 utilization for all benchmarks we study. We conclude

that both FP32 utilization (Observation 6) and GPU utilization

(Observation 4) are key contributors to the increase in overall

throughput with greater mini-batch size (Observation 1).

Observation 7: RNN-based models have low GPU FP32

utilization. Even with the maximum mini-batch size possible

(on a single GPU), the GPU FP32 utilization of the two RNN-

based models (Seq2Seq and Deep Speech 2, Figure 6c and Fig-

ure 6f, respectively) are much lower than for other non-RNN

models. This clearly indicates the potential of designing more

efficient RNN layer implementations used in TensforFlow and

MXNet, and we believe further research should be done to

understand the sources of these inefficiencies. Together with

Observation 5 (low GPU utilization for LSTM-based models),

this observation explains why in Observation 2, we do not

observe throughput saturation for RNN-based models, even

for very large mini-batches.

A major characteristic of the RNN-based models is the

relatively small granularity of layer sizes and kernels. These

layers are mostly fully connected layers, which usually contain

more number of parameters and produce larger activations. On

the contrast, the number of FLOPS required to compute one

fully-connected layer is generally much less than CNN layers.

This could be one of the reasons why saturating the training

throughput of RNN models by simply increasing mini-batch

size requires much larger GPU memory capacity.

Observation 8: There exist kernels with long duration,

but low FP32 utilization even for highly optimized models.

The previous observation might have raised the question of

why even extremely optimized CNN models exhibit such low

average FP32 utilization. In this observation, we provide an

answer: Different kernels exhibit greatly varying FP32 utiliza-

tion, and even optimized models have long-running kernels

with low utilization. Table V and Table VI show the five

most important kernels with the FP32 utilization lower than

average (for ResNet-50 model on TensorFlow and MXNet).

We observe that cuDNN batch normalization kernels (having

bn in their names) are the major source of inefficiency, with

FP32 utilization more than 20% below the average. This is true

for implementations on different frameworks. These kernels

Duration Utilization Kernel Name

8.36% 30.0% magma lds128 sgemm kernel...

5.53% 42.3% cudnn::detail::bn bw 1C11 kernel new...

4.65% 46.3% cudnn::detail::bn fw tr 1C11 kernel new...

3.12% 20.0% Eigen::internal::EigenMetaKernel...

2.48% 40.0% tensorflow::BiasNHWCKernel...

TABLE V: Longest 5 kernels with utilization level below the

average (ResNet-50, mini-batch size 32, TensorFlow)

Duration Utilization Kernel Name

9.43% 40.7% cudnn::detail::bn bw 1C11 kernel new...

7.96% 44.0% cudnn::detail::bn fw tr 1C11 kernel new...

5.14% 10.0% cudnn::detail::activation bw 4d kernel...

3.52% 10.0% cudnn::detail::activation fw 4d kernel...

2.85% 25.4% ZN5mxnet2op8mxnet op20mxnet generic
kernel...

TABLE VI: Longest 5 kernels with FP32 utilization below the

average (ResNet-50, mini-batch size 32, MXNet)

are top candidates for acceleration to achieve further progress

in improving DNN training performance on GPUs.

C. Hardware Sensitivity

The results presented so far were based on experiments with

the Quadro P4000 GPU. In this section, we are interested in

seeing how the performance of DNN training depends on the

hardware used. To this end, we apply our analysis workflow to

our benchmark models on the more powerful TITAN Xp GPU.

Figure 7 shows the comparison between these two generations

of GPUs. For the throughput comparison, we normalized each

model result to the throughput of the less powerful P4000 card.

We make the following observation from this figure.

Observation 9: More advanced GPUs should be accompa-

nied by better systems designs and more efficient libraries.

The TITAN Xp usually helps improve training throughput

(except for Sockeye), however the computation power of the

TITAN Xp is not generally well-utilized. Both the GPU

and FP32 utilization of the TITAN Xp appear to be worse

than those of the P4000 for most of our models. Thus, we

conclude that although the TITAN Xp is more computationally

powerful (more multiprocessors, CUDA cores, and bandwidth,

see Table IV), properly harnessing its resources requires a

more careful design of existing GPU kernel functions, libraries

(e.g., cuDNN), and algorithms.

