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ABSTRACT
Trending search topics cause unpredictable query load spikes that
hurt the end-user search experience, particularly the mobile one, by
introducing longer delays. To understand how trending search top-
ics are formed and evolve over time, we analyze 21 million queries
submitted during periods where popular events caused search query
volume spikes. Based on our findings, we design and evaluate
PocketTrend, a system that automatically detects trending topics in
real time, identifies the search content associated to the topics, and
then intelligently pushes this content to users in a timely manner.
In that way, PocketTrend enables a client-side search engine that
can instantly answer user queries related to trending events, while
at the same time reducing the impact of these trends on the data-
center workload. Our results, using real mobile search logs, show
that in the presence of a trending event, up to 13–17% of the overall
search traffic can be eliminated from the datacenter, with as many
as 19% of all users benefiting from PocketTrend.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering

Keywords
Web search; trend detection

1. INTRODUCTION
Search portals like Google and Yahoo are among the top daily

visited websites, indicating how crucial these services are to end
users. In response to their popularity, search engine providers have
put tremendous effort in optimizing their infrastructure, usually ei-
ther through server-side [2, 29, 4, 7, 18] or client-side caching [15],
to enable the fastest possible search user experience.

Unfortunately, these optimizations can be rendered ineffective
or costly due to the unpredictable nature of the search query vol-
ume. Important events that take place in the physical world can in-
stantly translate into significant, and often unpredictable, spikes in
search requests. Figure 1 shows Bing’s normalized hourly mobile
query volume during the week of the 2012 presidential elections in
the United States. The blue line represents the actual query vol-
ume, while the red dotted line shows the estimated query volume
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Figure 1: Normalized hourly query volume during the week of
U.S. president elections (11/6/2012) with (blue line) and without
(red dotted line) the election-related queries.

when all queries related to the elections were manually filtered out.
On the election day, the search volume increased by roughly 30%
compared to the previous days, and remained that high for several
hours. When all queries related to elections are filtered out, the
search volume falls back to the same volume levels as the previous
days, indicating that the volume spike was due to the elections.

Even though not happening daily, search volume spikes as in Fig-
ure 1 have significant impact on the end user experience. First, in
the presence of such unpredictable events, end users lose the bene-
fit of real-time search experience delivered by previously proposed
approaches for client-side search index caching [15] that is orders
of magnitude faster than the actual service call. These approaches
have focused on periodically (e.g., daily) caching the static part
of the search index, and therefore cannot handle fresh content that
might spike during the day. The impact on the end user experience
is particularly crucial to mobile devices, where cellular links are
limited by lengthy connection setup times [8].

Second, even though server-side caching techniques [19, 29, 4,
7, 3] can help smoothen out the datacenter’s computation overhead
due to these search volume spikes, they do nothing about reducing
the number of search requests reaching the search backend. As the
number of requests simultaneously hitting the backend increases,
the datacenter load gets closer to its capacity limits. This usually
causes a slower user experience, makes the search engine more sus-
ceptible to common Denial of Service (DoS) attacks, and in the
worst case can bring the whole service down incurring a large rev-
enue loss. To overcome these risks, search engines invest heavily
on over-provisioning their datacenters’ capacity by adding more
servers than they actually need on a daily basis which leads to sig-
nificant increase in datacenters’ cost.



In this work, we study the feasibility of enabling a real-time
search experience for trending search topics without overwhelming
the search backend with an excessive number of search requests.
We envision search engines that can timely detect and efficiently
propagate trending search content (i.e., search queries and corre-
sponding search results) to users’ mobile devices to enable a real-
time search experience at a lower cost for the datacenter. With
such a mechanism in place, in the case of the 2012 U.S. presiden-
tial elections (Figure 1), 30% of users’ queries could be instantly
served locally (e.g., through the web browser or a dedicated search
application), without sending a request to the search engine. Like-
wise, 30% of the overall query volume could be eliminated from
the search backend at peak time.

To enable this type of user experience, the search backend must
address three challenges. First, it needs to detect, in real-time,
search query volume spikes due to trending events. Second, it must
identify the part of the search index associated to these events.
Third, it must proactively and efficiently propagate the identified
trending search content to end users in a timely manner. Note that
the proactive dissemination of trending content to end users can in-
troduce additional request and/or bandwidth overheads if not done
properly. For instance, proactively pushing trending content to ev-
ery single user of the search engine is not an option as it would
cause the number of connections and bandwidth consumed by the
datacenter to explode. Instead, the search backend should be able to
intelligently decide which users and when should be updated with
the appropriate content to avoid increasing the number of search
requests and to keep the bandwidth overhead as low as possible.

To address these challenges, we conduct a data-driven design
exploration study. To understand how trending search topics are
formed and how they evolve over time, we analyze 21 million mo-
bile search queries submitted to Bing during periods where real
events led to search query volume spikes. Using this dataset,
we quantify the benefit and bandwidth overhead of different ap-
proaches to proactively pushing trending search content to end
users. Based on our findings, we design PocketTrend, an architec-
ture for enabling real-time search experience for trending topics.
Its design is based on key observations of the search log analysis:

• Only a small number of search queries and search results is
responsible for the majority of a trending event’s query vol-
ume. PocketTrend leverages this observation to employ a
two-step algorithm for identifying the small part of the search
index that corresponds to the trending event, reducing the
footprint of the data to be pushed to users to roughly 1 MB.

• Many users access the search engine with queries unrelated
to the trending event, after the trending event has been de-
tected. PocketTrend leverages this finding to opportunisti-
cally update these users by piggybacking the trending search
content along with the requested search results. In that way,
the datacenter does not need to establish any new connections
to deliver the trending content. Using this approach, we show
that up to 13-17% of the overall search traffic (roughly 50%
of the trending search traffic) can be answered locally on the
users’ devices with a reasonable bandwidth overhead.

