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Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML applications, the number of
different ML inference systems has exploded. Over 100 organizations are building ML inference chips, and the systems that
incorporate existing models span at least three orders of magnitude in power consumption and four orders of magnitude
in performance; they range from embedded devices to data-center solutions. Fueling the hardware are a dozen or more
software frameworks and libraries. The myriad combinations of ML hardware and ML software make assessing ML-system
performance in an architecture-neutral, representative, and reproducible manner challenging. There is a clear need for
industry-wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call. Driven by more
than 30 organizations as well as more than 200 ML engineers and practitioners, MLPerf implements a set of rules and
practices to ensure comparability across systems with wildly differing architectures. In this paper, we present the method
and design principles of the initial MLPerf Inference release. The first call for submissions garnered more than 600
inference-performance measurements from 14 organizations, representing over 30 systems that show a range of capabilities.

1 INTRODUCTION

Machine learning (ML) powers a variety of applications
from computer vision (He et al., 2016; Goodfellow et al.,
2014; Liu et al., 2016; Krizhevsky et al., 2012) and natural-
language processing (Vaswani et al., 2017; Devlin et al.,
2018) to self-driving cars (Xu et al., 2018; Badrinarayanan
et al., 2017) and autonomous robotics (Levine et al., 2018).
These applications are deployed at large scale and require
substantial investment to optimize inference performance.
Although training of ML models has been a development
bottleneck and a considerable expense (Amodei & Hernan-
dez, 2018), inference has become a critical workload, since
models can serve as many as 200 trillion queries and per-
form over 6 billion translations a day (Lee et al., 2019b).
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To address these growing computational demands, hard-
ware, software, and system developers have focused on in-
ference performance for a variety of use cases by designing
optimized ML hardware and software systems. Estimates
indicate that over 100 companies are producing or are on
the verge of producing optimized inference chips. By com-
parison, only about 20 companies target training.

Each system takes a unique approach to inference and
presents a trade-off between latency, throughput, power,
and model quality. For example, quantization and reduced
precision are powerful techniques for improving inference
latency, throughput, and power efficiency at the expense
of accuracy (Han et al., 2015; 2016). After training with
floating-point numbers, compressing model weights enables
better performance by decreasing memory-bandwidth re-
quirements and increasing computational throughput (e.g.,
by using wider vectors). Similarly, many weights can be
removed to boost sparsity, which can reduce the memory
footprint and the number of operations (Han et al., 2015;
Molchanov et al., 2016; Li et al., 2016). Support for these
techniques varies among systems, however, and these opti-
mizations can drastically reduce final model quality. Hence,
the field needs an ML inference benchmark that can quantify
these trade-offs in an architecturally neutral, representative,
and reproducible manner.
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The challenge is the ecosystem’s many possible combina-
tions of machine-learning tasks, models, data sets, frame-
works, tool sets, libraries, architectures, and inference
engines, which make inference benchmarking almost in-
tractable. The spectrum of ML tasks is broad, including but
not limited to image classification and localization, object
detection and segmentation, machine translation, automatic
speech recognition, text to speech, and recommendations.
Even for a specific task, such as image classification, many
ML models are viable. These models serve in a variety of
scenarios that range from taking a single picture on a smart-
phone to continuously and concurrently detecting pedes-
trians through multiple cameras in an autonomous vehicle.
Consequently, ML tasks have vastly different quality re-
quirements and real-time-processing demands. Even im-
plementations of functions and operations that the models
typically rely on can be highly framework specific, and they
increase the complexity of the design and the task.

Both academic and industrial organizations have developed
ML inference benchmarks. Examples include AIMatrix (Al-
ibaba, 2018), EEMBC MLMark (EEMBC, 2019), and AIX-
PRT (Principled Technologies, 2019) from industry, as well
as AI Benchmark (Ignatov et al., 2019), TBD (Zhu et al.,
2018), Fathom (Adolf et al., 2016), and DAWNBench (Cole-
man et al., 2017) from academia. Each one has made sub-
stantial contributions to ML benchmarking, but they were
developed without input from ML-system designers. As a
result, there is no consensus on representative models, met-
rics, tasks, and rules across these benchmarks. For example,
some efforts focus too much on specific ML applications
(e.g., computer vision) or specific domains (e.g., embedded
inference). Moreover, it is important to devise the right per-
formance metrics for inference so the evaluation accurately
reflects how these models operate in practice. Latency, for
instance, is the primary metric in many initial benchmarking
efforts, but latency-bounded throughput is more relevant for
many cloud inference scenarios.

Therefore, two critical needs remain unmet: (i) standard
evaluation criteria for ML inference systems and (ii) an ex-
tensive (but reasonable) set of ML applications/models that
cover existing inference systems across all major domains.

MLPerf Inference answers the call with a benchmark suite
that complements MLPerf Training (Mattson et al., 2019).
Jointly developed by the industry with input from academic
researchers, more than 30 organizations as well as more than
200 ML engineers and practitioners assisted in the bench-
mark design and engineering process. This community
architected MLPerf Inference to measure inference perfor-
mance across a wide variety of ML hardware, software,
systems, and services. The benchmark suite defines a set
of tasks (models, data sets, scenarios, and quality targets)
that represent real-world deployments, and it specifies the

evaluation metrics. In addition, the benchmark suite comes
with permissive rules that allow comparison of different
architectures under realistic scenarios.

Unlike traditional SPEC CPU–style benchmarks that run
out of the box (Dixit, 1991), MLPerf promotes competi-
tion by allowing vendors to reimplement and optimize the
benchmark for their system and then submit the results. To
make results comparable, it defines detailed rules. It pro-
vides guidelines on how to benchmark inference systems, in-
cluding when to start the performance-measurement timing,
what preprocessing to perform before invoking the model,
and which transformations and optimizations to employ.
Such meticulous specifications help ensure comparability
across ML systems because all follow the same rules.

We describe the design principles and architecture of the
MLPerf Inference benchmark’s initial release (v0.5). We
received over 600 submissions across a variety of tasks,
frameworks, and platforms from 14 organizations. Audit
tests validated the submissions, and the tests cleared 595
of them as valid. The final results show a four-orders-of-
magnitude performance variation ranging from embedded
devices and smartphones to data-center systems. MLPerf
Inference adopts the following principles for a tailored ap-
proach to industry-standard benchmarking:

1. Pick representative workloads that everyone can ac-
cess.

2. Evaluate systems in realistic scenarios.

3. Set target qualities and tail-latency bounds in accor-
dance with real use cases.

4. Allow the benchmarks to flexibly showcase both hard-
ware and software capabilities.

5. Permit the benchmarks to change rapidly in response
to the evolving ML ecosystem.

The rest of the paper is organized as follows: Section 2 pro-
vides background, describing the differences in ML train-
ing versus ML inference and the challenges to creating a
benchmark that covers the broad ML inference landscape.
Section 3 describes the goals of MLPerf Inference. Sec-
tion 4 presents MLPerf’s underlying inference-benchmark
architecture and reveals the design choices for version 0.5.
Section 5 summarizes the submission, review, and report-
ing process. Section 6 highlights v0.5 submission results
to demonstrate that MLPerf Inference is a well-crafted in-
dustry benchmark. Section 7 shares the important lessons
learned and prescribes a tentative roadmap for future work.
Section 8 compares MLPerf Inference with prior efforts.
Section 9 concludes the paper. Section 10 acknowledges
the individuals who contributed to the benchmark’s devel-
opment or validated the effort by submitting results.
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Figure 1. Stages of a typical ML pipeline. The first stage involves gathering data to train the models. The raw data is often noisy, so it
requires processing before training a deep neural network (DNN). The hardware landscape for DNN training and inference is diverse.