D. Memory Profiling

As we have previously shown, DNN training throughput

(and hence, performance) can be significantly bottlenecked

by the available GPU memory. Figure 8 shows the result of

our analysis, where the memory usage is separated into five

categories: weights, gradient weights, feature maps, dynamic,

and workspace. Where appropriate, we vary the mini-batch

size (shown in parentheses). The Faster R-CNN model results

are similar to image classification models, but only support one

batch size (again, we do not plot them in a separate graph).

Observation 10: Feature maps are the dominant consumers

of memory. It turns out that feature maps (intermediate layer

outputs) are the dominant memory consumers, rather than

weights, which are usually the primary focus of inference



0%

25%

50%

75%

100%

4 8 16 32 64

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

ResNet-50 (MXNet)
ResNet-50 (TF)
ResNet-50 (CNTK)

(a) ResNet-50

0%

25%

50%

75%

100%

4 8 16 32 64

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

Inception-v3 (MXNet)
Inception-v3 (TF)
Inception-v3 (CNTK)

(b) Inception-v3

0%

25%

50%

75%

100%

4 8 16 32 64 128

F
P

3
2

 U
ti

li
za

ti
o

n

Mini-batch size

Sockeye (MXNet)

NMT (TF)

(c) Seq2Seq

0%

25%

50%

75%

100%

64 256 1024 2048 4096

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

Transformer (TF)

(d) Transformer

0%

25%

50%

75%

100%

4 8 16 32 64

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

WGAN (TF)

(e) WGAN

0%

25%

50%

75%

100%

1 2 3 4

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

Deep Speech 2

(MXNet)

(f) Deep Speech 2

0%

25%

50%

75%

100%

8 16 32 64 128

F
P

3
2

 U
ti

li
za

ti
o
n

Mini-batch size

A3C (MXNet)

(g) A3C

Fig. 6: GPU FP32 utilization for different models on multiple mini-batch sizes.

�✁✂ �✄✂

✄☎✄

✂✆☎

✂✆✂✄
✁✝ ✞� ✄✄✝ ✄✆☎ ☎✆☎✂

✟✠

✡✟✠

�✟✟✠

�✡✟✠

✄✟✟✠

✄✡✟✠

☛
☞
✌✍
✎
✏✑
✒
✓
✔
✕
✖
✌☞
✗
✘
✖
✙
✗
✚ ✛✜✛✢✣ ✤✥

✦✂✟✟✟

(a) MXNet

✧★✩ ✪✧ ✫✬★
✭✮✩

✧✧✯✪★
✧✪★

✰✧ ✭✩ ✬✪✫ ✩✮✬ ✫✬✱✬ ✪✬✮✬

★✲

✧★★✲

✩★★✲

✬★★✲

✳
✴
✵✶
✷
✸✹
✺
✻
✼
✽
✾
✵✴
✿
❀
✾
❁
✿
❂

❃❄❃❅❆ ❇❈ ❉✭★★★

(b) TensorFlow

❊❋

●❍❋

❍❊❋

■❍❋

❏❊❊❋

❑
▲
▼
◆
❖
P◗
❘
P❙
❚❙
❯
❱
P❙
▲
❲

❳❨❳❩❬ ❭❪ ❫❴❊❊❊

(c) MXNet

❵❛

❜❝❛

❝❵❛

❞❝❛

❡❵❵❛

❢
❣
❤
✐
❥
❦❧
♠
❦♥
♦♥
♣
q
❦♥
❣
r

sts✉✈ ✇① ②③❵❵❵

(d) TensorFlow

④⑤

⑥⑦⑤

⑦④⑤

⑧⑦⑤

⑨④④⑤

⑩
❶
❷
❸
❹
❺❻
❼❻
❽
❾
❺❻
❿
➀

➁➂➁➃➄ ➅➆ ➇➈④④④

(e) MXNet

➉➊

➋➌➊

➌➉➊

➍➌➊

➎➉➉➊

➏
➐
➑
➒
➓
➔→
➣→
↔
↕
➔→
➙
➛

➜➝➜➞➟ ➠➡ ➢➤➉➉➉

(f) TensorFlow

Fig. 7: Throughput, Compute Utilization, FP32 Utilization

comparison between P4000 and TITAN Xp for different

models.