• Frequent users that accessed the search engine right before
the trending event started are likely to search for the trending
event in the future. However, we show that the overhead of
pushing trend content to these users in terms of number of
connections that the datacenter must maintain and bandwidth
it must consume makes this approach infeasible.

Event Log dates #users #queries
U.S.Pres.Elections, 11/6/12 2–9 Nov.12 700K 7.7M
PopeElection, 3/13/13 13–17 Mar.13 550K 7.0M
BostonMarathonBomb, 4/15/13 14–21 Apr.13 660K 6.7M

Table 1: Details of the mobile search dataset used to study
users’ search behavior around trending topics.

2. SEARCH LOG ANALYSIS
Timely detecting and propagating trending search content to end

users poses three fundamental challenges: What content to push,
When to push it, and Whom to push it. Addressing these challenges
requires first understanding how trending topics are formed and
evolve over time. To gain insight on how mobile users search for
trending events, we analyzed more than 21 million search queries,
submitted by roughly 2 million unique users in the United States.
All queries were submitted through mobile devices to Bing. In par-
ticular, we leverage three week-long datasets, each corresponding
to a significant physical event that resulted into a major trending
topic as shown in Table 1. The events are U.S. president elections,
pope election, and Boston marathon bombing.

Each entry in the search logs has 6 fields: user ID, search query
submitted by the user, timestamp, list of search results that were
clicked by the user, and all search results that were shown, but were
not clicked by the user. A search result consists of a URL and a
snippet describing the URL.

To prevent disclosing sensitive information about Bing’s exact
query volume, at given times for the commercial search engine that
collected these logs, the query volumes have been properly nor-
malized. This normalization does not affect the results presented
throughout the paper as we look at relative gains.

2.1 What to Push
First, it is necessary to automatically detect trending events near

real time, and also identify the portion of the search index that is re-
lated to these events. This portion of the search index will become
the actual search content (search queries and corresponding search
results) that will be pushed to end users. The feasibility of this ap-
proach depends on how concentrated the search content associated
to a trending topic is. If users’ clicks are evenly distributed over
a large number of search results, then identifying the trending part
of the search index can be quite difficult. Conversely, if most users
click on a small number of search results when searching for trend-
ing topics, then the trending search content is more compacted and
therefore ideal for client-side caching.

Figure 2 shows the cumulative coverage achieved by the most
popular 50 search results for the three trending events we stud-
ied. To generate these data, we extracted all queries related to each
trending event, and then identified the most popular (most often
clicked) search results. We find that the single most popular search
result accounts for anywhere between 4% and 7% of the overall
trend-related search result clicks depending on the trending event.
All together, the 50 most popular search results cover anywhere
between 24% and 30% of the overall trend-related search results
that were clicked by users. In other words, simply pushing the top
50 search results associated to a trending topic to end users, could
result in 30% of users’ queries related to the trending event be-
ing answered instantly on their mobile devices without the need to
reach the search engine.

When considering domains instead of absolute URLs (e.g.,
cnn.com/story1.html and cnn.com/story2.html are mapped to the
same domain cnn.com), the entropy of the search results is even
smaller. The top 50 domains account for 52%–59% of the over-
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Figure 2: The cumulative percentage of the overall trending
search results for the 50 most often clicked trending search re-
sults when considering: (a) absolute URLs, and (b) URL do-
mains.

all query volume depending on the event, suggesting that caching
most popular URLs can be efficient.

Summarizing, Figure 2 shows that a small number of search
results (URLs) accounts for the majority of the trending search
volume, indicating the feasibility of the proposed approach. Sec-
tion 3.2 describes how PocketTrend exploits this trend to identify
a small set of trending search queries and search results to push to
users. The larger the size of the content pushed to the users, the
more likely the case of satisfying users’ search requests locally (on
the device) in real time. We evaluate this tradeoff in Section 4.5.

2.2 When to Push
Assuming the set of search queries and corresponding search re-

sults is identified, a decision about when to push this content to
end users needs to be made. Even though a trending event can
be detected quite early (within 20 minutes), the content related to
the event might evolve over time, especially in the very beginning.
Hence, pushing the trending data too early could be ineffective as
crucial content might be missing.

Figure 3 sheds light on the distribution of all trend-related
queries over time for pope and U.S. president elections. In par-
ticular, this figure shows the percentage of the total hourly query
volume that corresponds to trend-related search queries over the
lifetime of the event. For both events the peaks have durations that
span several hours. However, it is clear that different trends evolve
in different manners. During the pope election event, there is an im-
mediate sharp 3-hour window where the event is mostly active, and
then it stabilizes and slowly decays over time. On the other hand,
the U.S. president election event starts with a moderate spike and

0%
2%
4%
6%
8%

10%

0 2 4 6 8 10 12 14 16 18 20 22

March 13, 2013Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Time (hours) 

(a) Pope election

0%
5%

10%
15%
20%
25%
30%
35%

0 2 4 6 8 10 12 14 16 18 20 22

November 6, 2012Pe
rc

en
ta

ge
 o

f Q
ue

rie
s

Time (hours) 

(b) U.S. president elections

Figure 3: Percentage of the total hourly query volume that is
related to the trending event over time.
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Figure 4: Evolution of trends’ keywords over time for the
Boston Marathon bombing event.

remains stable for multiple hours until it reaches its peak that lasts
roughly 8 hours. We also observe that most trend-related queries
are submitted during each event’s peak that lasts a few to several
hours. Hence, the window of opportunity for pushing trend content
to users is only a few hours.

