Page Overlays: An Enhanced Virtual Memory Framework
to Enable Fine-grained Memory Management

Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase*, Onur Mutlu,
Phillip B. Gibbons', Michael A. Kozuch®, Todd C. Mowry, Trishul Chilimbi*

Carnegie Mellon University

"Intel Labs Pittsburgh

*Microsoft Research

{vseshadr, gpekhime, tcm}@cs.cmu.edu, onur@cmu.edu
{phillip.b.gibbons,michael.a.kozuch}@intel.com, {olruwase,trishulc}@microsoft.com

Abstract

Many recent works propose mechanisms demonstrating the
potential advantages of managing memory at a fine (e.g.,
cache line) granularity—e.g., fine-grained deduplication and
fine-grained memory protection. Unfortunately, existing vir-
tual memory systems track memory at a larger granularity
(e.g., 4 KB pages), inhibiting efficient implementation of such
techniques. Simply reducing the page size results in an unac-
ceptable increase in page table overhead and TLB pressure.

We propose a new virtual memory framework that enables
efficient implementation of a variety of fine-grained memory
management techniques. In our framework, each virtual page
can be mapped to a structure called a page overlay, in addi-
tion to a regular physical page. An overlay contains a subset of
cache lines from the virtual page. Cache lines that are present
in the overlay are accessed from there and all other cache lines
are accessed from the regular physical page. Our page-overlay
framework enables cache-line-granularity memory manage-
ment without significantly altering the existing virtual mem-
ory framework or introducing high overheads.

We show that our framework can enable simple and ef-
ficient implementations of seven memory management tech-
niques, each of which has a wide variety of applications. We
quantitatively evaluate the potential benefits of two of these
techniques: overlay-on-write and sparse-data-structure com-
putation. Our evaluations show that overlay-on-write, when
applied to fork, can improve performance by 15% and reduce
memory capacity requirements by 53% on average compared
to traditional copy-on-write. For sparse data computation, our
framework can outperform a state-of-the-art software-based
sparse representation on a number of real-world sparse ma-
trices. Our framework is general, powerful, and effective in
enabling fine-grained memory management at low cost.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

ISCA ’15, June 13 - 17, 2015, Portland, OR, USA

©2015 ACM. ISBN 978-1-4503-3402-0/15/06 $15.00

DOL: http://dx.doi.org/10.1145/2749469.2750379

1. Introduction

Virtual memory [17, 21, 30] is one of the most significant
inventions in the field of computer architecture. In addition
to supporting several core operating system functions such
as memory capacity management, inter-process protection,
and data sharing, virtual memory also enables simple im-
plementation of several techniques that significantly improve
performance—e.g., copy-on-write [22] and page flipping [3, 7].
Due to its simplicity and power, virtual memory is used in al-
most all modern high performance systems.

Despite its success, the fact that virtual memory, as it is im-
plemented today, tracks memory at a coarse (page) granular-
ity is a major shortcoming. Tracking memory at a page gran-
ularity 1) introduces significant inefficiency in many existing
techniques (e.g., copy-on-write), and 2) makes it difficult for
software to implement previously-proposed techniques such
as fine-grained deduplication [11, 23], fine-granularity data
protection [58, 59], cache-line-level compression [20, 29, 37],
and metadata management [35, 60]. For example, consider the
copy-on-write technique, where multiple virtual pages that
contain the same data are mapped to a single physical page:
When even just a single byte within any of the virtual pages
is modified, the operating system creates a copy of the entire
physical page. This operation not only wastes memory space,
but also incurs high latency, bandwidth, and energy [43].

Managing memory at a finer granularity than pages enables
several techniques that can significantly boost system perfor-
mance and efficiency. However, simply reducing the page
size results in an unacceptable increase in virtual-to-physical
mapping table overhead and TLB pressure. Prior works to
address this problem either rely on software techniques [23]
(high performance overhead), propose hardware support spe-
cific to a particular application [35, 45, 60] (low value for cost),
or significantly modify the structure of existing virtual mem-
ory [11, 59] (high cost for adoption).

We ask the question, can we architect a generalized frame-
work that can enable a wide variety of fine-grain manage-
ment techniques, without significantly altering the existing
virtual memory framework? In response, we present a new
virtual memory (VM) framework that augments the existing
VM framework with a new concept called page overlays.

Figure 1 pictorially compares the existing virtual memory
framework with our proposed framework. In the existing

Overlay

Virtual Physical (subset of cache lines
Page Page from the virtual page) |
! . Mapping !
+ Mapping Tables !

1

! Tables ll

|

! 1

: ﬂ

|
|
|

Virtual i Physical
Addr. Space 1 Addr. Space

(a) Existing framework

. 0]
| B
|
|
Virtual ! Physical
Addr. Space 1 Addr. Space
(b) Proposed framework

Figure 1: Overview of our proposed framework

framework (Figure 1a), each virtual page of a process can be
mapped to at most one physical page. The system uses a set
of mapping tables to determine the mapping between virtual
pages and physical pages. In our proposed framework (Fig-
ure 1b), each virtual page may additionally be mapped to a
structure called an overlay. At a high level, an overlay of a
virtual page contains only a subset of cache lines from the vir-
tual page. When a virtual page has both a physical page and
an overlay mapping, the access semantics is as follows: any
cache line that is present in the overlay is accessed from there;
all other cache lines are accessed from the physical page.

Our new framework with the simple access semantics has
two main advantages over previous approaches to enable fine-
grained memory management.

First, our framework is general and powerful. It seam-
lessly enables efficient implementation of a variety of tech-
niques to improve overall system performance, reduce mem-

ory capacity requirements, and enhance system security. As
an illustration, in the copy-on-write technique, when one of
the virtual pages mapped to a single physical page receives
a write, instead of creating a full copy of the physical page,
our mechanism simply creates an overlay for the virtual page
with just the modified cache line. We refer to this mechanism
as overlay-on-write. In comparison to copy-on-write, overlay-
on-write 1) significantly reduces the amount of redundancy
in memory and 2) removes the copy operation from the crit-
ical path of execution. In all, we describe seven different
techniques that can be efficiently implemented on top of our
framework. Table 1 summarizes these techniques, illustrating
the benefits of our framework over previously proposed mech-
anisms. Section 5 describes these techniques in more detail.
The second main advantage of our framework is that it
largely retains the structure of the existing virtual mem-
ory framework. This is very important as it not only enables
a low overhead implementation of our framework, but also
enables the system to treat overlays as an inexpensive feature
that can be turned on or off depending on how much the spe-
cific system benefits from overlays (backward-compatibility).
Implementing the semantics of our framework presents us
with a number of design questions—e.g., how and when are
overlays created, how are cache lines within overlays located,
how are the overlays stored compactly in main memory? We
show that the naive answers to these questions result in sig-
nificant performance overhead. In this work, we make several
observations that result in a simple and low-overhead design
of our framework. Section 3 discusses the shortcomings of
naive approaches and presents an overview of our proposed

Table 1: Summary of techniques that can be efficiently implemented on top of our proposed page-overlay framework

Technique (Section)

Mechanism (high-level)

Benefits Over the State-of-the-art

Overlay-on-Write (§2.2, §5.1)

Create an overlay on write and store
modified cache line(s) in overlay.

Compared to copy-on-write [22], 1) reduces memory redun-
dancy, 2) removes copy from critical path.

Sparse Data Structures (§5.2)

Use overlays to store non-zero
cache lines. Enable computation
over overlays (i.e., non-zero data).

Compared to software representations (e.g., [19]), 1) more effi-
cient when sparsity is low, 2) faster dynamic updates. Compared
to compression [37], more efficient computation.

Fine-grained Deduplication

(§5.3.1)

For pages with similar data, use sin-
gle base physical page and store dif-
ferences (deltas) in overlays.

Enables efficient hardware support for difference engine [23]. In
contrast to HICAMP [11], avoids significant changes to both ex-
isting virtual memory structure and programming model.

Checkpointing [18, 56] (§5.3.2)

Collect memory updates in over-
lays. Only back up the overlays.

Compared to backing up pages, reduces write bandwidth to back-
ing store, enabling faster, more frequent checkpointing.