2 BENCHMARKING CHALLENGES

We provide background on ML execution (Section 2.1) and
describe the extreme heterogeneity that makes developing
an ML inference benchmark challenging (Section 2.2).

2.1 ML Pipeline

Machine learning generally involves a series of complicated
tasks (Figure 1). Nearly every ML pipeline begins by acquir-
ing data to train and test the models. Raw data is typically
sanitized and normalized before use because real-world data
often contains errors, irrelevancies, or biases that reduce the
quality and accuracy of ML models.

ML benchmarking focuses on two phases: training and
inference. During training, models learn to make predictions
from inputs. For example, a model may learn to predict
the subject of a photograph or the most fluent translation
of a sentence from English to German. During inference,
models make predictions about their inputs, but they no
longer learn. This phase is increasingly crucial as ML moves
from research to practice, serving trillions of queries daily.
Despite its apparent simplicity relative to training, the task of
balancing latency, throughput, and accuracy for real-world
applications makes optimizing inference difficult.

2.2 ML Inference Benchmarking Complexity

Creating a useful ML benchmark involves four critical chal-
lenges: (1) the diversity of models, (2) the variety of deploy-
ment scenarios, (3) the array of inference systems, and (4)
the lack of a standard inference workflow.

2.2.1 Diversity of Models

Even for a single task, such as image classification, numer-
ous models present different trade-offs between accuracy
and computational complexity, as Figure 2 shows. These

models vary tremendously in compute and memory require-
ments (e.g., a 50x difference in Gflops), while the corre-
sponding Top-1 accuracy ranges from 55% to 83% (Bianco
et al., 2018). This variation creates a Pareto frontier rather
than one optimal choice.

Choosing the right model depends on the application. For
example, pedestrian detection in autonomous vehicles has a
much higher accuracy requirement than does labeling ani-
mals in photographs, owing to the different consequences
of wrong predictions. Similarly, quality-of-service require-
ments for inference vary by several orders of magnitude
from effectively no latency requirement for offline processes
to milliseconds for real-time applications. Covering this
design space necessitates careful selection of models that
represent realistic scenarios.

Another challenge is that models vary wildly, so it is difficult
to draw meaningful comparisons. In many cases, such as
in Figure 2, a small accuracy change (e.g., a few percent)
can drastically change the computational requirements (e.g.,
5–10x). For example, SE-ResNeXt-50 (Hu et al., 2018; Xie
et al., 2017) and Xception (Chollet, 2017) achieve roughly
the same accuracy (∼79%) but exhibit a 2x difference in
computational requirements (∼4 Gflops versus ∼8 Gflops).

2.2.2 Diversity of Deployment Scenarios

In addition to accuracy and computational complexity, the
availability and arrival patterns of the input data vary with
the deployment scenario. For example, in offline batch pro-
cessing such as photo categorization, all the data may be
readily available in (network) storage, allowing accelera-
tors to reach and maintain peak performance. By contrast,
translation, image tagging, and other web applications may
experience variable arrival patterns based on end-user traffic.

Similarly, real-time applications such as augmented reality
and autonomous vehicles handle a constant flow of data
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Figure 2. An example of ML-model diversity for image classifica-
tion (figure from Bianco et al. (2018)). No single model is optimal;
each one presents a unique design trade-off between accuracy,
memory requirements, and computational complexity.

rather than having it all in memory. Although the same gen-
eral model architecture could be employed in each scenario,
data batching and similar optimizations may be inapplicable,
leading to drastically different performance. Timing the on-
device inference latency alone fails to reflect the real-world
inference requirements.

2.2.3 Diversity of Inference Systems

The possible combinations of different inference applica-
tions, data sets, models, machine-learning frameworks, tool
sets, libraries, systems, and platforms are numerous. Fig-
ure 3 shows the breadth and depth of the ML space. The
hardware and software side exhibit substantial complexity.

On the software side, about a dozen ML frameworks com-
monly serve for developing deep-learning models, such
as Caffe/Caffe2 (Jia et al., 2014), Chainer (Tokui et al.,
2015), CNTK (Seide & Agarwal, 2016), Keras (Chollet
et al., 2015), MXNet (Chen et al., 2015), TensorFlow (Abadi
et al., 2016), and PyTorch (Paszke et al., 2017). Indepen-
dently, there are also many optimized libraries, such as
cuDNN (Chetlur et al., 2014), Intel MKL (Intel, 2018a), and
FBGEMM (Khudia et al., 2018), supporting various infer-
ence run times, such as Apple CoreML (Apple, 2017), Intel
OpenVino (Intel, 2018b), NVIDIA TensorRT (NVIDIA),
ONNX Runtime (Bai et al., 2019), Qualcomm SNPE (Qual-
comm), and TF-Lite (Lee et al., 2019a).

Each combination has idiosyncrasies that make supporting
the most current neural-network model architectures a chal-

CPUs GPUs TPUs NPUs DSPs AcceleratorsFPGAsHardware
Targets

Tensorflow PyTorch Caffe MxNet CNTK Paddle
Paddle Theano

ResNet GoogleNet SqueezeNet MobileNet SSD GNMT

ImageNet COCO VOC KITTI WMT
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Figure 3. Software and hardware options at every level of the infer-
ence stack. The combinations across the layers make benchmark-
ing ML inference systems a particularly challenging problem.

lenge. Consider the Non-Maximum Suppression (NMS)
operator implementation for object detection. When train-
ing object-detection models in TensorFlow, the regular NMS
operator smooths out imprecise bounding boxes for a single
object. But this implementation is unavailable in Tensor-
Flow Lite, which is tailored for mobile and instead imple-
ments fast NMS. As a result, when converting the model
from TensorFlow to TensorFlow Lite, the accuracy of SSD-
MobileNets-v1 decreases from 23.1% to 22.3% mAP. These
types of subtle differences make it hard to port models ex-
actly from one framework to another.

On the hardware side, platforms are tremendously diverse,
ranging from familiar processors (e.g., CPUs, GPUs, and
DSPs) to FPGAs, ASICs, and exotic accelerators such as
analog and mixed-signal processors. Each platform comes
with hardware-specific features and constraints that enable
or disrupt performance depending on the model and scenario.
Combining this diversity with the range of software systems
above presents a unique challenge to deriving a robust and
useful ML benchmark that meets industry needs.