Finally, the trending content can evolve during the trending event
lifetime. Figure 4 shows the number of keywords over time for the
Boston Marathon bombing event; in the first 2 hours, 7 keywords
have been detected, but, by the time the event has stabilized, 18
keywords have been detected.

Summarizing, to address the constant evolution of trending
events, PocketTrend needs to continuously scan the search logs to
identify the freshest trending search content and push it to users. In
Section 3, we propose various techniques to achieve this goal.

2.3 Whom to Push to
Identifying which users, and in what order, will be updated with

the detected trending search content is crucial. This is not a trivial
task as commercial search engines have hundreds of millions of
unique users. Attempting to simultaneously update every user with
the trending search content will overwhelm the data center, creating
a bigger problem than the one PocketTrend solves.

Mobile users can be updated “actively” or “passively”. Active
updates require the datacenter to track each user and preemptively
push the trending search content when it becomes available. Such
an approach, however, can lead to pushing content to large numbers
of users out of which only few might eventually search for it.

Given that, if not highly accurate, active pushing can further
stress the datacenter’s I/O resources, we also explore passive, op-
portunistic updates. Each time a user submits a query to the search
engine and a trending search topic is currently active, the search
engine can opportunistically update the user with the latest trend-
ing search content along with providing the search results to the
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Figure 5: Percentage of users that searched for both trending
events for every pair of the three trending events we studied.
Users are categorized by query volume.

(non-trend-related) query. In that way, no extra requests need to be
submitted to the datacenter and no user-tracking is required.

To understand who should be updated with the trending search
content and how, we leveraged the search logs to explore the feasi-
bility of both active and passive approaches.

Active Content Pushing. First, we opted to identify loyal users
of the search engine since loyal users are more likely to come back
and search for trending topics. We defined loyal users as users that
had submitted a large number of queries in the past and they had
also searched for at least one trending event. The intuition is that
if a user searched for a trending event in the past, then most prob-
ably that user will also search for the next trending event. Figure 5
shows the percentage of users that searched for both trending events
as a function of user query volume, for every pair of the three trend-
ing events we study. Note that as the user query volume increases,
the percentage of users that searched for both trending events be-
comes higher (indicating a stronger correlation). However, the user
intersection between trending events is rather low; about 25% of
the users that searched for a previous trending event will search for
a future one. This could be because some users might search for
trending content on multiple devices, may not be interested in all
trending topics, or may have already read about the event in the
news. As a result, updating users that previously searched for a
trending event would result into lots of user updates to the benefit
of only a small fraction (≈25%) of users.

The second approach to identifying whom to push to the trend-
ing search content was based on the assumption that users that re-
cently submitted a search query in the search engine are likely to
search for the trending content as soon as they find out. Figure 6
shows the percentage of users that submitted a search query within
2 hours before the trending event started, and they also searched
for the trending event after the event took place. Again, the higher
the query volume of a user, the higher the probability that the user
will eventually search for the trending topic. However, in this case,
more than 80% of the users submitting a query within the last 2
hours will return to search for the trending topic.

Summarizing, high volume recent users are ideal candidates for
pushing the trending search content. The number of users a search
engine can push content to ultimately depends on the datacenter’s
bandwidth available for PocketTrend updates. We analyze this
tradeoff in Section 4.2.

Passive Content Pushing. Table 2 shows the percentage of mo-
bile users that submitted an unrelated query after the trending event
happened, and then returned to search for the trending topic. For
these users, the unrelated query can be used to piggyback trend-
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Figure 6: Percentage of users that submitted a search request
within 2 hours before the trending event happened, and then
searched for the event itself after it happened.

Event % of returning users out of
all users users that searched the trend

U.S. president elections 18.2% 77.4%
Pope election 3.1% 79.4%

Boston marathon bombing 26.3% 74.5%

Table 2: Percentage of users that searched for an unrelated
topic when the trending event was ongoing and then came back
to search for the actual trending event.

ing search content. Surprisingly, up to 26% of all the users that
searched for something while the trending event was active later
search for the trending event as well. This corresponds to 79% of
the users that eventually searched for the trending event. This corre-
lation demonstrates the opportunity to exploit simple and low-cost
passive updates to opportunistically push trending content to users.

Summarizing, passive updates could complement or even re-
place active updates to enable a real-time search user experience
with a lower impact on the datacenter’s bandwidth requirements.
In Section 4.3 we analyze this tradeoff.

3. POCKETTREND ARCHITECTURE
The design of the PocketTrend architecture is driven by the find-

ings of the search log analysis described in the previous section.
As shown in Figure 7, PocketTrend runs on the search backend and
consists of three major components: trend event detection, trending
content identification, and trending content delivery to end users.

First, like in previous work [20, 24, 9], PocketTrend detects
trending keywords by analyzing the frequency at which these key-
words are used in the search queries. The goal is to detect keywords
that are searched significantly more frequently than normal (e.g.,
five times more frequently than during the same hour the day be-
fore). The detected trending keywords are grouped together to form
trending events. A trending event at this stage is nothing more than
a collection of frequently-searched keywords.

At the next stage (trending content identification in Figure 7),
PocketTrend scans the search logs to identify all queries that con-
tain a significant number of trending keywords, and marks these
queries as trending. A subset of these, the ones that have the high-
est search rates and the highest number of clicks, is selected to form
the trending search content to be pushed to users. Likewise, the
most clicked search results for the selected trending queries are also
added to the trending content. This strategy ensures that only the
most relevant trending search content will be propagated to users’
devices, saving bandwidth and storage resources.
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Figure 7: PocketTrend overview.

Trend event detection and trend content identification continu-
ously run in the search backend. In the last stage, the freshest trend-
ing search content is pushed to end users actively or passively (see
Section 2). To reduce the bandwidth consumed for pushing the
trending search content, PocketTrend also uses data compression
techniques [31].