Virtualizing Speculation (§5.3.3)

Store speculative memory updates
in overlay. Commit/discard overlay
if speculation succeeds/fails.

1) Supports potentially unbounded speculation (e.g., [2]), 2) no
software handlers needed to handle eviction of any speculatively
modified cache line [14].

Fine-grained Metadata
Management (§5.3.4)

Use overlays to store fine-grained
metadata (e.g., protection bits) for
each virtual page.

Compared to prior works [35, 59, 60], 1) easier integration with
existing virtual memory framework, 2) no metadata-specific
hardware changes required.

Flexible Super-pages (§5.3.5)

Use overlays at higher-level page
tables to remap different parts of
super-pages.

Enables 1) more flexible super-page mappings, 2) page or cache-
line-granularity copy-on-write, 3) multiple protection domains
within a super-page.

design. Section 4 describes our final design and the associated
implementation cost in detail.

We quantitatively evaluate the benefits of our framework
using two of the seven techniques: 1) overlay-on-write, and
2) an efficient mechanism for sparse data structure compu-
tations. Our evaluations show that overlay-on-write (when
applied to fork [1]) improves performance by 15% and re-
duces memory capacity requirements by 53% compared to
the traditional copy-on-write mechanism. For sparse-matrix-
vector multiplication, our framework consistently outper-
forms a baseline dense representation and can even outper-
form CSR [26], a state-of-the-art software-based sparse repre-
sentation, on over a third of the large real-world sparse matri-
ces from [16]. More importantly, unlike many software repre-
sentations, our implementation allows the sparse data struc-
ture to be dynamically updated, which is typically a costly
and complex operation with a software-based representation.
Section 5 discusses these results in more detail.

In summary, this paper makes the following contributions.

« We propose a new virtual memory framework that aug-
ments the existing VM framework with a new concept
called page overlays.

« We show that our framework provides powerful access
semantics, seamlessly enabling efficient implementation
of seven fine-grained memory management techniques.

« We present in detail a simple, low-overhead design of our
proposed framework. Our design adds negligible logic on
the critical path of regular memory accesses.

« We quantitatively evaluate our framework with two
fine-grained memory management techniques, showing
that it significantly improves overall system performance
and reduces memory consumption.

2. Page Overlays: Motivation

We first present a detailed overview of the semantics of
our proposed virtual memory framework. While our pro-
posed framework enables efficient implementation of each of
the techniques in Table 1, we will use one such technique—
overlay-on-write—to illustrate the power of our framework.

2.1. Overview of Semantics of Our Framework

As illustrated in Figure 1b, in our proposed framework,
each virtual page can be mapped to two entities: a regular
physical page and a page overlay. There are two aspects to a
page overlay. First, unlike the physical page, which has the
same size as the virtual page, the overlay of a virtual page
contains only a subset of cache lines from the page, and hence
is smaller in size than the virtual page. Second, when a vir-
tual page has both a physical page and an overlay mapping,
we define the access semantics such that any cache line that
is present in the overlay is accessed from there. Only cache
lines that are not present in the overlay are accessed from the
physical page, as shown in Figure 2 for the simplified case of
a page with four cache lines. In the figure, the virtual page

is mapped to both a physical page and an overlay, but the
overlay contains only cache lines C1 and C3. Based on our se-
mantics, accesses to C1 and C3 are mapped to the overlay, and
the remaining cache lines are mapped to the physical page.

Virtual
Page

Figure 2: Semantics of our proposed framework

2.2. Overlay-on-write: A More Efficient Copy-on-write
Copy-on-write is a widely-used primitive in many differ-
ent applications including process forking [1], virtual ma-
chine cloning [32], memory deduplication [55], OS specula-
tion [10, 36, 57], and memory checkpointing [18, 49, 56]. Fig-
ure 3a shows how the copy-on-write technique works. Ini-
tially, two (or more) virtual pages that contain the same data
are mapped to the same physical page (P). When one of the
pages receives a write (resulting in a data divergence), the OS
handles it in two steps. It first identifies a new physical page
(P’) and copies the contents of the original physical page (P)
to the new page @. Second, it remaps the virtual page that re-
ceived the write (V2) to the new physical page ®. This remap-
ping operation typically requires a TLB shootdown [6, 52].

4KB

Write

(a) Copy-on-Write

(b) Overlay-on-Write
Figure 3: Copy-on-Write vs. Overlay-on-Write

Despite its wide applications, copy-on-write is expensive
and inefficient for two reasons. First, both the copy operation
and the remap operation are on the critical path of the write.
Both operations incur high latency [6, 40, 43, 52, 54]. The
copy operation consumes high memory bandwidth, poten-
tially degrading the performance of other applications shar-
ing the memory bandwidth [43]. Second, even if only a sin-
gle cache line is modified within the virtual page, the system
needs to create a full copy of the entire physical page, leading
to inefficient use of memory capacity.

Our framework enables a faster, more efficient mechanism
(as shown in Figure 3b). When multiple virtual pages share
the same physical page, the OS explicitly indicates to the
hardware, through the page tables, that the pages should be
copied-on-write. When one of the pages receives a write, our
framework first creates an overlay that contains only the mod-
ified cache line (D). It then maps the overlay to the virtual page
that received the write (2). We refer to this mechanism as

overlay-on-write. Overlay-on-write has many benefits over
copy-on-write. First, it avoids the need to copy the entire
physical page before the write operation, thereby significantly
reducing the latency on the critical path of execution (as well
as the associated increase in memory bandwidth and energy).
Second, it allows the system to eliminate significant redun-
dancy in the data stored in main memory because only the
overlay lines need to be stored, compared to a full page with
copy-on-write. Finally, as we describe in Section 4.3.3, our de-
sign exploits the fact that only a single cache line is remapped
from the source physical page to the overlay to significantly
reduce the latency of the remapping operation.

As mentioned before, copy-on-write has a wide variety of
applications [1, 10, 18, 32, 36, 49, 55, 56, 57]. Overlay-on-write,
being a faster and more efficient alternative to copy-on-write,
can significantly benefit all these applications.

2.3. Benefits of the Overlay Semantics

For most of the techniques in Table 1, our framework offers
two distinct benefits over the existing VM framework. First,
our framework reduces the amount of work that the system
has to do, thereby improving system performance. For in-
stance, in the overlay-on-write and sparse data structure (Sec-
tion 5.2) techniques, our framework reduces the amount of
data that needs to be copied/accessed. Second, our framework
enables significant reduction in memory capacity require-
ments. Each overlay contains only a subset of cache lines
from the virtual page, so the system can reduce overall mem-
ory consumption by compactly storing the overlays in main
memory—i.e., for each overlay, store only the cache lines that
are actually present in the overlay. We quantitatively evalu-
ate these benefits in Section 5 using two techniques and show
that our framework is effective.

3. Page Overlays: Design Overview

While our framework imposes simple access semantics,
there are several key challenges to efficiently implement the
proposed semantics. In this section, we first discuss these chal-
lenges with an overview of how we address them. We then
provide a full overview of our proposed mechanism that ad-
dresses these challenges, thereby enabling a simple, efficient,
and low-overhead design of our framework.

3.1. Challenges in Implementing Page Overlays

Challenge 1: Checking if a cache line is part of the over-
lay. When the processor needs to access a virtual address, it
must first check if the accessed cache line is part of the over-
lay. Since most modern processors use a physically-tagged L1
cache, this check is on the critical path of the L1 access. To ad-
dress this challenge, we associate each virtual page with a bit
vector that represents which cache lines from the virtual page
are part of the overlay. We call this bit vector the overlay bit
vector (OBitVector). We cache the OBitVector in the pro-
cessor TLB, thereby enabling the processor to quickly check if
the accessed cache line is part of the overlay.

Challenge 2: Identifying the physical address of an overlay
cache line. If the accessed cache line is part of the overlay (i.e.,
it is an overlay cache line), the processor must quickly deter-
mine the physical address of the overlay cache line, as this ad-
dress is required to access the L1 cache. The simple approach
to address this challenge is to store in the TLB the base address
of the region where the overlay is stored in main memory (we
refer to this region as the overlay store). While this may enable
the processor to identify each overlay cache line with a unique
physical address, this approach has three shortcomings when
overlays are stored compactly in main memory.