2.2.4 Lack of a Standard Inference Workflow

There are many ways to optimize model performance. For
example, quantizing floating-point weights decreases mem-
ory footprint and bandwidth requirements and increases
computational throughput (wider vectors), but it also de-
creases model accuracy. Some platforms require quantiza-
tion because they lack floating-point support. Low-power
mobile devices, for example, call for such an optimization.

Other transformations are more complicated and change the
network structure to boost performance further or exploit
unique features of the inference platform. An example is
reshaping image data from space to depth. The enormous
variety of ML inference hardware and software means no
one method can prepare trained models for all deployments.
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3 MLPERF INFERENCE GOALS

To overcome the challenges, MLPerf Inference adopted a set
of principles for developing a robust yet flexible benchmark
suite based on community-driven development.

3.1 Representative, Broadly Accessible Workloads

For the initial version 0.5, we chose tasks that reflect ma-
jor commercial and research scenarios for a large class of
submitters and that capture a broad set of computing mo-
tifs. To focus on the realistic rules and testing infrastruc-
ture, we selected a minimum-viable-benchmark approach
to accelerate the development process. Where possible,
we adopted models that were part of the MLPerf Training
v0.6 suite (Mattson et al., 2019), thereby amortizing the
benchmark-development effort.

The current version’s tasks and models are modest in
scope. MLPerf Inference v0.5 comprises three tasks and
five models: image classification (ResNet-50 (He et al.,
2016) and MobileNet-v1 (Howard et al., 2017)), object de-
tection (SSD-ResNet34—i.e., SSD (Liu et al., 2016) with a
ResNet34 backbone—and SSD-MobileNet-v1—i.e., SSD
with a MobileNet-v1 backbone), and machine translation
(GNMT (Wu et al., 2016)). We plan to add others.

We chose our tasks and models through a consensus-driven
process and considered community feedback to ensure their
relevance. Our models are mature and have earned broad
community support. Because the industry has studied them
and can build efficient systems, benchmarking is accessible
and provides a snapshot that shows the state of ML systems.
Moreover, we focused heavily on the benchmark’s modular
design to make adding new models and tasks less costly.
As we show in Section 6.7, our design has allowed MLPerf
Inference users to easily add new models. Our plan is to
extend the scope to include more areas, tasks, models, and
so on. Additionally, we aim to maintain consistency and
alignment between the training and inference benchmarks.

3.2 System Evaluation Using Realistic Scenarios

As our submission results show, ML inference systems vary
in power consumption across four or more orders of mag-
nitude and cover a wide variety of applications as well as
physical deployments that range from deeply embedded de-
vices to smartphones to data centers. The applications have
a variety of usage models and many figures of merit, which
in turn require multiple performance metrics. For example,
the figure of merit for an image-recognition system that
classifies a video camera’s output will be entirely different
than for a cloud-based translation system. To address these
various models, we surveyed MLPerf’s broad membership,
which includes both customers and vendors. On the basis
of that feedback, we identified four scenarios that represent

many critical inference applications.

Our goal is a method that simulates the realistic behavior
of the inference system under test; such a feature is unique
among AI benchmarks. To this end, we developed the Load
Generator (LoadGen) tool, which is a query-traffic generator
that mimics the behavior of real-world systems. It has four
scenarios: single-stream, multistream, server and offline.
They emulate the ML-workload behavior of mobile devices,
autonomous vehicles, robotics, and cloud-based setups.

3.3 Target Qualities and Tail-Latency Bounds

Quality and performance are intimately connected for all
forms of machine learning, but the role of quality targets
in inference is distinct from that in training. For training,
the performance metric is the time to train to a specific
quality, making accuracy a first-order consideration. For
inference, the starting point is a pretrained reference model
that achieves a target quality. Still, many system architec-
tures can sacrifice model quality to achieve lower latency,
lower total cost of ownership (TCO), or higher throughput.

The trade-offs between accuracy, latency, and TCO are ap-
plication specific. Trading 1% model accuracy for 50%
lower TCO is prudent when identifying cat photos, but it is
less so during online pedestrian detection. For MLPerf, we
define a model’s quality targets. To reflect this important
aspect of real world-deployments, we established per-model
and scenario targets for inference latency and model quality.
The latency bounds and target qualities are based on input
gathered from end users.

3.4 Flexibility to Showcase Hardware and Software

Systems benchmarks can be characterized as language level
(SPECInt (Dixit, 1991)), API level (LINPACK (Dongarra,
1988)), or semantic level (TPC (Council, 2005)). The ML
community has embraced a wide variety of languages and
libraries, so MLPerf Inference is a semantic-level bench-
mark. This type specifies the task to be accomplished and
the general rules of the road, but it leaves implementation
details to the submitters.

The MLPerf Inference benchmarks are flexible enough that
submitters can optimize the reference models, run them
through their preferred software tool chain, and execute
them on their hardware of choice. Thus, MLPerf Inference
has two divisions: closed and open. Strict rules govern the
closed division, whereas the open division is more permis-
sive and allows submitters to change the model, achieve
different quality targets, and so on. The closed division
is designed to address the lack of a standard inference-
benchmarking workflow.

Within each division, submitters may file their results un-
der specific categories on the basis of their hardware and
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software components’ availability. There are three system
categories: available; preview; and research, development,
or other systems. Systems in the first category are available
off the shelf, while systems in the second category allow
vendors to provide a sneak peek into their capabilities. At
the other extreme are bleeding-edge ML solutions in the
third category that are not ready for production use.

In summary, MLPerf Inference allows submitters to exhibit
many different systems across varying product-innovation,
maturity, and support levels.

3.5 Benchmark Changes for Rapidly Evolving ML

MLPerf Inference v0.5 is only the beginning. The bench-
mark will evolve. We are working to add more models (e.g.,
recommendation and time-series models), more scenarios
(e.g., “burst” mode), better tools (e.g., a mobile application),
and better metrics (e.g., timing preprocessing) to more ac-
curately reflect the performance of the whole ML pipeline.

4 DESIGN AND IMPLEMENTATION

In this section we describe the design and implementation
of MLPerf Inference v0.5. We also define the components
of an inference system (Section 4.1) and detail how an
inference query flows through one such system (Section 4.2).
Our discussion also covers the MLPerf Inference tasks for
v0.5 (Section 4.3).

4.1 Inference System Under Test (SUT)

A complete MLPerf Inference system contains multiple
components: a data set, a system under test (SUT), the Load
Generator (LoadGen), and an accuracy script. Figure 4
shows an overview of an MLPerf Inference system. The
data set, LoadGen, and accuracy script are fixed for all
submissions and are provided by MLPerf. Submitters have
wide discretion to implement an SUT according to their
architecture’s requirements and their engineering judgment.
By establishing a clear boundary between submitter-owned
and MLPerf-owned components, the benchmark maintains
comparability among submissions.

4.2 Life of a Query

At startup, the LoadGen requests that the SUT load samples
into memory. The MLPerf Inference rules allow them to be
loaded into DRAM as an untimed operation. The SUT loads
the samples into DRAM and may perform other timed oper-
ations as the rules stipulate. These untimed operations may
include but are not limited to compilation, cache warmup,
and preprocessing.