At the client side, the trending search content can be used to en-
able real-time query suggestion or query auto-completion. Since
both queries and search results are pushed to the client devices,
query suggestions or auto-completions can be accompanied with
the relevant search results that the user can instantly click on. If
these are not satisfactory the user can still select a query or manu-
ally enter his own to get the freshest search results from the search
backend. In that way, PocketTrend does not replace the search en-
gine, but it rather works along with it to enable the fastest possible
search experience for end users.

In the following, we describe all PocketTrend components in de-
tail.

3.1 Trending Event Detection
Trending events are identified in two steps. First, an initial set

of trending keywords is identified, and then trending keywords are
grouped together to form events.

3.1.1 Trending Keyword Detection
As in related work on trend detection [20, 24, 9], we leverage

the observation that in the absence of active global trends, the same
keyword within the same hour (but for different days) tends to have
similar numbers of appearances in search queries. We define a key-
word to be trending if the number of appearances within a specific
hour in the current day is significantly higher (e.g., 5x more) than
in the same hour during a reference day.1 Formally, a keyword is
defined to be frequent if

Currhour

Refhour
≥ KeywordRatioThreshold (1)

1We use a previous day as reference point to identify trending key-
words. We also tested time periods smaller than an hour and a
“sliding window” approach, and achieved identical performance.

where Currhour is the number of appearances of a keyword in the
current hour and Refhour is that of the same keyword in the same
hour in a reference day.2

KeywordRatioThreshold in formula 1 is an empirically de-
fined threshold that separates random, small frequency variations
of keywords that can happen across days, from significant fre-
quency variations that indicate a trending event. We are inter-
ested in major trending events that result into significant search
volume spikes as in Figure 1, so finding an appropriate value for
KeywordRatioThreshold becomes trivial. Based on our anal-
ysis of real user search logs, we found that keywords that appear
more than 5 times more frequently than usual indicate the presence
of strong trending events causing search volume spikes.

Even though Refhour in formula 1 has a non-zero value for most
keywords, there are always keywords that appear suddenly due to a
trending event. For instance, keywords like “pope" during Pope
election, and “explosion" during the Boston marathon bombing
were completely new keywords (Refhour = 0). To handle such
cases, and to differentiate actual trending keywords from random
new keywords, a keyword with Refhour = 0 becomes trending
only if it is statistically important, in the sense that it is observed at
least in 0.1% of all queries in the last hour.

3.1.2 Trending Keywords Grouping
Initially, every trending keyword is a trending event by itself.

However, the detected trending keywords could belong to one or
more trending events taking place at the same time. To prop-
erly group keywords together to form trending events, we exam-
ine how frequently trending keywords are searched together. In-
tuitively, the more often two keywords are searched together, the
higher the probability they refer to the same topic. For exam-
ple, for the Boston marathon bombing event we observed that the
words “marathon" and “explosion" were searched together 93% of
the time. Empirically, based on the analysis of millions of mobile
search queries, we found that trending keywords that are searched
2There are other possible ways to define the word frequency, e.g.,
based on tf-idf metric [12, 25], but we found that those tech-
niques usually incur higher computation overheads while generat-
ing same/similar list of keywords.
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together more than 20% of the overall times they appear in the
search logs, they refer to the same trending event. As a result, every
pair of trending keywords that is searched together at least 20% of
the times they appear in the logs is merged to form a single trend-
ing event. Every new trending keyword is also evaluated against all
the current trending keywords, and it either joins an active trending
event or forms a new one.

The detected trending events are not considered as immediately
active. They become active when the overall percentage of queries
in the last hour that contains at least one of the trending event’s
keywords is higher than 1% of the overall search traffic. We im-
pose this threshold to ensure that content is pushed to users only
for events that are large enough to matter (for the user and for the
datacenter).3 The threshold could be adjusted depending on the
datacenter’s requirements.

To illustrate how trend detection works in practice, Figure 8
shows the trend evolution for the Boston marathon bombing event.
The explosion happened at 11:49am PDT. Within 20 minutes,
the keyword “explosion” is detected as trending, followed by
“marathon” in 2 more minutes. This creates the first multi-keyword
trend as these two keywords are searched together more than 90%
of the time. In 8 more minutes, the keyword “boston” is detected as
trending, and it is added to the initial trend. Later on, the keywords
“cnn”, “fox” and “news” are also detected as trending, but these
keywords are not added to the existing trend #1, because they are
not searched frequently enough together with the keywords from
the current trend (13%, 11% and 15% correspondingly, at the time
of detection as trending). At the same time, these trending key-
words are frequently searched together, which allows us to create a
new trend (trend #2). In 8 more minutes (at 12:47pm) the trending
keyword “news” passes the threshold for intersection with trend #1,
which leads to the same keyword being in two active trends. This
leads to merging both trends into a single trend that is later used for
identifying the trending search content.

3.2 Trending Content Identification
At this point, a trending event is a collection of trending key-

words that are frequently searched together. PocketTrend leverages
this collection of keywords to identify the search content related
to the trending event. By search content, we mean all the search

3We admit that our methodology can potentially miss some trend-
ing events that do not exhibit significant increase in the search traf-
fic, but we expect the effect of such relatively small trends on the
datacenters to be minimal.

queries related to the trending event, and the search results asso-
ciated to these queries. Detecting this content is quite challenging
for two reasons. First, mobile users search for a specific topic in
multiple different ways due to either the large number of synonyms
used, or the typos and grammatical errors (e.g., “boeton explo").
Second, queries that look very similar can semantically be very dif-
ferent. For instance, the queries: “boston marathon", and “boston
marathon bombing" could be very different as the former is an in-
formational query about the event, while the latter focuses on the
bombing incident.