First, the overlay store (in main memory) does not contain
all the cache lines from the virtual page. Therefore, the proces-
sor must perform some computation to determine the address
of the accessed overlay cache line. This will delay the L1 ac-
cess. Second, most modern processors use a virtually-indexed
physically-tagged L1 cache to partially overlap the L1 cache
access with the TLB access. This technique requires the vir-
tual index and the physical index of the cache line to be the
same. However, since the overlay is smaller than the virtual
page, the overlay physical index of a cache line will likely not
be the same as the cache line’s virtual index. As a result, the
cache access will have to be delayed until the TLB access is
complete. Finally, inserting a new cache line into an over-
lay is a relatively complex operation. Depending on how the
overlay is represented in main memory, inserting a new cache
line into an overlay can potentially change the addresses of
other cache lines in the overlay. Handling this scenario re-
quires a likely complex mechanism to ensure the consistency
of these other cache lines.

In our design, we address this challenge by using two dif-
ferent addresses for each overlay—one to address the proces-
sor caches, called the Overlay Address, and another to address
main memory, called the Overlay Memory Store Address. As
we will describe shortly, this dual-address design enables the
system to manage the overlay in main memory independently
of how overlay cache lines are addressed in the processor
caches, thereby overcoming the above three shortcomings.

Challenge 3: Ensuring the consistency of the TLBs. In our
design, since the TLBs cache the OBitVector, when a cache
line is moved from the physical page to the overlay or vice
versa, any TLB that has cached the mapping for the corre-
sponding virtual page should update its mapping to reflect the
cache line remapping. The naive approach to addressing this
challenge is to use a TLB shootdown [6, 52], which is expen-
sive [40, 54]. Fortunately, in the above scenario, the TLB map-
ping is updated only for a single cache line (rather than an
entire virtual page). We propose a simple mechanism that ex-
ploits this fact and uses the cache coherence protocol to keep
the TLBs coherent (Section 4.3.3).

3.2. Overview of Our Design

A key aspect of our dual-address design, mentioned above,
is that the address to access the cache (the Overlay Address)
is taken from an address space where the size of each overlay

is the same as that of a regular physical page. This enables
our design to seamlessly address Challenge 2 (overlay cache
line address computation), without incurring the drawbacks
of the naive approach to address the challenge (described in
Section 3.1). The question is, from what address space is the
Overlay Address taken?

Towards answering this question, we observe that only a
small fraction of the physical address space is backed by main
memory (DRAM) and a large portion of the physical address
space is unused, even after a portion is consumed for memory-
mapped I/O [39] and other system constructs. We propose to
use this unused physical address space for the overlay cache
address and refer to this space as the Overlay Address Space.!

Figure 4 shows the overview of our design. There are three
address spaces: the virtual address space, the physical address
space, and the main memory address space. The main mem-
ory address space is split between regular physical pages and
the Overlay Memory Store (OMS), a region where the over-
lays are stored compactly. In our design, to associate a virtual
page with an overlay, the virtual page is first mapped to a full
size page in the overlay address space using a direct mapping
without any translation or indirection (Section 4.1). The over-
lay page is in turn mapped to a location in the OMS using a
mapping table stored in the memory controller (Section 4.2).
We will describe the figure in more detail in Section 4.

Memory- - Overlay
mapped /0~ - Address Space
wr” ” (Unused Physical
Address Space)
pirect 0o Overlay
S . M St
v N\"‘??\ O/I/O, emory Store
2
2
S
‘)éé A ¢
- & Direct
Mapping
Virtual Physical Main Memory
Address Space Address Space Address Space

Figure 4: Overview of our design. “Direct mapping” indicates
that the corresponding mapping is implicit in the source address.
OMT = Overlay Mapping Table (Section 4.2).

3.3. Benefits of Our Design

There are three main benefits of our high-level design. First,
our approach makes no changes to the way the existing VM
framework maps virtual pages to physical pages. This is very
important as the system can treat overlays as an inexpensive
feature that can be turned on only when the application ben-
efits from it. Second, as mentioned before, by using two dis-

!In fact, a prior work, the Impulse Memory Controller [8], uses the unused
physical address space to communicate gather/scatter access patterns to the
memory controller. The goal of Impulse [8] is different from ours, and it
is difficult to use the design proposed by Impulse to enable fine-granularity
memory management.

tinct addresses for each overlay, our implementation decou-
ples the way the caches are addressed from the way over-
lays are stored in main memory. This enables the system to
treat overlay cache accesses very similarly to regular cache
accesses, and consequently requires very few changes to the
existing hardware structures (e.g., it works seamlessly with
virtually-indexed physically-tagged caches). Third, as we will
describe in the next section, in our design, the Overlay Mem-
ory Store (in main memory) is accessed only when an access
completely misses in the cache hierarchy. This 1) greatly re-
duces the number of operations related to managing the OMS,
2) reduces the amount of information that needs to be cached
in the processor TLBs, and 3) more importantly, enables the
memory controller to completely manage the OMS with min-
imal interaction with the OS.

4. Page Overlays: Detailed Design

To recap our high-level design (Figure 4), each virtual page
in the system is mapped to two entities: 1) a regular physical
page, which in turn directly maps to a page in main memory,
and 2) an overlay page in the Overlay Address space (which
is not directly backed by main memory). Each page in this
space is in turn mapped to a region in the Overlay Memory
Store, where the overlay is stored compactly. Because our
implementation does not modify the way virtual pages are
mapped to regular physical pages, we now focus our attention
on how virtual pages are mapped to overlays.

4.1. Virtual-to-Overlay Mapping

The virtual-to-overlay mapping maps a virtual page to a
page in the Overlay Address space. One simple approach to
maintain this mapping information is to store it in the page ta-
ble and allow the OS to manage the mappings (similar to reg-
ular physical pages). However, this increases the overhead of
the mapping table and complicates the OS. We make a simple
observation and impose a constraint that makes the virtual-
to-overlay mapping a direct 1-1 mapping.

Our observation is that since the Overlay Address space
is part of the unused physical address space, it can be signif-
icantly larger than the amount of main memory. To enable
a 1-1 mapping between virtual pages and overlay pages, we
impose a simple constraint wherein no two virtual pages can
be mapped to the same overlay page.

Figure 5 shows how our design maps a virtual address to
the corresponding overlay address. Our scheme widens the
physical address space such that the overlay address corre-
sponding to the virtual address vaddr of a process with ID
PID is obtained by simply concatenating an overlay bit (set to
1), PID, and vaddr. Since two virtual pages cannot share an
overlay, when data of a virtual page is copied to another vir-
tual page, the overlay cache lines of the source page must be
copied into the appropriate locations in the destination page.
While this approach requires a slightly wider physical address
space than in existing systems, this is a more practical mecha-
nism compared to storing this mapping explicitly in a separate

table, which can lead to much higher storage and manage-
ment overheads than our approach. With a 64-bit physical
address space and a 48-bit virtual address space per process,
this approach can support 2!° different processes.

Virtual Address

vaddr]

Figure 5: Virtual-to-Overlay Mapping. The MSB indicates if the
physical address is part of the Overlay Address space.

Process ID

Overlay Address { 1 [PID [

Note that a similar approach cannot be used to map vir-
tual pages to physical pages due to the synonym problem [9],
which results from multiple virtual pages being mapped to the
same physical page. However, this problem does not occur
with the virtual-to-overlay mapping because of the constraint
we impose: no two virtual pages can map to the same over-
lay page. Even with this constraint, our framework enables
many applications that can improve performance and reduce
memory capacity requirements (Section 5).

4.2. Overlay Address Mapping

Overlay cache lines tagged in the Overlay Address space
must be mapped into an Overlay Memory Store location upon
eviction. In our design, since there is a 1-1 mapping between
a virtual page and an overlay page, we could potentially store
this mapping in the page table along with the physical page
mapping. However, since many pages may not have an over-
lay, we store this mapping information in a separate mapping
table similar to the page table. This Overlay Mapping Table
(OMT) is maintained and controlled fully by the memory con-
troller with minimal interaction with the OS. Section 4.4 de-
scribes Overlay Memory Store management in detail.