The SUT signals the LoadGen when it is ready to receive
the first query. A query is a request for inference on one

System Under Test (SUT)

Dataset

LoadGen

1 4 5

7

2 3

Accuracy Script

6

Figure 4. MLPerf Inference system under test (SUT) and how the
components integrate. (1) The LoadGen requests that the SUT
load samples; (2–3) the SUT loads samples into memory; (4) the
SUT signals the LoadGen when it is ready; (5) the LoadGen issues
requests to the SUT; (6) the benchmark processes the results and
returns the results to the LoadGen; and (6) the LoadGen outputs
logs, which the accuracy script then reads and verifies.

or more samples. The LoadGen sends queries to the SUT
in accordance with the selected scenario. Depending on
that scenario, it can submit queries one at a time, at regular
intervals, or in a Poisson distribution.

The SUT runs inference on each query and sends the re-
sponse back to the LoadGen, which either logs the response
or discards it. After the run, an accuracy script checks the
logged responses to determine whether the model accuracy
is within tolerance.

We provide a clear interface between the SUT and LoadGen
so new scenarios and experiments can be handled in the
LoadGen and rolled out to all models and SUTs without ex-
tra effort. Doing so also facilitates compliance and auditing,
since many technical rules about query arrivals, timing, and
accuracy are implemented outside of submitter code. As we
describe in Section 6.7, one submitter obtained results for
over 60 image-classification and object-detection models.

Moreover, placing the performance-measurement code out-
side of submitter code is congruent with MLPerf’s goal of
end-to-end system benchmarking. To that end, the LoadGen
measures the holistic performance of the entire SUT rather
than any individual part. Finally, this condition enhances
the benchmark’s realism: inference engines typically serve
as black-box components of larger systems.

4.3 Benchmark Tasks

Designing ML benchmarks is fundamentally different from
designing non-ML benchmarks. MLPerf defines high-level
tasks (e.g., image classification) that a machine-learning
system can perform. For each one, we provide a canonical
reference model in a few widely used frameworks. The
reference model and weights offer concrete instantiations
of the ML task, but formal mathematical equivalence is
unnecessary. For example, a fully connected layer can be
implemented with different cache-blocking and evaluation
strategies. Consequently, submitting results requires opti-
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AREA TASK REFERENCE MODEL DATA SET QUALITY TARGET

VISION IMAGE CLASSIFICATION (HEAVY)

RESNET-50 V1.5

25.6M PARAMETERS

7.8 GOPS / INPUT

IMAGENET (224X224) 99% OF FP32 (76.456%) TOP-1 ACCURACY

VISION IMAGE CLASSIFICATION (LIGHT)

MOBILENET-V1 224

4.2M PARAMETERS

1.138 GOPS / INPUT

IMAGENET (224X224) 98% OF FP32 (71.676%) TOP-1 ACCURACY

VISION OBJECT DETECTION (HEAVY)

SSD-RESNET34

36.3M PARAMETERS

433 GOPS / INPUT

COCO (1,200X1,200) 99% OF FP32 (0.20 MAP)

VISION OBJECT DETECTION (LIGHT)

SSD-MOBILENET-V1

6.91M PARAMETERS

2.47 GOPS / INPUT

COCO (300X300) 99% OF FP32 (0.22 MAP)

LANGUAGE MACHINE TRANSLATION
GNMT

210M PARAMETERS
WMT16 EN-DE 99% OF FP32 (23.9 SACREBLEU)

Table 1. ML Tasks in MLPerf Inference v0.5. Each one reflects critical commercial and research use cases for a large class of submitters,
and together they also capture a broad set of computing motifs (e.g., CNNs and RNNs).

mizations to achieve good performance.

The concept of a reference model and a valid class of equiv-
alent implementations creates freedom for most ML sys-
tems while still enabling relevant comparisons of inference
systems. MLPerf provides reference models using 32-bit
floating-point weights and, for convenience, also provides
carefully implemented equivalent models to address the
three most popular formats: TensorFlow (Abadi et al., 2016),
PyTorch (Paszke et al., 2017), and ONNX (Bai et al., 2019).

As Table 1 illustrates, we selected a set of vision and lan-
guage tasks along with associated reference models. We
chose vision and translation because they are widely used
across all computing systems, from edge devices to cloud
data centers. Additionally, mature and well-behaved refer-
ence models with different architectures (e.g., CNNs and
RNNs) were available.

For the vision tasks, we defined both heavyweight and
lightweight models. The former are representative of sys-
tems with greater compute resources, such as a data center or
autonomous vehicle, where increasing the computation cost
for better accuracy is a reasonable trade-off. In contrast, the
latter models are appropriate for systems with constrained
compute resources and low latency requirements, such as
smartphones and low-cost embedded devices.

For all tasks, we standardized on free and publicly available
data sets to ensure the entire community can participate.
Because of licensing restrictions on some data sets (e.g.,
ImageNet), we do not host them directly. Instead, the data
is downloaded before running the benchmark.

4.3.1 Image Classification

Image classification is widely used in commercial appli-
cations and is also a de facto standard for evaluating ML-
system performance. A classifier network takes an image as
input and selects the class that best describes it. Example
applications include photo searches, text extraction from
images, and industrial automation, such as object sorting
and defect detection.

For image classification, we use the standard ImageNet 2012
data set (Deng et al., 2009) and crop to 224x224 during
preprocessing. We selected two models: a higher-accuracy
and more computationally expensive heavyweight model as
well as a computationally lightweight model that is faster but
less accurate. Image-classification quality is the classifier’s
Top-1 accuracy.

The heavyweight model, ResNet-50 v1.5 (He et al., 2016;
MLPerf, 2019), comes directly from the MLPerf Training
suite to maintain alignment. ResNet-50 is the most com-
mon network for performance claims. Unfortunately, it has
multiple subtly different implementations that make most
comparisons difficult. In our training suite, we specifically
selected ResNet-50 v1.5 to ensure useful comparisons and
compatibility across major frameworks. We also extensively
studied and characterized the network for reproducibility
and low run-to-run training variation, making it an obvious
and low-risk choice.

The lightweight model, MobileNets-v1 224 (Howard et al.,
2017), is built around smaller, depth-wise-separable con-
volutions to reduce the model complexity and computa-
tional burden. MobileNets is a family of models that offer
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varying compute and accuracy options—we selected the
full-width, full-resolution MobileNet-v1-1.0-224. This net-
work reduces the parameters by 6.1x and the operations by
6.8x compared with ResNet-50 v1.5. We evaluated both
MobileNet-v1 and v2 (Sandler et al., 2018) for the MLPerf
Inference v0.5 suite and selected the former, as it has gar-
nered wider adoption.

4.3.2 Object Detection

Object detection is a complex vision task that determines
the coordinates of bounding boxes around objects in an im-
age and classifies the image. Object detectors typically use
a pretrained image-classifier network as a backbone or a
feature extractor, then perform regression for localization
and bounding-box selection. Object detection is crucial for
automotive applications, such as detecting hazards and ana-
lyzing traffic, and for mobile-retail tasks, such as identifying
items in a picture.