3.2.1 Detecting Relevant Queries: Forward and
Backward Passes

We address this problem with a two-step process, shown in Fig-
ure 9. First, a forward pass of the search logs takes place to iden-
tify a small set of queries that with high certainty are related to the
trending event. Given this small set of highly relevant queries and
the search results that users click on in response, PocketTrend iden-
tifies the core set of search results related to the trending event. At
the second step, a backwards pass of the search logs takes place
where we identify additional queries related to the trending event
based on the set of search results identified in the first step. In
particular, all queries that resulted into users clicking on a search
result related to the trending event, are automatically assumed to
be related to the trending event. This way, even infrequent and
unconventional queries used to search for the trending event (e.g.,
“boston explode") can be captured.

Given that the goal of the forward pass step is to identify a small
number of search queries that are relevant to the trending event with
high probability, PocketTrend follows a conservative approach. All
search queries in the past hour that contain 3 or more trending
keywords are automatically assumed to be related to the trending
event. Since mobile users’ queries contain 3-4 or less keywords
most of the time [13, 14], 3 trending keywords indicate a strong
match.4 All search queries that contain zero or just one trending
keyword are ignored in this step, because even generic keywords
such as “Boston", “cnn" or “news" can become trending. Search
queries that contain exactly two trending keywords, the most com-
mon case in the mobile search logs, can be more complicated. For
example, the queries: “boston marathon results" and “explosion
at boston today" contain exactly two trending keywords for the
Boston marathon bombing event. However, the first query is most
probably not related to the bombing, because the user cares about
the marathon results, and not the bombing incident.

To handle these cases, PocketTrend leverages the intuition be-
hind techniques like tf-idf [25, 23], used for measuring how im-
portant a word is in a document. At a high level, the tf-idf value
of an input text increases proportionally to the number of times
the words composing it appear in a reference dictionary (term fre-
quency), but is offset by the frequency of the words in the dic-
tionary (inverse document frequency), which helps to control the
fact that some words are generally more common than others. To
achieve the same effect of inverse document frequency, we imple-
ment a matching algorithm where different trending keywords are
given different weights in the matching process depending on how
unique they are. For example, the keyword “boston" can be used
in many different queries (e.g., “boston weather"), and hence its
uniqueness is lower than the keyword “explosion". We can distin-
guish these two cases through the keyword frequency increase be-
tween the trending event’s time period and a reference time period

4In a more general case, the number of words for a strong match
can be defined based on the relative number of words in the trend-
ing event.
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Figure 9: Trending content identification using forward and
backward passes on top of search logs.

(formula 1). Keywords like “boston" usually have low increase ra-
tios (5x–8x), while keywords like “explosion" can have ratios over
100x.

Given this observation, PocketTrend computes a matching score
Queryscore for every candidate search query:

Queryscore =

∑
Keyword−kiInQuery Uniquenesski

∗ Curr
ki
hour∑

Keyword−kj
Uniquenesskj

∗ Curr
kj

hour

(2)
where Uniquenessk represents how unique keyword k is:

Uniquenessk =



1, if 5 ≤ Currkhour

Refk
hour

≤ 20

2, if 20 <
Currkhour

Refk
hour

≤ 50

3, if 50 <
Currkhour

Refk
hour

≤ 100

5, if 100 <
Currkhour

Refk
hour

≤ 1000

10, if 1000 <
Currkhour

Refk
hour

(3)

Currkhour and Refk
hour represent the number of queries in the

past hour and in the reference hour respectively, that contained the
trending keyword k. The higher the change in the appearance fre-
quency of the keyword k in the search logs, the higher its unique-
ness value. Note that the weight of a trending keyword (equation 2)
takes into account both the uniqueness and absolute frequency of a
keyword by multiplying them. For every query we find its match-
ing weight as the total sum of the weights of all trending keywords
that are contained in the query, normalized by the total weight of
all available trending keywords. In that way, the matching score
for a query is always a value between 0 and 1. Every query with a
matching score above 0.5 is assumed to match the trending event.

At the backward pass step, we record all the search results that
users clicked on after submitting queries that have been identified
as trending. PocketTrend uses these results to identify additional
queries that belong to the trending event. In particular, every query
that resulted into a click on one of the search results identified in
the forward pass step is added to the trending event.

3.2.2 Trending Content Cache Formation
After the trending event has been detected, a set of search queries

associated to the event has been identified. By examining all the
search results that users clicked after submitting these queries, the
final set of search results (URLs and snippets) associated to the

Event Queries Results
U.S. Presidential Elections 27K 37K
Boston Marathon Bombing 13K 16K
Pope Election 1K 3K

Table 3: Number of unique trending search queries and search
results for each trending event.

trending event can also be generated. When considering every sin-
gle query and search result associated to the event, the total number
of queries and search results can be quite large. For instance, in the
case of U.S. presidential elections, the identified trending content
includes 27,000 queries and 37,000 search results (Table 3). Push-
ing all this data to mobile users is not desirable due to the band-
width requirements. However, as demonstrated in Section 2.1 (Fig-
ure 2), the majority of the search traffic related to the trending event
is concentrated around a small set of these queries and correspond-
ing search results (e.g., top-50 search results). As a result, Pock-
etTrend leverages the most popular trending search queries (e.g.,
1000 top queries) along with the corresponding search results to
form the trending cache that is pushed to users. As we will show
in Section 4.5, this approach ensures high, close to ideal, perfor-
mance, while minimizing the bandwidth consumed.

3.3 User Update Strategies
After the trending search content has been identified, Pocket-

Trend needs to timely and efficiently propagate this content to
users. PocketTrend explores two techniques for achieving this,
based on the search log analysis described in Section 2.3.