4.3. Microarchitecture and Memory Access Operations

Figure 6 depicts the microarchitectural details of our design.
There are three main changes over the microarchitecture of
current systems. First (@ in the figure), main memory is split
into two regions that store 1) regular physical pages and 2) the
Overlay Memory Store (OMS). The OMS stores both a com-
pact representation of the overlays and the Overlay Mapping
Table (OMT), which maps each page from the Overlay Ad-
dress Space to a location in the Overlay Memory Store. At a
high level, each OMT entry contains 1) the OBitVector, in-
dicating if each cache line within the corresponding page is
present in the overlay, and 2) OMSaddr, the location of the
overlay in the OMS. Second @, we augment the memory con-
troller with a cache called the OMT Cache, which caches re-
cently accessed entries from the OMT. Third @, because the
TLB must determine if an access to a virtual address should be
directed to the corresponding overlay, we extend each TLB en-
try to store the OBitVector. While this potentially increases
the cost of each TLB miss (as it requires the OBitVector to be
fetched from the OMT), our evaluations (Section 5) show that
the performance benefit of using overlays more than offsets
this additional TLB fill latency.

To describe the operation of different memory accesses, we

use overlay-on-write (Section 2.2) as an example. Let us as-
sume that two virtual pages (V1 and V2) are mapped to the
same physical page in the copy-on-write mode, with a few
cache lines of V2 already mapped to the overlay. There are
three possible operations on V2: 1) a read, 2) a write to a cache
line already in the overlay (simple write), and 3) a write to a
cache line not present in the overlay (overlaying write). We
now describe each of these operations in detail.

4.3.1. Memory Read Operation. When the page V2 receives a
read request, the processor first accesses the TLB with the cor-
responding page number (VPN) to retrieve the physical map-
ping (PPN) and the OBitVector. It generates the overlay page
number (OPN) by concatenating the address space ID (ASID) of
the process and the VPN (as described in Section 4.1). Depend-
ing on whether the accessed cache line is present in the over-
lay (as indicated by the corresponding bit in the OBitVector),
the processor uses either the PPN or the OPN to generate the L1
cache tag. If the access misses in the entire cache hierarchy
(L1 through last-level cache), the request is sent to the mem-
ory controller. The controller checks if the requested address
is part of the overlay address space by checking the overlay
bit in the physical address. If so, it looks up the overlay store
address (OMSaddr) of the corresponding overlay page from
the OMT Cache, and computes the exact location of the re-
quested cache line within main memory (as described later
in Section 4.4). It then accesses the cache line from the main
memory and returns the data to the cache hierarchy.

4.3.2. Simple Write Operation. When the processor receives a
write to a cache line already present in the overlay, it simply
has to update the cache line in the overlay. The path of this
operation is the same as that of the read operation, except the
cache line is updated after it is read into the L1 cache.

4.3.3. Overlaying Write Operation. An overlaying write oper-
ation is a write to a cache line that is not already present in
the overlay. Since the virtual page is mapped to the regular
physical page in the copy-on-write mode, the corresponding
cache line must be remapped to the overlay (based on our se-
mantics described in Section 2.2). We complete the overlaying
write in three steps: 1) copy the data of the cache line in the
regular physical page (PPN) to the corresponding cache line in
the Overlay Address Space page (OPN), 2) update all the TLBs
and the OMT to indicate that the cache line is mapped to the
overlay, and 3) process the write operation.

The first step can be completed in hardware by reading the
cache line from the regular physical page and simply updat-
ing the cache tag to correspond to the overlay page number (or
by making an explicit copy of the cache line). Naively imple-
menting the second step will involve a TLB shootdown for the
corresponding virtual page. However, we exploit three simple
facts to use the cache coherence network to keep the TLBs
and the OMT coherent: i) the mapping is modified only for a
single cache line, and not an entire page, ii) the overlay page
address can be used to uniquely identify the virtual page since

OBitVECtOF G = - e QB1tVector OMT Metadata
VN e e Y

vaddr VPN OPN ‘ OMSaddr T - T Overlay

T \—’ OMT Cache Memory Store

A 5 D Last-level i (1

Cache Cache line Overlay Memory Main
part of overlay? Store Address
CPU tag Memory
Memory
W L1 Data Cache W Miss Clommisillar >

Figure 6: Microarchitectural details of our implementation. The main changes (@, ® and ©) are described in Section 4.3.

no overlay is shared between virtual pages, and iii) the over-
lay address is part of the physical address space and hence,
part of the cache coherence network. Based on these facts,
we propose a new cache coherence message called overlaying
read exclusive. When a core receives this request, it checks
if its TLB has cached the mapping for the virtual page. If so,
the core simply sets the bit for the corresponding cache line
in the OBitVector. The overlaying read exclusive request is
also sent to the memory controller so that it can update the
OBitVector of the corresponding overlay page in the OMT
(via the OMT Cache). Once the remapping operation is com-
plete, the write operation (the third step) is processed similar
to the simple write operation.

Note that after an overlaying write, the corresponding
cache line (which we will refer to as the overlay cache line)
is marked dirty. However, unlike copy-on-write, which must
allocate memory before the write operation, our mechanism
allocates memory space lazily upon the eviction of the dirty
overlay cache line - significantly improving performance.

4.3.4. Converting an Overlay to a Regular Physical Page. De-
pending on the technique for which overlays are used, main-
taining an overlay for a virtual page may be unnecessary after
a point. For example, when using overlay-on-write, if most of
the cache lines within a virtual page are modified, maintain-
ing them in an overlay does not provide any advantage. The
system may take one of three actions to promote an overlay
to a physical page: The copy-and-commit action is one where
the OS copies the data from the regular physical page to a
new physical page and updates the data of the new physical
page with the corresponding data from the overlay. The com-
mit action updates the data of the regular physical page with
the corresponding data from the overlay. The discard action
simply discards the overlay.

While the copy-and-commit action is used with overlay-on-
write, the commitand discard actions are used, for example, in
the context of speculation, where our mechanism stores spec-
ulative updates in the overlays (Section 5.3.3). After any of
these actions, the system clears the OBitVector of the cor-
responding virtual page, and frees the overlay memory store
space allocated for the overlay (discussed next in Section 4.4).

4.4. Managing the Overlay Memory Store

The Overlay Memory Store (OMS) is the region in main
memory where all the overlays are stored. As described in
Section 4.3.1, the OMS is accessed only when an overlay ac-
cess completely misses in the cache hierarchy. As a result,
there are many simple ways to manage the OMS. One way
is to have a small embedded core on the memory controller
that can run a software routine that manages the OMS (sim-
ilar mechanisms are supported in existing systems, e.g., Intel
Active Management Technology [25]). Another approach is
to let the memory controller manage the OMS by using a full
physical page to store each overlay. While this approach will
forgo the memory capacity benefit of our framework, it will
still obtain the benefit of reducing overall work (Section 2.3).

In this section, we describe a hardware mechanism that ob-
tains both the work reduction and the memory capacity re-
duction benefits of using overlays. In our mechanism, the
memory controller fully manages the OMS with minimal in-
teraction with the OS. Managing the OMS has two key as-
pects. First, because each overlay contains only a subset of
cache lines from the virtual page, we need a compact repre-
sentation for the overlay, such that the OMS contains only
cache lines that are actually present in the overlay. Second,
the memory controller must manage multiple overlays of dif-
ferent sizes. We need a simple mechanism to handle such dif-
ferent sizes and the associated free space fragmentation issues.
Although operations that allocate new overlays or relocate ex-
isting overlays are slightly more complex, they are triggered
only when a dirty overlay cache line is written back to main
memory. Therefore, these operations are rare and are not on
the critical path of execution.

4.4.1. Compact Overlay Representation. One simple approach
to compactly maintain the overlays is to store the cache lines
in an overlay in the order in which they appear in the virtual
page. While this representation is simple, if a new cache line
is inserted into the overlay before other overlay cache lines,
then the memory controller must move such cache lines to
create a slot for the inserted line. This is a read-modify-write
operation, which results in significant performance overhead.