memory optimization. The total amount of memory consumed

by feature maps ranges from 62% in Deep Speech 2 to 89% in

ResNet-50 and Sockeye. Hence, any optimization intended to

reduce the memory footprint of training should first focus on

feature maps. This is an interesting observation also because it

expands on the results reported in the only prior work reporting

on the memory consumption breakdown for DNN training by

Rhu et al. [72]. The authors look at CNN training only and find

that weights are responsible only for a very small portion of

the total memory footprint. We extend this observation outside

of CNNs, but also observe that there are models (e.g., Deep

Speech 2) where weights are equally important.

Observation 11: Simply exhausting GPU memory with large

batch sizes may be inefficient. The memory consumption of

feature maps scales almost linearly with mini-batch size. From

observation 11, we know that reducing the mini-batch size can

dramatically reduce the overall memory consumption needed

for training. Based on observation 1, we also know that the

side-effect of throughput loss from using smaller batches can

be acceptable (for non-RNN models) if still above saturation.

GPU memory saved can be given to workspace (perhaps for a

faster implementation of matrix multiplication or convolution)

and deeper models (e.g., ResNet-102 vs. ResNet-50).

E. Multi-GPU and Multi-Machine Training

Training large DNNs be accelerated by using multiple

GPUs and/or multiple machines. This is usually achieved by

using data parallelism, where mini-batches are split between

individual GPUs and the results are then merged, for example,

using the parameter server approach [58]. But in order to

realize the computational potential of multiple GPUs, the

communication channels between them need to have sufficient

bandwidth to exchange weight updates. In our work, we

analyze the performance scalability of DNN training using

multiple GPUs and multiple machines. We use the ResNet-50

model on MXNet and Inception-v3 model on TensorFlow to

perform this analysis. Figure 9 shows the throughput results

from our experiments.

Observation 12: Network bandwidth must be large enough

for good scalability. We observe that going from the one

machine to the two machine configuration, the performance

degrades significantly with bandwidth of only 1 Gbps. This

is because DNN training requires constant synchronization

between GPUs in distributed training. Hence faster networking

is required to improve the situation. In contrast, DNN training

on a single machine with multiple GPUs scales reasonably

well, since PCIe 3.0 provides enough bandwidth. In summary,

networking bandwidth is critical for performance of distributed

training and different techniques (in both software and hard-

ware) should be applied to either reduce the amount of data

sent or increase the available bandwidth.

We also applied our toolchain to measure the GPU com-

pute and FP32 utilization for multi-GPU and multi-machine

training. Given sufficient bandwidth, these utilization levels

almost resembles that of the single-GPU configuration. The

GPU memory consumption per GPU remains the same if mini-

batch size per GPU is the same. In this case, to improve the





VI. CONCLUSION

In this work, we proposed a new benchmark suite for

DNN training, called TBD, that covers a wide range of

machine applications from image classification and machine

translation to reinforcement learning. TBD consists of eight

state-of-the-art DNN models implemented on three major deep

learning frameworks: TensorFlow, MXNet, and CNTK. We

used these models to perform extensive performance analysis

and profiling to shed light on the efficiency of DNN training

for different hardware configurations (single-/multi-GPU and

multi-machine). We developed a new tool chain for end-to-end

analysis of DNN training that includes (i) piecewise profiling

of specific parts of training using existing performance anal-

ysis tools, and (ii) merging and analyzing the results from

these tools using the domain-specific knowledge of DNN

training. Additionally, we built new memory profiling tools

specifically for DNN training for all three major frameworks.

These useful tools can precisely characterize where the mem-

ory consumption (one of the major bottlenecks in training

DNNs) goes and how much memory is consumed by key

data structures (weights, activations, gradients, workspace). By

using our tools and methodologies, we made several impor-

tant observations and recommendations on where the future

research and optimization of DNN training should be focused.