First, it actively identifies a subset of the search engine’s users
that with high probability will search for the trending topic in the
future, and pro-actively pushes the trending search content to these
users. The selection of users is based on the analysis of the mobile
search logs in Section 2.3 (Figure 6). PocketTrend identifies all
users that submitted a query within two hours before the trending
event took place, and pushes the trending search content to these
users in descending order of their query volume. To limit the effect
of active updates on the search backend and its bandwidth con-
sumption, we enforce a maximum number of users to be updated
every minute. In that way, PocketTrend does not overwhelm the
datacenter by simultaneously pushing content to all users.

Second, based on the findings of the mobile search log analysis
in Section 2.3, PocketTrend complements active content pushing
with passive user updates. As Table 2 shows, a large percentage of
users (up to 26%) submits queries unrelated to the trending event
after the trending event has been detected. PocketTrend leverages
this to opportunistically push the trending search content to these
users along with the search results for the unrelated search query.
In that way, PocketTrend can timely update users that might have
never been updated through active updates, without increasing the
datacenter’s workload.

In the next section, we quantify the benefits and overhead for
both active and passive updates, and study the feasibility of each
technique in detail.

4. EVALUATION
In this section, we quantify the improvements PocketTrend can

achieve and analyze the overhead paid by both the client and the
server side. In particular, we leverage the search log traces from
the 3 representative trending events described in detail in Section 2.
On top of these 3 trending events, we also separately test a month



Trending event % of unique users
PT-5k PT-UpdatesOnly PT-Unlimited PT-Ideal

U.S.Pres.Elections 8.8% 10.7% 11.8% 13.7%
PopeElection 2.8% 2.3% 2.9% 4.5%
BostonMar.Bomb 19.6% 18.7% 21.5% 21.8%

Table 4: Percentage of users for which a trend cache hit is
registered, when PocketTrend with active updates (5k), passive
updates (UpdatesOnly), unlimited cache size (PT-Unlimited) or
ideal cache (Ideal) is used.

of search logs data (from June 15th to July 15th 2013) and detected
five small trends: Lil Wayne Hospitalization, Father’s Day, Gan-
dolfini’s Death, USA Independence Day, and San Francisco Plane
Crash).5 By replaying these search logs, we know exactly which
user searched for what, at what time, and what search result he/she
clicked in response. At the same time, while replaying back the
search logs, we run PocketTrend to identify trending search con-
tent and push it to end users. This enables us to know if the search
query and search result clicked by a user when searching for the
trending topic has already been pushed to the user’s mobile device.
If true, a cache hit is recorded meaning that this query did not have
to reach the datacenter, and the user had an instant user experience.
If either the query submitted by the user or the search result the
user clicked on was not included in the pushed trending content,
then a cache miss is recorded, and the query is assumed to hit the
datacenter like any other search query. Note that in doing this we
take into account the freshness of the search content. In fact, a user
may have received trending search content but that may be too old
to include the search result the user clicked on when doing the ac-
tual search, so a case like this would be recorded as a cache miss.
Using this setup we evaluate PocketTrend when active or passive
updates are used to push trending search content to end users.

4.1 Notation and Experiment Parameters
In our evaluation, we consider an active update mechanism

(PT-Xk) which updates at most X thousand users every minute
(e.g., PT-5k updates up to 5k users a minute), and a passive up-
date mechanism (PT-UpdatesOnly) that opportunistically piggy-
backs the trending content on other pending queries’ results (Sec-
tion 3.3). Unless otherwise noted, in both cases every single de-
tected trending query and search result is pushed to users (Table 3).
We also compare PocketTrend’s performance to a baseline system
(No-Caching) with no client-side caching support, and to an ideal
system (PT-IdealCache) which assumes that all users are updated
with the freshest trending search content, irrespectively of its size,
right before they submit their trend-related query. Note that such a
system is not feasible and is only used for comparison purposes.

4.2 End user Search Experience
To understand the benefits PocketTrend can bring to users, we

measured the fraction of users that received the trending search
content, and subsequently searched for the trending topic by sub-
mitting a search query and clicking on a search result that was al-
ready pushed on their devices. Table 4 shows the percentage of all
search engine users during the lifetime of the event that benefited at
least once from PocketTrend in the case of active (PT-5k) and pas-
sive (PT-UpdatesOnly) updates. In both cases, we assume that the
1000 most popular trending search queries are pushed to the users.
Results when all trending search content is pushed (PT-Unlimited),
and when an ideal cache is used (PT-IdealCache) are also shown.

5We did this experiment to show that PocketTrend works for new
testing data that was not used to define its design.
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Figure 10: Search query volume reduction with PocketTrend
(PT) for different update strategies (U.S. president elections).

For a large event like the Boston marathon bombing, even 20%
of all unique users the search engine sees during the event life-
time benefit from PocketTrend. Given that search engines serve
hundreds of millions of users on a daily basis, this percentage cor-
responds to several tens of million of mobile users. For smaller
events like the pope election this percentage reduces to 3% of all
unique users, but still corresponds to several million users. Sur-
prisingly, passive updates only lightly reduce the effectiveness of
PocketTrend, with anywhere between 2% and 19% of unique users
being benefited. In the case of the U.S. president elections, pas-
sive updates actually outperform active updates. Due to the slow
evolution of the trending event, active updates can push trending
search content to users early during the trend development process.
As the event evolves over time, updated users might search for the
trending event but for content that was not captured in the active
push (e.g., Ohio state election results were not rolling in when the
content push took place). On the other hand, passive updates take
place over time, as users come online, allowing them to use the
freshest version of the trending search content, and therefore bene-
fit more end users. This unexpectedly good performance of passive
updates is crucial to make PocketTrend a low-cost mechanism for
datacenters (more on this later).