We propose an alternative mechanism, in which each over-
lay is assigned a segment in the OMS. The overlay is asso-
ciated with an array of pointers—one pointer for each cache

line in the virtual page. Each pointer either points to the slot
within the overlay segment that contains the cache line or is
invalid if the cache line is not present in the overlay. We store
this metadata in a single cache line at the head of the seg-
ment. For segments less than 4KB size, we use 64 5-bit slot
pointers and a 32-bit vector indicating the free slots within a
segment—total of 352 bits. For a 4KB segment, we do not store
any metadata and simply store each overlay cache line at an
offset which is same as the offset of the cache line within the
virtual page. Figure 7 shows an overlay segment of size 256B,
with only the first and the fourth cache lines of the virtual
page mapped to the overlay.

ooz -~ (ol - §
First cache line of the virtual page
64 Slot pointers [Fourth cache line of the virtual page]

(5 bits each) | Free slot)

Free bit vector e
(32 bits) ! {

Figure 7: A 256B overlay segment (can store up to three over-
lay cache lines from the virtual page). The first line stores the
metadata (array of pointers and the free bit vector).

4.4.2. Managing Multiple Overlay Sizes. Different virtual
pages may contain overlays of different sizes. The memory
controller must store them efficiently in the available space.
To simplify this management, our mechanism splits the avail-
able overlay space into segments of 5 fixed sizes: 256B, 512B,
1KB, 2KB, and 4KB. Each overlay is stored in the smallest
segment that is large enough to store the overlay cache lines.
When the memory controller requires a segment for a new
overlay or when it wants to migrate an existing overlay to a
larger segment, the controller identifies a free segment of the
required size and updates the OMSaddr of the corresponding
overlay page with the base address of the new segment. Indi-
vidual cache lines are allocated their slots within the segment
as and when they are written back to main memory.

4.4.3. Free Space Management. To manage the free segments
within the Overlay Memory Store, we use a simple linked-
list based approach. For each segment size, the memory con-
troller maintains a memory location or register that points to
a free segment of that size. Each free segment in turn stores
a pointer to another free segment of the same size or an in-
valid pointer denoting the end of the list. If the controller
runs out of free segments of a particular size, it obtains a free
segment of the next higher size and splits it into two. If the
controller runs out of free 4KB segments, it requests the OS
for an additional set of 4KB pages. During system startup, the
OS proactively allocates a chunk of free pages to the mem-
ory controller. To reduce the number of memory operations
needed to manage free segments, we use a grouped-linked-list
mechanism, similar to the one used by some file systems [46].

4.4.4. The Overlay Mapping Table (OMT) and the OMT Cache.
The OMT maps pages from the Overlay Address Space to a
specific segment in the Overlay Memory Store. For each page

in the Overlay Address Space (i.e., for each OPN), the OMT
contains an entry with the following pieces of information:
1) the OBitVector, indicating which cache lines are present
in the overlay, and 2) the Overlay Memory Store Address
(OMSaddr), pointing to the segment that stores the overlay. To
reduce the storage cost of the OMT, we store it hierarchically,
similar to the virtual-to-physical mapping tables. The mem-
ory controller maintains the root address of the hierarchical
table in a register.

The OMT Cache stores the following details regarding
recently-accessed overlays: the OBitVector, the OMSaddr,
and the overlay segment metadata (stored at the beginning
of the segment). To access a cache line from an overlay, the
memory controller consults the OMT Cache with the overlay
page number (OPN). In case of a hit, the controller acquires the
necessary information to locate the cache line in the overlay
memory store using the overlay segment metadata. In case
of a miss, the controller performs an OMT walk (similar to a
page table walk) to look up the corresponding OMT entry, and
inserts it in the OMT Cache. It also reads the overlay segment
metadata and caches it in the OMT cache entry. The con-
troller may modify entries of the OMT, as and when overlays
are updated. When such a modified entry is evicted from the
OMT Cache, the memory controller updates the correspond-
ing OMT entry in memory.

4.5. Hardware Cost and OS Changes

There are three sources of hardware overhead in our de-
sign: 1) the OMT Cache, 2) wider TLB entries (to store the
OBitVector), and 3) wider cache tags (due to the wider phys-
ical address space). Each OMT Cache entry stores the overlay
page number (48 bits), the Overlay Memory Store address (48
bits), the overlay bit vector (64 bits), the array of pointers for
each cache line in the overlay page (64"5 = 320 bits), and free
list bit vector for the overlay segment (32 bits). In all, each
entry consumes 512 bits. The size of a 64-entry OMT Cache
is therefore 4KB. Each TLB entry is extended with the 64-bit
OBitVector. Across the 64-entry L1 TLB and 1024-entry L2
TLB, the overall cost extending the TLB is 8.5KB. Finally, as-
suming each cache tag entry requires an additional 16 bits for
each tag, across a 64KB L1 cache, 512KB L2 cache and a 2MB
L3 cache, the cost of extending the cache tags to accommodate
a wider physical address is 82KB. Thus, the overall hardware
storage cost is 94.5KB. Note that the additional bits required
for each tag entry can be reduced by restricting the portion of
the virtual address space that can have overlays, resulting in
even lower overall hardware cost.

The main change to the OS in our implementation is related
to the Overlay Memory Store management. The OS inter-
acts with the memory controller to dynamically partition the
available main memory space between regular physical pages
and the OMS. As mentioned in Section 4.4, this interaction is
triggered only when a dirty overlay cache line is written back
to main memory and the memory controller is out of Over-
lay Memory Store space. This operation is rare and is off the

Processor 2.67 GHz, single issue, out-of-order, 64 entry instruction window, 64B cache lines

TLB 4K pages, 64-entry 4-way associative L1 (1 cycle), 1024-entry L2 (10 cycles), TLB miss = 1000 cycles

L1 Cache 64KB, 4-way associative, tag/data latency = 1/2 cycles, parallel tag/data lookup, LRU policy

L2 Cache 512KB, 8-way associative, tag/data latency = 2/8 cycles, parallel tag/data lookup, LRU policy

Prefetcher Stream prefetcher [33, 48], monitor L2 misses and prefetch into L3, 16 entries, degree = 4, distance = 24

L3 Cache 2MB, 16-way associative, tag/data latency = 10/24 cycles, serial tag/data lookup, DRRIP [27] policy

DRAM Controller Open row, FR-FCFS drain when full [34], 64-entry write buffer, 64-entry OMT cache, miss latency = 1000 cycles
DRAM and Bus DDR3-1066 MHz [28], 1 channel, 1 rank, 8 banks, 8B-wide data bus, burst length = 8, 8KB row buffer

Table 2: Main parameters of our simulated system

critical path. In addition, the operation can be run on a spare
core and does not have to stall any actively running hardware
thread. Note that some of the applications of page overlays
may require additional OS or application support, as noted in
the sections describing the applications (under Section 5).

5. Applications and Evaluations

In this section, we describe seven techniques enabled by our
framework, and quantitatively evaluate two of them. For our
performance evaluations, we use an in-house event-driven
multi-core simulator that models out-of-order cores coupled
with a DDR3-1066 [28] DRAM simulator. All the simulated
systems use a three-level cache hierarchy with a uniform 64B
cache line size. We do not enforce inclusion in any level of the
hierarchy. We use the state-of-the-art DRRIP cache replace-
ment policy [27] for the last-level cache. All our evaluated
systems use an aggressive multi-stream prefetcher [48] simi-
lar to the one implemented in IBM Power 6 [33]. Table 2 lists
the main configuration parameters in detail.

5.1. Overlay-on-write

As discussed in Section 2.2, overlay-on-write is a more ef-
ficient version of copy-on-write [22]: when multiple virtual
pages share the same physical page in the copy-on-write mode
and one of them receives a write, overlay-on-write simply
moves the corresponding cache line to the overlay and up-
dates the cache line in the overlay.

We compare the performance of overlay-on-write with
that of copy-on-write using the fork [1] system call. fork
is a widely-used system call with a number of differ-
ent applications including creating new processes, creating
stateful threads in multi-threaded applications, process test-
ing/debugging [12, 13, 49], and OS speculation [10, 36, 57].
Despite its wide applications, fork is one of the most expen-
sive system calls [41]. When invoked, fork creates a child
process with an identical virtual address space as the calling
process. fork marks all the pages of both processes as copy-
on-write. As a result, when any such page receives a write,
the copy-on-write mechanism must copy the whole page and
remap the virtual page before it can proceed with the write.