For object detection, we chose the COCO data set (Lin
et al., 2014) with both a lightweight and heavyweight model.
Our small model uses the 300x300 image size, which is
typical of resolutions in smartphones and other compact
devices. For the larger model, we upscale the data set to
more closely represent the output of a high-definition image
sensor (1.44 MP total). The choice of the larger input size is
based on community feedback, especially from automotive
and industrial-automation customers. The quality metric for
object detection is mean average precision (mAP).

The heavyweight object detector’s reference model is
SSD (Liu et al., 2016) with a ResNet34 backbone, which
also comes from our training benchmark. The lightweight
object detector’s reference model uses a MobileNet-v1-1.0
backbone, which is more typical for constrained computing
environments. We selected the MobileNet feature detector
on the basis of feedback from the mobile and embedded
communities.

4.3.3 Translation

Neural machine translation (NMT) is popular in the rapidly
evolving field of natural-language processing. NMT models
translate a sequence of words from a source language to a
target language and are used in translation applications and
services. Our translation data set is WMT16 EN-DE (WMT,
2016). The quality measurement is Bilingual Evaluation
Understudy Score (Bleu) (Papineni et al., 2002). In MLPerf
Inference, we specifically employ SacreBleu (Post, 2018).

For the translation, we chose GNMT (Wu et al., 2016),
which employs a well-established recurrent-neural-network
(RNN) architecture and is part of the training benchmark.
GNMT is representative of RNNs, which are popular for
sequential and time-series data, and it ensures our reference-

model suite captures a wide variety of compute motifs.

4.4 Quality Targets

Many architectures can trade model quality for lower la-
tency, lower TCO, or greater throughput. To reflect this
important aspect of real-world deployments, we established
per-model and scenario targets for latency and model quality.
We adopted quality targets that for 8-bit quantization were
achievable with considerable effort.

MLPerf Inference requires that almost all implementations
achieve a quality target within 1% of the FP32 reference
model’s accuracy (e.g., the ResNet-50 v1.5 model achieves
76.46% Top-1 accuracy, and an equivalent model must
achieve at least 75.70% Top-1 accuracy). Initial experi-
ments, however, showed that for mobile-focused networks—
MobileNet and SSD-MobileNet—the accuracy loss was
unacceptable without retraining. We were unable to proceed
with the low accuracy because performance benchmarking
would become unrepresentative.

To address the accuracy drop, we took three steps. First,
we trained the MobileNet models for quantization-friendly
weights, enabling us to narrow the quality window to 2%.
Second, to reduce the training sensitivity of MobileNet-
based submissions, we provided equivalent MobileNet and
SSD-MobileNet implementations quantized to an 8-bit in-
teger format. Third, for SSD-MobileNet, we reduced the
quality requirement to 22.0 mAP to account for the chal-
lenges of using MobileNets as a backbone.

To improve the submission comparability, we disallow re-
training. Our prior experience and feasibility studies con-
firmed that for 8-bit integer arithmetic, which was an ex-
pected deployment path for many systems, the ∼1% relative-
accuracy target was easily achievable without retraining.

4.5 Scenarios and Metrics

The diverse inference applications have various usage mod-
els and figures of merit, which in turn require multiple
performance metrics. To address these models, we specify
four scenarios that represent important inference applica-
tions. Each one has a unique performance metric, as Table 2
illustrates. The LoadGen discussed in Section 4.7 simulates
the scenarios and measures the performance.

Single-stream. This scenario represents one inference-
query stream with a query sample size of one, reflecting
the many client applications where responsiveness is criti-
cal. An example is offline voice transcription on Google’s
Pixel 4 smartphone. To measure performance, the Load-
Gen injects a single query; when the query is complete, it
records the completion time and injects the next query. The
performance metric is the query stream’s 90th-percentile
latency.
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SCENARIO QUERY GENERATION METRIC SAMPLES/QUERY EXAMPLES

SINGLE-STREAM (SS) SEQUENTIAL 90TH-PERCENTILE LATENCY 1
TYPING AUTOCOMPLETE,

REAL-TIME AR

MULTISTREAM (MS) ARRIVAL INTERVAL WITH DROPPING
NUMBER OF STREAMS

SUBJECT TO LATENCY BOUND
N

MULTICAMERA DRIVER ASSISTANCE,

LARGE-SCALE AUTOMATION

SERVER (S) POISSON DISTRIBUTION
QUERIES PER SECOND

SUBJECT TO LATENCY BOUND
1 TRANSLATION WEBSITE

OFFLINE (O) BATCH THROUGHPUT AT LEAST 24,576 PHOTO CATEGORIZATION

Table 2. Scenario description and metrics. Each scenario targets a real-world use case based on customer and vendor input.

Multistream. This scenario represents applications with
a stream of queries, but each query comprises multiple
inferences, reflecting a variety of industrial-automation
and remote-sensing applications. For example, many au-
tonomous vehicles analyze frames from six to eight cameras
that stream simultaneously.

To model a concurrent scenario, the LoadGen sends a new
query comprising N input samples at a fixed time interval
(e.g., 50 ms). The interval is benchmark specific and also
acts as a latency bound that ranges from 50 to 100 millisec-
onds. If the system is available, it processes the incoming
query. If it is still processing the prior query in an interval,
it skips the interval and delays the remaining queries by one
interval.

No more than 1% of the queries may produce one or more
skipped intervals. A query’s N input samples are contigu-
ous in memory, which accurately reflects production input
pipelines and avoids penalizing systems that would other-
wise require that samples be copied to a contiguous memory
region before starting inference. The performance metric
is the integer number of streams that the system supports
while meeting the QoS requirement.

Server. This scenario represents online server applications
where query arrival is random and latency is important.
Almost every consumer-facing website is a good example,
including services such as online translation from Baidu,
Google, and Microsoft. For this scenario, the load generator
sends queries, with one sample each, in accordance with
a Poisson distribution. The SUT responds to each query
within a benchmark-specific latency bound that varies from
15 to 250 milliseconds. No more than 1% of queries may
exceed the latency bound for the vision tasks and no more
than 3% may do so for translation. The server scenario’s
performance metric is the Poisson parameter that indicates
the queries per second achievable while meeting the QoS
requirement.

Offline. This scenario represents batch-processing appli-
cations where all the input data is immediately available
and latency is unconstrained. An example is identifying the

people and locations in a photo album. For the offline sce-
nario, the LoadGen sends to the system a single query that
includes all sample-data IDs to be processed, and the system
is free to process the input data in any order. Similar to the
multistream scenario, neighboring samples in the query are
contiguous in memory. The metric for the offline scenario
is throughput measured in samples per second.

For the multistream and server scenarios, latency is a critical
component of the system behavior and will constrain various
performance optimizations. For example, most inference
systems require a minimum (and architecture-specific) batch
size to achieve full utilization of the underlying computa-
tional resources. But in a server scenario, the arrival rate
of inference queries is random, so systems must carefully
optimize for tail latency and potentially process inferences
with a suboptimal batch size.