We hope that our TBD benchmark suite, tools, methodologies,

and observations will be useful for ML developers and systems

designers at large in optimizing their DNN training processes.

ACKOWNLEDGEMENTS

We thank the reviewers and our shepherd for their valuable

suggestions. We thank the members of the EcoSystem group

for their feedback and the stimulating research environment

they provide. We acknowledge the support of our industrial

partners: Microsoft, Huawei, and Nvidia. This research was

partially supported by NSERC and CFI grants.

REFERENCES

[1] Benchmarking dnn processors. http://eyeriss.mit.edu/benchmarking.
html.

[2] cnn-benchmarks. https://github.com/jcjohnson/cnn-benchmarks.

[3] convnet-benchmarks. https://github.com/soumith/convnet-benchmarks.

[4] cublas. http://docs.nvidia.com/cuda/cublas/index.html.

[5] Deepbench. https://github.com/baidu-research/DeepBench.

[6] Eigen: A c++ linear algebra library. http://eigen.tuxfamily.org/index.
php?title=Main Page.

[7] Mlperf. https://mlperf.org/, 2018.

[8] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[9] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David
Brooks. Fathom: reference workloads for modern deep learning meth-
ods. In Workload Characterization (IISWC), 2016 IEEE International

Symposium on, pages 1–10. IEEE, 2016.

[10] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Ger-
ard O’Leary, Roman Genov, and Andreas Moshovos. Bit-pragmatic
deep neural network computing. In Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 382–
394. ACM, 2017.

[11] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Na-
talie Enright Jerger, and Andreas Moshovos. Cnvlutin: ineffectual-
neuron-free deep neural network computing. In Computer Architecture

(ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on,
pages 1–13. IEEE, 2016.

[12] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer cnn accelerators. In Microarchitecture (MICRO), 2016 49th Annual

IEEE/ACM International Symposium on, pages 1–12. IEEE, 2016.

[13] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang
Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang
Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech
recognition in english and mandarin. In International Conference on

Machine Learning, pages 173–182, 2016.

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv

preprint arXiv:1409.0473, 2014.

[16] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
Greedy layer-wise training of deep networks. In Advances in neural

information processing systems, pages 153–160, 2007.

[17] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. Theano: A cpu and gpu math compiler in
python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[18] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow,
Philipp Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt
Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Transla-

tion, pages 12–58, Baltimore, Maryland, USA, June 2014. Association
for Computational Linguistics.

[19] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[20] Mahdi Nazm Bojnordi and Engin Ipek. Memristive boltzmann machine:
A hardware accelerator for combinatorial optimization and deep learn-
ing. In High Performance Computer Architecture (HPCA), 2016 IEEE

International Symposium on, pages 1–13. IEEE, 2016.

[21] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli,
Roldano Cattoni, and Marcello Federico. The iwslt 2015 evaluation
campaign. In IWSLT 2015, International Workshop on Spoken Language

Translation, 2015.

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[23] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial
architecture for energy-efficient dataflow for convolutional neural net-
works. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual

International Symposium on, pages 367–379. IEEE, 2016.

[24] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2017.

[25] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[26] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan
Liu, Yu Wang, and Yuan Xie. Prime: A novel processing-in-memory
architecture for neural network computation in reram-based main mem-
ory. In Proceedings of the 43rd International Symposium on Computer

Architecture, pages 27–39. IEEE Press, 2016.

[27] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. Project adam: Building an efficient and scalable deep
learning training system. In OSDI, volume 14, pages 571–582, 2014.

[28] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[29] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint

arXiv:1707.08819, 2017.

[30] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS

workshop, number EPFL-CONF-192376, 2011.



[31] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference

on Recommender Systems, pages 191–198. ACM, 2016.

[32] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle
Olukotun. Understanding and optimizing asynchronous low-precision
stochastic gradient descent. In Proceedings of the 44th Annual Inter-

national Symposium on Computer Architecture, pages 561–574. ACM,
2017.

[33] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural informa-

tion processing systems, pages 1223–1231, 2012.