Our evaluation models a scenario where a process is check-
pointed at regular intervals using the fork system call. While
we can test the performance of fork with any application, we
use a subset of benchmarks from the SPEC CPU2006 bench-

mark suite [15]. Because the number of pages copied de-
pends on the write working set of the application, we pick
benchmarks with three different types of write working sets:
1) benchmarks with low write working set size, 2) benchmarks
for which almost all cache lines within each modified page are
updated, and 3) benchmarks for which only a few cache line
within each modified page are updated. We pick five bench-
marks for each type. For each benchmark, we fast forward the
execution to its representative portion (determined using Sim-
point [44]), run the benchmark for 200 million instructions (to
warm up the caches), and execute a fork. After the fork, we
run the parent process for another 300 million instructions,
while the child process idles.?

Figure 8 plots the amount of additional memory consumed
by the parent process using copy-on-write and overlay-on-
write for the 300 million instructions after the fork. Fig-
ure 9 plots the performance (cycles per instruction) of the two
mechanisms during the same period. We group benchmarks
based on their type. We draw three conclusions.

First, benchmarks with low write working set (Type 1) con-
sume very little additional memory after forking (Figure 8).
As aresult, there is not much difference in the performance of
copy-on-write and that of overlay-on-write (Figure 9).

Second, for benchmarks of Type 2, both mechanisms con-
sume almost the same amount of additional memory. This is
because for these benchmarks, almost all cache lines within
every modified page are updated. However, with the excep-
tion of cactus, overlay-on-write significantly improves perfor-
mance for this type of applications. Our analysis shows that
the performance trends can be explained by the distance in
time when cache lines of each page are updated by the appli-
cation. When writes to different cache lines within a page are
close in time, copy-on-write performs better than overlay-on-
write. This is because copy-on-write fetches all the blocks of a
page with high memory-level parallelism. On the other hand,
when writes to different cache lines within a page are well
separated in time, copy-on-write may 1) unnecessarily pollute
the L1 cache with all the cache lines of the copied page, and
2) increase write bandwidth by generating two writes for each
updated cache line (once when it is copied and again when
the application updates the cache line). Overlay-on-write has
neither of these drawbacks, and hence significantly improves

2While 300 million instructions might seem low, several prior works (e.g., [12,
13]) argue for even shorter checkpoint intervals (10-100 million instructions).

100 4 Type 1 Type 2o Type 3
90 4
80
70 4
60
50 4
40 4
30 4
20

10

[Copy-on-write

M Overlay-on-write

Additional Memory (MBs)

astar #—‘

S
g 8 2% &8 8 8 E R 8 g2 8 2 & §
 E= & § % © =2 g 2 T E E £ 9
= 0 = EE
z £ £ = 2o g 5 Q V] g
& <= & 2

Figure 8: Additional memory consumed after a fork

Type 1 Type 2 Type 3

] Copy-on-write

B Overlay-on-write

Cycles/Instruction

libq
sphinx3

ks
g

hmmer
tonto
bzip2
cactus
Ibm
leslie3d
soplex
astar
Gems
milc
omnet
mean

bwaves

Figure 9: Performance after a fork (lower is better)

performance over copy-on-write.

Third, for benchmarks of Type 3, overlay-on-write signif-
icantly reduces the amount of additional memory consumed
compared to copy-on-write. This is because the write work-
ing set of these applications are spread out in the virtual ad-
dress space, and copy-on-write unnecessarily copies cache
lines that are actually not updated by the application. Conse-
quently, overlay-on-write significantly improves performance
compared to copy-on-write for this type of applications.

In summary, across all the benchmarks, overlay-on-write
reduces additional memory capacity requirements by 53% and
improves performance by 15% compared to copy-on-write.
Given the wide applicability of the fork system call, and the
copy-on-write technique in general, we believe overlay-on-
write can significantly benefit a variety of such applications.

5.2. Representing Sparse Data Structures

A sparse data structure is one with a significant fraction
of zero values, e.g., a sparse matrix. Since only non-zero
values typically contribute to computation, prior work devel-
oped many software representations for sparse data structures
(e.g., [19, 26]). One popular software representation of a sparse
matrix is the Compressed Sparse Row (CSR) format [26]. To
represent a sparse matrix, CSR stores only the non-zero values
in an array, and uses two arrays of index pointers to identify
the location of each non-zero value within the matrix.

While CSR efficiently stores sparse matrices, the additional
index pointers maintained by CSR can result in inefficiency.
First, the index pointers lead to significant additional memory
capacity overhead (roughly 1.5 times the number of non-zero
values in our evaluation—each value is 8 bytes, and each index
pointer is 4 bytes). Second, any computation on the sparse

10

matrix requires additional memory accesses to fetch the index
pointers, which degrades performance.

Our framework enables a very efficient hardware-based
representation for a sparse data structure: all virtual pages of
the data structure map to a zero physical page and each virtual
page is mapped to an overlay that contains only the non-zero
cache lines from that page. To avoid computation over zero
cache lines, we propose a new computation model that en-
ables the software to perform computation only on overlays.
When overlays are used to represent sparse data structures,
this model enables the hardware to efficiently perform a com-
putation only on non-zero cache lines. Because the hardware
is aware of the overlay organization, it can efficiently prefetch
the overlay cache lines and hide the latency of memory ac-
cesses significantly.

Our representation stores non-zero data at a cache line
granularity. Hence, the performance and memory capacity
benefits of our representation over CSR depends on the spa-
tial locality of non-zero values within a cache line. To aid our
analysis, we define a metric called non-zero value locality (L),
as the average number of non-zero values in each non-zero
cache line. On the one hand, when non-zero values have poor
locality (£ ~ 1), our representation will have to store a sig-
nificant number of zero values and perform redundant com-
putation over such values, degrading both memory capacity
and performance over CSR, which stores and performs com-
putation on only non-zero values. On the other hand, when
non-zero values have high locality (£ ~ 8—e.g., each cache
line stores 8 double-precision floating point values), our rep-
resentation is significantly more efficient than CSR as it stores
significantly less metadata about non-zero values than CSR.
As a result, it outperforms CSR both in terms of memory ca-
pacity and performance.

We analyzed this trade-off using real-world sparse matrices
of double-precision floating point values obtained from the
UF Sparse Matrix Collection [16]. We considered all matrices
with at least 1.5 million non-zero values (87 in total). Figure 10
plots the memory capacity and performance of one iteration
of Sparse-Matrix Vector (SpMV) multiplication of our mecha-
nism normalized to CSR for each of these matrices. The x-axis
is sorted in the increasing order of the £-value of the matrices.

2.0 71 — Overlay Relative Performance Employ OVe}‘lays
£ 18+ . . in this region
O 164~ Overlay Relative Memory Capacity
2 14+ /f"\,, .
E 1 -
§ 151" Employ CSR A,
"3 g inthisregion — -
g O:GA /\/_///\/:_,___,
< 047 g A L g
S L <45 - L>45

87 Real World Sparse Matrices

Figure 10: SpMV multiplication: Performance of page overlays
vs. CSR. L (non-zero value locality): Average # non-zero values
in each non-zero cache line.

The trends can be explained by looking at the extreme

points. On the left extreme, we have a matrix with £ = 1.09
(poisson3Db), i.e., most non-zero cache lines have only one
non-zero value. As a result, our representation consumes 4.83
times more memory capacity and degrades performance by
70% compared to CSR. On the other extreme is a matrix with
L = 8 (raefsky4), i.e., none of the non-zero cache lines have
any zero value. As a result, our representation is more effi-
cient, reducing memory capacity by 34%, and improving per-
formance by 92% compared to CSR.

Our results indicate that even when a little more than half
of the values in each non-zero cache line are non-zero (£ >
4.5), overlays outperform CSR. For 34 of the 87 real-world ma-
trices, overlays reduce memory capacity by 8% and improve
performance by 27% on average compared to CSR.