Not only does the passive updates mechanism achieve similar
performance to the active updates mechanism, but its performance
is also very close to that of an ideal, but not practically feasible,
implementation of the cache (freshest content is always available
irrespectively of its size). As Table 4 shows, the ideal cache can
only provide real-time search experience for an extra 2-3% of users.

4.3 Datacenter Query Load
PocketTrend not only benefits end users, but can also reduce

the datacenter’s query load by preventing trending search queries
from hitting the backend. We evaluate the savings on the dat-
acenter’s side for different update mechanisms. In addition to
PT-UpdatesOnly and PT-5k introduced above, we compare Pock-
etTrend to a baseline system (No-Caching) with no client-side
caching support and to an ideal system (PT-IdealCache) which as-
sumes that all users are updated with the freshest trending search
content right before they submit their trend-related query.

Figures 10 and 11 show the reduction in the overall search query
volume for these four system designs, in the case of U.S. presi-
dent elections and Boston marathon bombing, respectively. With
active updates (PT-5k), PocketTrend is able to reduce the datacen-
ter’s query volume by 9–17%, depending on the trending event (at
the trend’s peak time). Note that this reduction of the query vol-
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Figure 11: Search query volume reduction with PocketTrend
(PT) for different update strategies (Boston marathon bomb).

ume lasts for several hours as the trending event evolves, and is
progressively reduced over time as the trending event disappears.

Even more importantly, when passive updates are used (PT-
UpdatesOnly), PocketTrend is still able to reduce the datacenter’s
query volume by 7–14%, depending on the trending event. Even
though the benefit is lower compared to active updates, the fact that
passive updates can achieve similar gains is important as they do
not impose as high bandwidth requirements on the datacenter as ac-
tive updates do (more about this in Section 4.4). However, there can
be cases where active update strategies achieve significantly higher
query volume reductions. For example, in the Boston marathon
event (Figure 11), in the first two hours after the bombing (12pm –
2pm), PT-5k is almost twice more efficient than PT-UpdatesOnly.
We believe that this has to do with the unpredictability of trend-
ing events. The Boston marathon bombing event was highly un-
expected and dramatic for users, creating this instant spike in user
query volume that only active updates can efficiently address ini-
tially. On the other hand, the U.S. president election was more ex-
pected, and it formed a trending event that slowly developed over
time, providing enough time for passive updates to become almost
as efficient as active updates6.

When compared to the ideal cache implementation, both active
and passive updates perform remarkably well, with the active strat-
egy having a small edge over the passive one. This is especially
noticeable in Figure 10 where PT-5k is always within 3% of PT-
IdealCache. More importantly, PT-UpdatesOnly can get at least
63% (usually more) of the benefits provided by PT-IdealCache.

Note PocketTrend’s 17% reduction of query volume in the case
of president elections is lower than the potential reduction of 30%
shown in Figure 1. This is due to two reasons. First, it is nearly
impossible for PocketTrend to timely predict every single user that
will search for the trending event. For some users, predictions can-
not be made; some users might also get updated after they have
searched for the trending event. Second, Figure 1 presents the
results when all trend-related queries are manually selected. In
this section, trend-related queries are detected through the Pock-
etTrend’s two-step trending content identification algorithm, which
might not include every single trend-related query.

4.4 PocketTrend Overhead
Each time a search request is served locally at the client, one

fewer request has to be processed by the datacenter. On the other
hand, to avoid such requests the datacenter has to push trending

6When active and passive updates are combined, the reduction in
the search query volume is only slightly higher than active updates.
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Figure 12: PocketTrend overhead measured as cumulative
number of cache transfers (a) and number of eliminated re-
quests to the datacenter per cache transfer (b) (U.S. President
Elections).

content to the users, passively or actively. We quantify the overhead
of PocketTrend on the datacenter with passive (PT-UpdatesOnly) or
active (PT-5k) updates.

First, we measure the number of trending search content pushes
performed by the datacenter. Figure 12(a) shows this for the U.S.
president elections. For active updates, 5000 users are updated ev-
ery minute with the trending search content. A large number of
pushes takes place when the trending event is detected. After all
users that submitted a search query within 2 hours before the trend-
ing event took place have been updated, no more pushes are initi-
ated. With passive updates, pushes occur only for users that came
to the search engine for other unrelated topics after the trending
event was detected. Because of this, passive update pushes grow
slowly over time, and at the end of the event’s lifetime, they are
half of the active update pushes.

Passive updates are not only fewer, but also more effective. For
the same event, we compute the ratio between the number of search
requests eliminated from the datacenter and the number of trending
content pushes to end users. The higher this ratio is, the lower the
overhead from the datacenter’s point of view is. As Figure 12(b)
shows, passive updates achieve a ratio of almost up to 20%, while
active updates remain well below 4%.

Given that the passive and active update strategies provide com-
parable advantages to end users and to the datacenter, Figure 12
shows that passive updates can be a much more cost-effective ap-
proach for the datacenter and the end users. From the datacenter
point of view, passive updates do not require any new requests to be
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Figure 13: Effect of the size of the pushed trending search con-
tent on PocketTrend’s query volume reduction (U.S. president
elections).

submitted as trending search content is opportunistically pushed to
end users, and the number of pushes is halved. From the user point
of view, in contrast to active updates where a user’s device needs
to be explicitly activated to synchronize, passive updates only incur
minor battery drain as the user’s device radio is already powered up
and connected to the search engine.

As we show in more detail in Section 4.5, each push shown
in Figure 12(a) corresponds to the datacenter transferring approxi-
mately 1MB of additional data. Given the total number of pushes
in Figure 12(a), active and passive updates require the datacenter to
transfer an additional 680GB and 390GB, respectively. Note that
the transfer of this data is distributed over the whole lifetime of a
trending event. Given that trending events can last from several
hours to tens of hours, this additional bandwidth does not stretch
the bandwidth limits of the search backend.