[34] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei
Zhuo, Chao Wang, Xuehai Qian, Yu Bai, Geng Yuan, et al. C ir
cnn: accelerating and compressing deep neural networks using block-
circulant weight matrices. In Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 395–408. ACM,
2017.

[35] Zidong Du, Daniel D Ben-Dayan Rubin, Yunji Chen, Liqiang He,
Tianshi Chen, Lei Zhang, Chengyong Wu, and Olivier Temam. Neuro-
morphic accelerators: A comparison between neuroscience and machine-
learning approaches. In Proceedings of the 48th International Sympo-

sium on Microarchitecture, pages 494–507. ACM, 2015.

[36] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao:
Shifting vision processing closer to the sensor. In ACM SIGARCH

Computer Architecture News, volume 43, pages 92–104. ACM, 2015.

[37] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010.

[38] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos
Kozyrakis. Tetris: Scalable and efficient neural network acceleration
with 3d memory. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 751–764. ACM, 2017.

[39] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv

preprint arXiv:1706.02677, 2017.

[40] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron C Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages 5769–5779,
2017.

[41] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. Eie: efficient inference engine on
compressed deep neural network. In Proceedings of the 43rd Inter-

national Symposium on Computer Architecture, pages 243–254. IEEE
Press, 2016.

[42] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[43] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen,
Cheng Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia
Tang. Djinn and tonic: Dnn as a service and its implications for future
warehouse scale computers. In ACM SIGARCH Computer Architecture

News, volume 43, pages 27–40. ACM, 2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,
2016.

[45] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and
Tat-Seng Chua. Neural collaborative filtering. In Proceedings of the

26th International Conference on World Wide Web, pages 173–182.
International World Wide Web Conferences Steering Committee, 2017.

[46] Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem
Sokolov, Ann Clifton, and Matt Post. Sockeye: A toolkit for neural
machine translation. arXiv preprint arXiv:1712.05690, 2017.

[47] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554,
2006.

[48] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. Gaia: Geo-
distributed machine learning approaching lan speeds. In NSDI, pages
629–647, 2017.

[49] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel
Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migi-
matsu, Royce Cheng-Yue, et al. An empirical evaluation of deep learning
on highway driving. arXiv preprint arXiv:1504.01716, 2015.

[50] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and
Gennady Pekhimenko. Gist: Efficient data encoding for deep neural
network training. In Computer Architecture (ISCA), 2018 ACM/IEEE

45rd Annual International Symposium on. IEEE, 2018.

[51] Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng
Qu, Yuan Xie, and WenGuang Chen. Neutrams: Neural network trans-
formation and co-design under neuromorphic hardware constraints. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International

Symposium on, pages 1–13. IEEE, 2016.

[52] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings

of the 22nd ACM international conference on Multimedia, pages 675–
678. ACM, 2014.

[53] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, pages 1–12. ACM, 2017.

[54] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and
Andreas Moshovos. Stripes: Bit-serial deep neural network computing.
In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-

tional Symposium on, pages 1–12. IEEE, 2016.

[55] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and
Saibal Mukhopadhyay. Neurocube: A programmable digital neuromor-
phic architecture with high-density 3d memory. In Computer Architec-

ture (ISCA), 2016 ACM/IEEE 43rd Annual International Symposium on,
pages 380–392. IEEE, 2016.

[56] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances

in neural information processing systems, pages 1097–1105, 2012.

[57] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[58] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server. In
OSDI, volume 1, page 3, 2014.

[59] Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polansky, and Lin
Zhong. Redeye: analog convnet image sensor architecture for continuous
mobile vision. In Proceedings of the 43rd International Symposium on

Computer Architecture, pages 255–266. IEEE Press, 2016.

[60] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and
Xiaowei Li. Flexflow: A flexible dataflow accelerator architecture
for convolutional neural networks. In High Performance Computer

Architecture (HPCA), 2017 IEEE International Symposium on, pages
553–564. IEEE, 2017.

[61] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025, 2015.

[62] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International Conference on Machine Learning, pages 1928–1937,
2016.

[63] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[64] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.
Librispeech: an asr corpus based on public domain audio books. In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE Inter-

national Conference on, pages 5206–5210. IEEE, 2015.