In addition to the performance and memory capacity ben-
efits, our representation has several other major advantages
over CSR (or any other software format). First, CSR is typi-
cally helpful only when the data structure is very sparse. In
contrast, our representation exploits a wider degree of sparsity
in the data structure. In fact, our simulations using randomly-
generated sparse matrices with varying levels of sparsity (0%
to 100%) show that our representation outperforms the dense-
matrix representation for all sparsity levels—the performance
gap increases linearly with the fraction of zero cache lines in
the matrix. Second, in our framework, dynamically insert-
ing non-zero values into a sparse matrix is as simple as mov-
ing a cache line to the overlay. In contrast, CSR incur a high
cost to insert non-zero values. Finally, our computation model
enables the system to seamlessly use optimized dense matrix
codes on top of our representation. CSR, on the other hand,
requires programmers to rewrite algorithms to suit CSR.

Sensitivity to Cache Line Size. So far, we have described
the benefits of using overlays using 64B cache lines. However,
one can imagine employing our approach at a 4KB page gran-
ularity (i.e., storing only non-zero pages as opposed to non-
zero cache lines). To illustrate the benefits of fine-grained
management, we compare the memory overhead of storing
the sparse matrices using different cache line sizes (from 16B
to 4KB). Figure 11 shows the results. The memory overhead
for each cache line size is normalized to the ideal mecha-
nism which stores only the non-zero values. The matrices are
sorted in the same order as in Figure 10. We draw two con-
clusions from the figure. First, while storing only non-zero
(4KB) pages may be a practical system to implement using
today’s hardware, it increases the memory overhead by 53X
on average. It would also increase the amount of computa-
tion, resulting in significant performance degradation. Hence,
there is significant benefit to the fine-grained memory man-
agement enabled by overlays. Second, the results show that
a mechanism using a finer granularity than 64B can outper-
form CSR on more matrices, indicating a direction for future
research on sub-block management (e.g., [31]).

In summary, our overlay-based sparse matrix representa-
tion outperforms the state-of-the-art software representation

11

Memory Overhead
(Normalized to Ideal)

87 Real World Sparse Matrices

Figure 11: Memory overhead of different cache line sizes over
“Ideal” that stores only non-zero values. Circles indicate points
where fine-grained management begins to outperform CSR.

on many real-world matrices, and consistently better than
page-granularity management. We believe our approach has
much wider applicability than existing representations.

5.3. Other Applications of Our Framework

We now describe five other applications from Table 1 that
can be efficiently implemented on top of our framework.
While prior works have already proposed mechanisms for
some of these applications, our framework either enables a
simpler mechanism or enables efficient hardware support for
mechanisms proposed by prior work. Due to lack of space,
we describe these mechanisms only at a high level, and defer
more detailed explanations to future work.

5.3.1. Fine-grained Deduplication. Gupta et al. [23] observe
that in a system running multiple virtual machines with the
same guest operating system, there are a number of pages that
contain mostly same data. Their analysis shows that exploit-
ing this redundancy can reduce memory capacity require-
ments by 50%. They propose the Difference Engine, which
stores such similar pages using small patches over a common
page. However, accessing such patched pages incurs signifi-
cant overhead because the OS must apply the patch before re-
trieving the required data. Our framework enables a more effi-
cient implementation of the Difference Engine wherein cache
lines that are different from the base page can be stored in
overlays, thereby enabling seamless access to patched pages,
while also reducing the overall memory consumption. Com-
pared to HICAMP [11], a cache line level deduplication mech-
anism that locates cache lines based on their content, our
framework avoids significant changes to both the existing vir-
tual memory framework and programming model.

5.3.2. Efficient Checkpointing. Checkpointing is an impor-
tant primitive in high performance computing applications
where data structures are checkpointed at regular intervals
to avoid restarting long-running applications from the begin-
ning [5, 18, 56]. However, the frequency and latency of check-
points are often limited by the amount of memory data that
needs to be written to the backing store. With our framework,
overlays could be used to capture all the updates between two
checkpoints. Only these overlays need to be written to the
backing store to take a new checkpoint, reducing the latency
and bandwidth of checkpointing. The overlays are then com-

mitted (Section 4.3.4), so that each checkpoint captures pre-
cisely the delta since the last checkpoint. In contrast to prior
works on efficient checkpointing such as INDRA [45], Re-
Vive [38], and Sheaved Memory [50], our framework is more
flexible than INDRA and ReVive (which are tied to recovery
from remote attacks) and avoids the considerable write ampli-
fication of Sheaved Memory (which can significantly degrade
overall system performance).

5.3.3. Virtualizing Speculation. Several hardware-based spec-
ulative techniques (e.g., thread-level speculation [47, 51],
transactional memory [14, 24]) have been proposed to im-
prove system performance. Such techniques maintain spec-
ulative updates to memory in the cache. As a result, when
a speculatively-updated cache line is evicted from the cache,
these techniques must necessarily declare the speculation as
unsuccessful, resulting in a potentially wasted opportunity.
In our framework, these techniques can store speculative up-
dates to a virtual page in the corresponding overlay. The over-
lay can be committed or discarded based on whether the spec-
ulation succeeds or fails. This approach is not limited by cache
capacity and enables potentially unbounded speculation [2].

5.3.4. Fine-grained Metadata Management. Storing fine-
grained (e.g., word granularity) metadata about data has
several applications (e.g., memcheck, taintcheck [53], fine-
grained protection [59], detecting lock violations [42]). Prior
works (e.g., [35, 53, 59, 60]) have proposed frameworks to ef-
ficiently store and manipulate such metadata. However, these
mechanisms require hardware support specific to storing and
maintaining metadata. In contrast, with our framework, the
system can potentially use overlays for each virtual page to
store metadata for the virtual page instead of an alternate ver-
sion of the data. In other words, the Overlay Address Space
serves as shadow memory for the virtual address space. To ac-
cess some piece of data, the application uses the regular load
and store instructions. The system would need new metadata
load and metadata store instructions to enable the application
to access the metadata from the overlays.

5.3.5. Flexible Super-pages. Many modern architectures sup-
port super-pages to reduce the number of TLB misses. In
fact, a recent prior work [4] suggests that a single arbitrar-
ily large super-page (direct segment) can significantly reduce
TLB misses for large servers. Unfortunately, using super-
pages reduces the flexibility for the operating system to man-
age memory and implement techniques like copy-on-write.
For example, to our knowledge, there is no system that shares
a super-page across two processes in the copy-on-write mode.
This lack of flexibility introduces a trade-off between the ben-
efit of using super-pages to reduce TLB misses and the benefit
of using copy-on-write to reduce memory capacity require-
ments. Fortunately, with our framework, we can apply over-
lays at higher-level page table entries to enable the OS to man-
age super-pages at a finer granularity. In short, we envision
a mechanism that divides a super-page into smaller segments

12

(based on the number of bits available in the OBitVector),
and allows the system to potentially remap a segment of the
super-page to the overlays. For example, when a super-page
shared between two processes receives a write, only the corre-
sponding segment is copied and the corresponding bit in the
OBitVector is set. This approach can similarly be used to
have multiple protection domains within a super-page. As-
suming only a few segments within a super-page will require
overlays, this approach can still ensure low TLB misses while
enabling more flexibility for the OS.

6. Conclusion

We introduced a new, simple framework that enables fine-
grained memory management. Our framework augments vir-
tual memory with a concept called overlays. Each virtual page
can be mapped to both a physical page and an overlay. The
overlay contains only a subset of cache lines from the virtual
page, and cache lines that are present in the overlay are ac-
cessed from there. We show that our proposed framework,
with its simple access semantics, enables several fine-grained
memory management techniques, while not significantly al-
tering the existing VM framework. We quantitatively demon-
strate the benefits of our framework with two applications:
1) overlay-on-write, an efficient alternative to copy-on-write,
and 2) an efficient hardware representation of sparse data
structures. Our evaluations show that our framework signif-
icantly improves performance and reduces memory capacity
requirements for both applications (e.g., 15% performance im-
provement and 53% memory capacity reduction, on average,
for fork over traditional copy-on-write). Based on our re-
sults, we conclude that our proposed page overlay framework
is an elegant and effective way of enabling many fine-grained
memory management applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. We
acknowledge members of the SAFARI group for their feed-
back. We acknowledge the generous support of Intel, Face-
book, Google, and Samsung. This work is supported in part
by NSF grants 0953246, 1212962, 1320531, the Intel Science and
Technology Center for Cloud Computing, and the Semicon-
ductor Research Corporation.