Table 3 shows the relevant latency constraints for each task
in v0.5. As with other aspects of MLPerf, we selected
these constraints on the basis of community consultation
and feasibility assessments. The multistream arrival times
for most vision tasks correspond to a frame rate of 15–20 Hz,
which is a minimum for many applications. The server QoS
constraints derive from estimates of the inference timing
budget given an overall user latency target.

TASK
MULTISTREAM

ARRIVAL TIME

SERVER QOS

CONSTRAINT

IMAGE CLASSIFICATION (HEAVY) 50 MS 15 MS

IMAGE CLASSIFICATION (LIGHT) 50 MS 10 MS

OBJECT DETECTION (HEAVY) 66 MS 100 MS

OBJECT DETECTION (LIGHT) 50 MS 10 MS

MACHINE TRANSLATION 100 MS 250 MS

Table 3. Latency constraints for each task in the multistream and
server scenarios.
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TAIL-LATENCY

PERCENTILE

CONFIDENCE

INTERVAL

ERROR

MARGIN
INFERENCES

ROUNDED

INFERENCES

90% 99% 0.50% 23,886 3× 213 = 24, 576

95% 99% 0.25% 50,425 7× 213 = 57, 344

99% 99% 0.05% 262,742 33× 213 = 270, 336

Table 4. Query requirements for statistical confidence. All results
must meet the minimum LoadGen scenario requirements.

4.6 Statistical Confidence

To ensure our results are statistically robust and adequately
capture steady-state system behavior, each task and scenario
combination requires a minimum number of queries. That
number is determined by the tail-latency percentile, the
desired margin, and the desired confidence interval.

Confidence is the probability that a latency bound is within
a particular margin of the reported result. We chose a 99%
confidence bound and set the margin to a value much less
than the difference between the tail-latency percentage and
100%. Conceptually, that margin ought to be relatively
small. Thus, we selected a margin that is one-twentieth
of the difference between the tail-latency percentage and
100%.

The equation is as follows:

Margin =
1− TailLatency

20
(1)

NumQueries = (Normslnv(
1− Confidence

2
))2

× TailLatency × (TailLatency − 1)

Margin2

(2)

Table 4 shows the query requirements. The total query count
and tail-latency percentile are scenario and task specific.
The single-stream scenario only requires 1,024 queries, and
the offline scenario requires a single query containing at
least 24,576 samples. The single-stream scenario has the
fewest queries to execute because we wanted the run time to
be short enough that embedded platforms and smartphones
could complete the runs quickly.

For scenarios with latency constraints, our goal is to ensure
a 99% confidence interval that the constraints hold. As a re-
sult, the benchmarks with more-stringent latency constraints
require more queries in a highly nonlinear fashion. The num-
ber of queries is based on the aforementioned statistics and
is rounded up to the nearest multiple of 213.

A 99th-percentile guarantee requires 262,742 queries, which
rounds up to 33× 213, or 270K. For both multistream and
server, this guarantee for vision tasks requires 270K queries,
as Table 5 shows. Because a multistream benchmark will
process N samples per query, the total number of samples

MODEL
NUMBER OF QUERIES / SAMPLES PER QUERY

SINGLE-STREAM MULTISTREAM SERVER OFFLINE

IMAGE CLASSIFICATION (HEAVY) 1K / 1 270K / N 270K / 1 1 / 24K

IMAGE CLASSIFICATION (LIGHT) 1K / 1 270K / N 270K / 1 1 / 24K

OBJECT DETECTION (HEAVY) 1K / 1 270K / N 270K / 1 1 / 24K

OBJECT DETECTION (LIGHT) 1K / 1 270K / N 270K / 1 1 / 24K

MACHINE TRANSLATION 1K / 1 90K / N 90K / 1 1 / 24K

Table 5. Number of queries and samples per query for each task.

will be N× 270K. Machine translation has a 97th-percentile
latency guarantee and requires only 90K queries.

For repeatability, we run both the multistream and server
scenarios several times. But the multistream scenario’s
arrival rate and query count guarantee a 2.5- to 7-hour run
time. To strike a balance between repeatability and run time,
we require five runs for the server scenario, with the result
being the minimum of these five runs. The other scenarios
require one run. We expect to revisit this choice in future
benchmark versions.

All benchmarks must also run for at least 60 seconds and
process additional queries and/or samples as the scenarios
require. The minimum run time ensures they will measure
the equilibrium behavior of power-management systems
and systems that support dynamic voltage and frequency
scaling (DVFS), particularly for the single-stream scenario
with a small number of queries.

4.7 Load Generator

The LoadGen is a traffic generator that loads the SUT and
measures performance. Its behavior is controlled by a con-
figuration file it reads at the start of the benchmark run. The
LoadGen produces the query traffic according to the rules
of the previously described scenarios (i.e., single-stream,
multistream, server, and offline). Additionally, the LoadGen
collects information for logging, debugging, and postpro-
cessing the data. It records queries and responses from the
SUT, and at the end of the run, it reports statistics, sum-
marizes the results, and determines whether the run was
valid.

Figure 5 shows how the LoadGen generates query traffic for
each scenario. In the server scenario, for instance, it issues
queries in accordance with a Poisson distribution to mimic
a server’s query-arrival rates. In the single-stream case, it
issues a query to the SUT and waits for completion of that
query before issuing another.

4.7.1 Design

MLPerf will evolve, introducing new tasks and removing
old ones as the field progresses. Accordingly, the LoadGen’s
design is flexible enough to handle changes to the inference-
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Figure 5. The timing and number of queries from the Load Gener-
ator (LoadGen) vary between benchmark scenarios. All five ML
tasks can run in any one of the four scenarios.

task suite. We achieve this feat by decoupling the LoadGen
from the benchmarks and the internal representations (e.g.,
the model, scenarios, and quality and latency metrics).

The LoadGen is implemented as a standalone C++ module
with well-defined APIs; the benchmark calls it through these
APIs (and vice versa through callbacks). This decoupling
at the API level allows it to easily support various language
bindings, permitting benchmark implementations in any
language. Presently, the LoadGen supports Python, C, and
C++ bindings; additional bindings can be added.

Another major benefit of decoupling the LoadGen from the
benchmark is that the LoadGen is extensible to support more
scenarios. Currently, MLPerf supports four of them; we may
add more, such as a multitenancy mode where the SUT must
continuously serve multiple models while maintaining QoS
constraints.

4.7.2 Implementation

The LoadGen abstracts the details of the data set (e.g., im-
ages) behind sample IDs. Data-set samples receive an index
between 0 and N. A query represents the smallest input unit
that the benchmark ingests from the LoadGen. It consists of
one or more data-set sample IDs, each with a corresponding
response ID to differentiate between multiple instances of
the same sample.

The rationale for a response ID is that for any given task
and scenario—say, an image-classification multistream
scenario—the LoadGen may reissue the same data (i.e.,
an image with a unique sample ID) multiple times across
the different streams. To differentiate between them, the
LoadGen must assign different reference IDs to accurately
track when each sample finished processing.