4.5 Trending Content Size Effect
Figures 10 and 11 show the query volume reduction when ev-

ery single trending search query and search result is pushed. To
conclude our tradeoff analysis, we now analyze the PocketTrend’s
sensitivity on the size of the content pushed to users. We assume
PocketTrend employs UpdatesOnly; similar results hold for active
updates, but are not shown in the interest of space.

Figure 13 shows the overall query volume when the 10, 50,
100, and 1000 most popular trending search queries along with
the top 10 most clicked search results for each trending query are
pushed (labeled as PT-* in the figure). As a reference, the results
when all trending search queries (Table 3) and their corresponding
search results are pushed is also shown (PT-Unlimited). Surpris-
ingly, caching 1000 queries (PT-1000) provides most of the bene-
fits of pushing every single trending query and search result (PT-
Unlimited). As a result, PocketTrend can achieve its top perfor-
mance while pushing a limited number of trending search queries
(≈ 1000) and results. Reducing the size of the pushed content to
100 entries significantly reduces the performance gain, while push-
ing the top 50 entries can halve PocketTrend’s performance gain.

Considering that an average search result requires roughly
500 bytes (i.e., URL and data snippet), storing the top 10 search
results (i.e., the first page of search results) for a trending query,
requires about 5 kB. Hence, pushing 1000 trending search queries
corresponds to pushing roughly 5 MB. Note that if PocketTrend
were to push all trending search queries and search results (Ta-
ble 3), more than 135 MB would be used. The size of the trending
search content can be further reduced by leveraging data compres-

sion techniques. Given that the set of queries and search results
pushed to end users relates to the same event, there is significant
overlap across the 1000 entries. We experimentally verified that a
simple compression algorithm based on bzip2 [27, 31] can achieve
a significant compression ratio ranging from 4.5x to 5x. This means
that the trending search content can be compressed from 5 MB to
just 1 MB. This data size is less than the size of a simple appli-
cation update on a smartphone today, and it could take place over
WiFi links when the cost of cellular bandwidth is a concern.

5. RELATED WORK
Discovering trends in search is a well-studied problem [9]. Com-

mercial search engines already offer products such as Google
Trends [6]. Our trend detection approach leverages well-known
techniques for trend analysis [20, 24], and is not the main con-
tribution of this work. Instead, the contributions of this work lie
on the findings of the search log analysis that show how mobile
users search for trending topics. Specifically, the way these find-
ings are leveraged to enable PocketTrend to automatically detect
search content related to a trending event, and more importantly to
efficiently push this content to users without significantly increas-
ing the datacenter workload is the core contribution of this work.

Previous work on search engine optimization has focused pri-
marily on server-side and client-side caching. In server-side
caching [2, 29, 16, 7, 11], search results for popular queries are
cached in the search backend. Incoming queries that are in the
cache can be answered faster than other queries as there is no need
to access the index, and perform any ranking in real-time. The re-
duction in user response time can be significant when the delay due
to search backend’s computation is the bottleneck between the user
and the datacenter. This tends to be the case when users access
search engines through very high speed links (e.g., desktops). Yet,
as more and more people use their mobile devices to access search
engines through slow cellular links that have high setup times [8],
the bottleneck shifts from the datacenter to the cellular links. In
this case, the benefit of server-side caching techniques is reduced.

Researchers have been exploiting client-side caching techniques
to enable faster user experience in the case of web browsing [19,
30, 5, 17, 28], ad delivery [21], and more recently search result
delivery [15]. Koukoumidis et al. [15] showed that a small set of
queries and search results represents a significant fraction of the
mobile query volume. By analyzing mobile search logs on a daily
basis, authors identify the part of the search index that is most of-
ten accessed, and use it to create a search engine that lives on the
mobile device, and it is able to instantly answer about 60% of the
queries an individual user submits. The search results stored on the
user’s mobile device are only updated nightly when the phone is
charging and connected to WiFi. Even though quite effective, this
work is only limited to relatively static search content that can be
predicted through periodic search log mining. This system cannot
address unpredicted query volume spikes due to trending events
taking place throughout the day as the necessary trending search
content will not be available on the users’ mobile devices. More-
over, the authors blindly update every user assuming that the up-
dates take place during off-peak times (e.g., overnight), and over
WiFi connections. This approach, in the case of trending events,
would require the datacenter to simultaneously update hundreds of
millions of users during peak time, creating a larger problem for
the search backend than the one we solve.

Conversely, PocketTrend automatically detects trending events
in real time, and identifies the search content associated to these
events. The trending search content is then intelligently pushed
either actively to a subset of users that with high probability will



search for the trending event, or passively to any user that reaches
the search engine after a trending event has been detected and is still
active. In that way, PocketTrend addresses trending query volume
spikes, without stressing even further the search engine’s backend.

Unpredicted workload spikes is a reality for most web ser-
vices [24], and are not limited to search engines [26]. As a result,
there have been a lot of efforts to address these challenges directly
at the networking level within datacenters [10, 22, 1]. These tech-
niques are orthogonal to our work.

6. CONCLUSION
We have analyzed 21 million mobile search queries to under-

stand how trending search topics are formed, and how they evolve
over time. Based on our findings, we have designed and evaluated
PocketTrend, a new architecture that is capable of servicing user
queries related to trending events locally, improving both the user
experience and the datacenter query load. Our evaluation using
real mobile search logs, showed that in the presence of a trending
event, up to 13%–17% of the overall traffic can be eliminated from
the datacenter, impacting as many as 19% of all users.
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