References

fork(2) - Linux manual page. http://man7.org/linux/man-pages/

man2/fork.2.html.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie.

Unbounded Transactional Memory. In HPCA, 2005.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In

SOSP, 2003.

A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift. Efficient

Virtual Memory for Big Memory Servers. In ISCA, 2013.

[5] J.Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,
M. Polte, and M. Wingate. PLFS: A Checkpoint Filesystem for Parallel
Applications. In SC, 2009.

[6] D.L.Black, R. F. Rashid, D. B. Golub, and C. R. Hill. Translation looka-

[10]
(11]

(12]
(13]

[14]

(19]
[20]
[21]
[22]

(23]

[24]

(25]

[26]

[27]

(28]

(30]

(31]

(32]

(33]

(34]

side buffer consistency: A software approach. In ASPLOS, 1989.

J. C. Brustoloni. Interoperation of copy avoidance in network and file
1/O. In INFOCOM, volume 2, 1999.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand,
A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a Smarter Memory Controller. In HPCA,
1999.

M. Cekleov and M. Dubois. Virtual-Address Caches Part 1: Problems
and Solutions in Uniprocessors. IEEE Micro, 17(5), 1997.

F. Chang and G. A. Gibson. Automatic I/O Hint Generation Through
Speculative Execution. In OSDI, 1999.

D. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
Omid A. HICAMP: Architectural Support for Efficient Concurrency-
safe Shared Structured Data Access. In ASPLOS, 2012.

K. Constantinides, O. Mutlu, and T. Austin. Online design bug detection:
Rtl analysis, flexible mechanisms, and evaluation. In MICRO, 2008.

K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Software-Based
Online Detection of Hardware Defects Mechanisms, Architectural Sup-
port, and Evaluation. In MICRO, 2007.

Intel Corporation. Intel Architecture Instruction Set Extensions Pro-
gramming Reference, chapter 8. Intel Transactional Synchronization Ex-
tensions. Sep 2012.

Standard Performance Evaluation Corporation. SPEC CPU2006 Bench-
mark Suite. www.spec.org/cpu2006, 2006.

T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collec-
tion. TOMS, 38(1), 2011.

P.J. Denning. Virtual Memory. ACM Computer Survey, 2(3), 1970.

1. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A Survey of Fault Tol-
erance Mechanisms and Checkpoint/Restart Implementations for High
Performance Computing Systems. Journal of Supercomputing, 2013.

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale
Sparse Matrix Package I: The Symmetric Codes. IJNME, 18(8), 1982.

M. Ekman and P. Stenstrom. A Robust Main-Memory Compression
Scheme. In ISCA, 2005.

J. Fotheringham. Dynamic Storage Allocation in the Atlas Computer,
Including an Automatic Use of a Backing Store. Commun. ACM, 1961.
M. Gorman. Understanding the Linux Virtual Memory Manager, chap-
ter 4, page 57. Prentice Hall, 2004.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference Engine: Harnessing Memory
Redundancy in Virtual Machines. In OSDI, 2008.

M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-free Data Structures. In ISCA, 1993.

Intel. Architecture Guide: Intel Active Management Tech-
nology. https://software.intel.com/en-us/articles/
architecture-guide-intel-active-management-technology/.
Intel. Sparse Matrix Storage Formats, Intel Math Kernel Library. https:
//software.intel.com/en-us/node/471374.

A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High performance
cache replacement using re-reference interval prediction (rrip). In ISCA,
2010.

JEDEC. DDR3 SDRAM, JESD79-3F, 2012.

L. Jiang, Y. Zhang, and J. Yang. Mitigating Write Disturbance in Super-
Dense Phase Change Memories. In DSN, 2014.

T. Kilburn, D.B.G. Edwards, M.J. Lanigan, and F.H. Sumner. One-Level
Storage System. IRE Transactions on Electronic Computers, 11(2), 1962.
S. Kumar, H. Zhao, A. Shriraman, E. Matthews, S. Dwarkadas, and
L. Shannon. Amoeba-Cache: Adaptive Blocks for Eliminating Waste
in the Memory Hierarchy. In MICRO, 2012.

H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan. SnowFlock:
Rapid Virtual Machine Cloning for Cloud Computing. In EuroSys, 2009.
H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. Ibm power6
microarchitecture. IBM JRD, 51(6), 2007.

C.J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-
aware last-level cache writeback: Reducing write-caused interference in
memory systems. Technical Report TR-HPS-2010-2, University of Texas

13

(35]
(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]
(47]

(48]

[49]

(50]
(51]
(52]

(53]

[54]

[55]
(56]
(57]

(58]

[59]

[60]

at Austin, 2010.

V. Nagarajan and R. Gupta. Architectural Support for Shadow Memory
in Multiprocessors. In VEE, 2009.

E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in a
distributed file system. In SOSP, 2005.

G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry. Linearly Compressed Pages: A Low-
complexity, Low-latency Main Memory Compression Framework. In
MICRO, 2013.

M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-effective architec-
tural support for rollback recovery in shared-memory multiprocessors.
In ISCA, 2002.

E. D. Reilly. Memory-mapped I/O. In Encyclopedia of Computer Science,
page 1152. John Wiley and Sons Ltd., Chichester, UK.

B. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. UNified Instruc-
tion/Translation/Data (UNITD) Coherence: One Protocol to Rule Them
All. In HPCA, 2010.

R.F. Sauers, C. P. Ruemmler, and P. S. Weygant. HP-UX 11i Tuning and
Performance, chapter 8. Memory Bottlenecks. Prentice Hall, 2004.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multithreaded Programs.
TOCS, 15(4), November 1997.

V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.
RowClone: Fast and Energy-efficient in-DRAM Bulk Data Copy and
Initialization. In MICRO, 2013.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. In ASPLOS, 2002.

W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An Integrated Framework
for Dependable and Revivable Architectures Using Multicore Proces-
sors. In ISCA, 2006.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts,
chapter 11. File-System Implementation. Wiley, 2012.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In ISCA, 1995.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetch-
ing: Improving the performance and bandwidth-efficiency of hardware
prefetchers. In HPCA, 2007.

S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou. Flashback: A
Lightweight Extension for Rollback and Deterministic Replay for Soft-
ware Debugging. In USENIX ATC, 2004.

M. E. Staknis. Sheaved Memory: Architectural Support for State Saving
and Restoration in Pages Systems. In ASPLOS, 1989.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A Scalable
Approach to Thread-level Speculation. In ISCA, 2000.

P. J. Teller. Translation-Lookaside Buffer Consistency. IEEE Computer,
23(6), 1990.

G. Venkataramani, I. Doudalis, D. Solihin, and M. Prvulovic. FlexiTaint:
A Programmable Accelerator for Dynamic Taint Propagation. In HPCA,
2008.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. DiDi: Mitigat-
ing the Performance Impact of TLB Shootdowns Using a Shared TLB
Directory. In PACT, 2011.

C. A. Waldspurger. Memory Resource Management in VMware ESX
Server. OSDI, 2002.

Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpoint-
ing and its applications. In FTCS, 1995.

B. Wester, P. M. Chen, and J. Flinn. Operating system support for
application-specific speculation. In EuroSys, 2011.

A. Wiggins, S. Winwood, H. Tuch, and G. Heiser. Legba: Fast Hardware
Support for Fine-Grained Protection. In Amos Omondi and Stanislav
Sedukhin, editors, Advances in Computer Systems Architecture, volume
2823 of Lecture Notes in Computer Science, 2003.

E. Witchel, J. Cates, and K. Asanovi¢. Mondrian Memory Protection. In
ASPLOS, 2002.

Q. Zhao, D. Bruening, and S. Amarasinghe. Efficient Memory Shadow-
ing for 64-bit Architectures. In ISMM, 2010.