At the start, the LoadGen directs the benchmark to load a
list of samples into memory. Loading is untimed and the
SUT may also perform allowed data preprocessing. The

LoadGen then issues queries, passing sample IDs to the
benchmark for execution on the inference hardware. The
queries are pre-generated to reduce overhead during the
timed portion of the test.

As the benchmark finishes processing the queries, it informs
the LoadGen through a function named QuerySamplesCom-
plete. The LoadGen makes no assumptions regarding how
the SUT may partition its work, so any thread can call this
function with any set of samples in any order. QuerySample-
sComplete is thread safe, is wait-free bounded, and makes
no syscalls, allowing it to scale recording to millions of sam-
ples per second and to minimize the performance variance
introduced by the LoadGen, which would affect long-tail
latency.

The LoadGen maintains a logging thread that gathers events
as they stream in from other threads. At the end of the bench-
mark run, it outputs a set of logs that report the performance
and accuracy stats.

4.7.3 Operating Modes

The LoadGen has two primary operating modes: accu-
racy and performance. Both are necessary to make a valid
MLPerf submission.

Accuracy mode. The LoadGen goes through the entire data
set for the ML task. The model’s task is to run inference on
the complete data set. Afterward, accuracy results appear
in the log files, ensuring that the model met the required
quality target.

Performance mode. The LoadGen avoids going through
the entire data set, as the system’s performance can be de-
termined by subjecting it to enough data-set samples.

4.7.4 Validation Features

The LoadGen has features that ensure the submission sys-
tem complies with the rules. In addition, it can self-check to
determine whether its source code has been modified during
the submission process. To facilitate validation, the sub-
mitter provides an experimental config file that allows use
of non-default LoadGen features. For v0.5, the LoadGen
enables the following four tests.

Accuracy verification. The purpose of this test is to en-
sure valid inferences in performance mode. By default,
the results that the inference system returns to the Load-
Gen are not logged and thus are not checked for accuracy.
This choice reduces or eliminates processing overhead to
allow accurate measurement of the inference system’s per-
formance. In this test, results returned from the SUT to the
LoadGen are logged randomly. The log is checked against
the log generated in accuracy mode to ensure consistency.

On-the-fly caching detection. By default, LoadGen pro-
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duces queries by randomly selecting with replacement from
the data set, and inference systems may receive queries
with duplicate samples. This outcome is likely for high-
performance systems that process many samples relative to
the data-set size. To represent realistic deployments, the
MLPerf rules prohibit caching of queries or intermediate
data. The test has two parts. The first part generates queries
with unique sample indices. The second generates queries
with duplicate sample indices. Performance is measured
in each case. The way to detect caching is to determine
whether the test with duplicate sample indices runs signifi-
cantly faster than the test with unique sample indices.

Alternate-random-seed testing. In ordinary operation, the
LoadGen produces queries on the basis of a fixed random
seed. Optimizations based on that seed are prohibited. The
alternate-random-seed test replaces the official random seed
with alternates and measures the resulting performance.

4.8 Model Equivalence

The goal of MLPerf Inference is to measure realistic system-
level performance across a wide variety of architectures.
But the four properties of realism, comparability, architec-
ture neutrality, and friendliness to small submission teams
require careful trade-offs.

Some inference deployments involve teams of compiler,
computer-architecture, and machine-learning experts aggres-
sively co-optimizing the training and inference systems to
achieve cost, accuracy, and latency targets across a massive
global customer base. An unconstrained inference bench-
mark, however, would disadvantage companies with less
experience and fewer ML-training resources.

Therefore, we set the model-equivalence rules to allow sub-
mitters to, for efficiency, reimplement models on different
architectures. The rules provide a complete list of disal-
lowed techniques and a list of allowed technique examples.
We chose an explicit blacklist to encourage a wide range of
techniques and to support architectural diversity. The list
of examples illustrates the boundaries of the blacklist while
also encouraging common and appropriate optimizations.

Examples of allowed techniques include the following: ar-
bitrary data arrangement as well as different input and in-
memory representations of weights, mathematically equiva-
lent transformations (e.g., tanh versus logistic, ReluX ver-
sus ReluY, and any linear transformation of an activation
function), approximations (e.g., replacing a transcendental
function with a polynomial), processing queries out of or-
der within the scenario’s limits, replacing dense operations
with mathematically equivalent sparse operations, fusing or
unfusing operations, dynamically switching between one or
more batch sizes, mixing experts that combine differently
quantized weights.

4.8.1 Prohibited Optimizations

MLPerf Inference currently prohibits retraining and pruning
to ensure comparability, although this restriction may fail to
reflect realistic deployment for some large companies. The
interlocking requirements to use reference weights (possibly
with calibration) and minimum accuracy targets are most
important for ensuring comparability in the closed division.
The open division explicitly allows retraining and pruning.

We prohibit caching to simplify the benchmark design. In
practice, real inference systems cache queries. For exam-
ple, “I love you” is one of Google Translate’s most frequent
queries, but the service does not translate the phrase ab initio
each time. Realistically modeling caching in a benchmark,
however, is a challenge because cache hit rates vary substan-
tially with the application. Furthermore, our data sets are
relatively small, and large systems could easily cache them
in their entirety.

We also prohibit optimizations that are benchmark aware or
data-set aware and that are inapplicable to production envi-
ronments. For example, real query traffic is unpredictable,
but for the benchmark, the traffic pattern is predetermined by
the pseudorandom-number-generator seed. Optimizations
that take advantage of a fixed number of queries or that use
knowledge of the LoadGen implementation are prohibited.
Similarly, any optimization employing statistical knowledge
of the performance or accuracy data sets is prohibited. Fi-
nally, we disallow any technique that takes advantage of the
upscaled images in the 1,200x1,200 COCO data set for the
heavyweight object detector.

4.8.2 Preprocessing and Data Types

Ideally, a whole-system benchmark should capture all
performance-relevant operations. MLPerf, however, ex-
plicitly allows untimed preprocessing. There is no vendor-
or application-neutral preprocessing. For example, sys-
tems with integrated cameras can use hardware/software
co-design to ensure that images arrive in memory in an ideal
format; systems accepting JPEGs from the Internet cannot.

In the interest of architecture and application neutrality, we
adopted a permissive approach to untimed preprocessing.
Implementations may transform their inputs into system-
specific ideal forms as an untimed operation.

MLPerf explicitly allows and enables quantization to a wide
variety of numerical formats to ensure architecture neutral-
ity. Submitters must pre-register their numerics to help
guide accuracy-target discussions. The approved list for
the closed division includes INT4, INT8, INT16, UINT8,
UINT16, FP11 (sign, 5-bit mantissa, and 5-bit exponent),
FP16, bfloat16, and FP32.

Quantization to lower-precision formats typically requires
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calibration to ensure sufficient inference quality. For each
reference model, MLPerf provides a small, fixed data set that
can be used to calibrate a quantized network. Additionally,
it offers MobileNet versions that are prequantized to INT8,
since without retraining (which we disallow) the accuracy
falls dramatically.