[65] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings

of the 40th annual meeting on association for computational linguistics,
pages 311–318. Association for Computational Linguistics, 2002.

[66] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli,
Rangharajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W
Keckler, and William J Dally. Scnn: An accelerator for compressed-



sparse convolutional neural networks. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, pages 27–40. ACM,
2017.

[67] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston
Olds, and Hadi Esmaeilzadeh. Scale-out acceleration for machine
learning. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 367–381. ACM, 2017.

[68] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[69] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings

of the 26th Symposium on Operating Systems Principles, pages 1–18.
ACM, 2017.

[70] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai
Qian, and Bo Yuan. Sc-dcnn: Highly-scalable deep convolutional
neural network using stochastic computing. In Proceedings of the

Twenty-Second International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 405–418. ACM,
2017.

[71] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[72] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and
Stephen W Keckler. vdnn: Virtualized deep neural networks for scalable,
memory-efficient neural network design. In Microarchitecture (MICRO),

2016 49th Annual IEEE/ACM International Symposium on, pages 1–13.
IEEE, 2016.

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer

Vision (IJCV), 115(3):211–252, 2015.

[74] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubra-
monian, John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek
Srikumar. Isaac: A convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In Proceedings of the 43rd International

Symposium on Computer Architecture, pages 14–26. IEEE Press, 2016.

[75] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In Microarchitecture

(MICRO), 2016 49th Annual IEEE/ACM International Symposium on,
pages 1–12. IEEE, 2016.

[76] Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing
cnn accelerator efficiency through resource partitioning. arXiv preprint

arXiv:1607.00064, 2016.

[77] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmark-
ing state-of-the-art deep learning software tools. In Cloud Computing

and Big Data (CCBD), 2016 7th International Conference on, pages
99–104. IEEE, 2016.

[78] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A
pipelined reram-based accelerator for deep learning. In High Per-

formance Computer Architecture (HPCA), 2017 IEEE International

Symposium on, pages 541–552. IEEE, 2017.

[79] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information

processing systems, pages 3104–3112, 2014.

[80] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2818–2826, 2016.

[81] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer:
a next-generation open source framework for deep learning. In Pro-

ceedings of workshop on machine learning systems (LearningSys) in

the twenty-ninth annual conference on neural information processing

systems (NIPS), volume 5, 2015.

[82] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 6000–6010, 2017.

[83] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar
Das, Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth
Nagaraj, Bharat Kaul, Pradeep Dubey, et al. Scaledeep: A scalable
compute architecture for learning and evaluating deep networks. In

Proceedings of the 44th Annual International Symposium on Computer

Architecture, pages 13–26. ACM, 2017.
[84] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei

Lu, Qing Wu, and Yajuan Wang. Intel math kernel library. In
High-Performance Computing on the Intel® Xeon Phi, pages 167–188.
Springer, 2014.

[85] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144, 2016.
[86] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming

Wu, Wei Li, and Lidong Zhou. Tux2: Distributed graph computation
for machine learning. In NSDI, pages 669–682, 2017.

[87] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike
Seltzer, Andreas Stolcke, Dong Yu, and Geoffrey Zweig. The microsoft
2016 conversational speech recognition system. In Acoustics, Speech

and Signal Processing (ICASSP), 2017 IEEE International Conference

on, pages 5255–5259. IEEE, 2017.
[88] Yang You, Zhao Zhang, C Hsieh, James Demmel, and Kurt Keutzer.

Imagenet training in minutes. CoRR, abs/1709.05011, 2017.
[89] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang,

Brian Guenter, Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming
Wang, et al. An introduction to computational networks and the
computational network toolkit. Microsoft Technical Report MSR-TR-

2014–112, 2014.
[90] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-

parna Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to the
underlying hardware parallelism. In Proceedings of the 44th Annual

International Symposium on Computer Architecture, pages 548–560.
ACM, 2017.

[91] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li,
Qi Guo, Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator
for sparse neural networks. In Microarchitecture (MICRO), 2016 49th

Annual IEEE/ACM International Symposium on, pages 1–12. IEEE,
2016.