5 SUBMISSION, REVIEW, AND REPORTING

In this section, we describe the submission process for
MLPerf Inference v0.5 (Sections 5.1). All submissions are
peer reviewed for validity (Section 5.2). Finally, we describe
how we report the results to the public (Section 5.3).

5.1 Submission

An MLPerf Inference submission contains information
about the SUT: performance scores, benchmark code, a
system-description file that highlights the SUT’s main
configuration characteristics (e.g., accelerator count, CPU
count, software release, and memory system), and LoadGen
log files detailing the performance and accuracy runs for
a set of task and scenario combinations. All this data is
uploaded to a public GitHub repository for peer review and
validation before release.

MLPerf Inference is a suite of tasks and scenarios that en-
sures broad coverage, but a submission can contain subset
tasks and scenarios. Many traditional benchmarks, such as
SPEC CPU, require submissions for all their components.
This approach is logical for a general-purpose processor that
runs arbitrary code, but ML systems are often highly spe-
cialized. For example, some are solely designed for vision
or wake-word detection and cannot run other network types.
Others target particular scenarios, such as a single-stream
application, and are not intended for server-style applica-
tions (or vice versa). Accordingly, we allow submitters
flexibility in selecting tasks and scenarios.

5.1.1 Divisions

MLPerf Inference has two divisions for submitting results:
closed and open. Submitters can send results to either or
both, but they must use the same data set. The open divi-
sion, however, allows free model selection and unrestricted
optimization to foster ML-system innovation.

Closed division. The closed division enables comparisons
of different systems. Submitters employ the same models,
data sets, and quality targets to ensure comparability across
wildly different architectures. This division requires prepro-
cessing, postprocessing, and a model that is equivalent to
the reference implementation. It also permits calibration for
quantization (using the calibration data set we provide) and
prohibits retraining.

Open division. The open division fosters innovation in ML
systems, algorithms, optimization, and hardware/software
co-design. Submitters must still perform the same ML task,
but they may change the model architecture and the quality
targets. This division allows arbitrary pre- and postpro-
cessing and arbitrary models, including techniques such as
retraining. In general, submissions are not directly com-
parable with each other or with closed submissions. Each
open submission must include documentation about how it
deviates from the closed division. Caveat emptor!

5.1.2 Categories

Submitters must classify their submissions into one of
three categories on the basis of hardware- and software-
component availability: available; preview; and research,
development, or other systems. This requirement helps con-
sumers of the results identify the systems’ maturity level
and whether they are readily available (either for rent online
or for purchase).

Available systems. Available systems are generally the
most mature and have stringent hardware- and software-
availability requirements.

An available cloud system must have accessible pricing
(either publicly or by request), have been rented by at least
one third party, have public evidence of availability (e.g.,
a web page or company statement saying the product is
available), and be “reasonably available” for additional third
parties to rent by the submission date.

An on-premise system is available if all its components that
substantially determine ML performance are available ei-
ther individually or in aggregate (development boards that
meet the substantially determined clause are allowed). An
available component or system must have available pric-
ing (either publicly advertised or available by request), have
been shipped to at least one third party, have public evidence
of availability (e.g., a web page or company statement say-
ing the product is available), and be “reasonably available”
for purchase by additional third parties by the submission
date. In addition, submissions for on-premises systems must
describe the system and its components in sufficient detail
so that third parties can build a similar system.

Available systems must use a publicly available software
stack consisting of the software components that substan-
tially determine ML performance but are absent from the
source code. An available software component must be well
supported for general use and available for download.

Preview systems. Preview systems contain components
that will meet the criteria for the available category within
180 days or by the next submission cycle, whichever is later.
This restriction applies to both the hardware and software
requirements. The goal of the preview category is to en-
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able participants to submit results for new systems without
burdening product-development cycles with the MLPerf
schedule. Any system submitted to preview must then be
submitted to available during the next cycle.

Research, development, or other systems. Research, de-
velopment, or other (RDO) systems contain components not
intended for production or general availability. An example
is a prototype system that is a proof of concept. An RDO
system includes one or more RDO components. These com-
ponents submitted in one cycle may not be submitted as
available until the third cycle or until 181 days have passed,
whichever is later.

5.2 Review and Validation

MLPerf Inference submissions are self- and peer-reviewed
for compliance with all rules. Compliance issues are tracked
and raised with submitters, who must resolve them and then
resubmit results.

A challenge of benchmarking inference systems is that many
include proprietary and closed-source components, such as
inference engines and quantization flows, that make peer
review difficult. To accommodate these systems while ensur-
ing reproducible results that are free from common errors,
we developed a validation suite to assist with peer review.

Our validation tools perform experiments that help deter-
mine whether a submission complies with the defined rules.
MLPerf Inference provides a suite of validation tests that
submitters must run to qualify their submission as valid.
MLPerf v0.5 tests the submission system using LoadGen
validation features (Section 4.7.4).

In addition to LoadGen’s validation features, we use custom
data sets to detect result caching. This behavior is validated
by replacing the reference data set with a custom data set.
We measure the quality and performance of the system
operating on this custom data set and compare the results
with operation on the reference data set.

5.3 Reporting

All results are published on the MLPerf website following re-
view and validation. MLPerf Inference does not require that
submitters include results for all the ML tasks. Therefore,
some systems lack results for certain tasks and scenarios.

MLPerf Inference does not provide a “summary score.” Of-
ten in benchmarking, there is a strong desire to distill the
capabilities of a complex system to a single score to enable
a comparison of different systems. But not all ML tasks are
equally important for all systems, and the job of weighting
some more heavily than others is highly subjective.

At best, weighting and summarization are driven by the sub-
mitter catering to unique customer needs, as some systems

Figure 6. MLPerf Inference’s accessibility and global reach. The
organizations responding to the v0.5 call for submissions hail from
around the world, including the United States, Canada, the Eu-
ropean Union, Russia, the Middle East, India, China, and South
Korea. This domestic and international adoption reflects the com-
munity’s perspective that the benchmark is comprehensive and
scientifically rigorous, and worthy of engineering time for submis-
sions.

may be optimized for specific ML tasks. For instance, some
real-world systems are more highly optimized for vision
than for translation. In such scenarios, averaging the results
across all tasks makes no sense, as the submitter may not be
targeting particular markets.

6 RESULTS

We received over 600 submissions in all three categories
(available, preview, and RDO) across the closed and open
divisions. Our results are the most extensive corpus of
inference performance data available to the public, covering
a range of ML tasks and scenarios, hardware architectures,
and software run times. Each has gone through extensive
review before receiving approval as a valid MLPerf result.
After review, we cleared 595 results as valid.

We evaluated the closed-division results on the basis of four
of the five objectives our benchmark aimed to achieve. The
exception is setting target qualities and tail-latency bounds
in accordance with real use cases, which we do not discuss
because a static benchmark setting applies to every infer-
ence task. Omitting that isolated objective, we present our
analysis as follows:

• Pick representative workloads that everyone can access
(Sections 6.1 and 6.2).

• Evaluate systems in realistic scenarios (Section 6.3).

• Allow the benchmark to flexibly showcase both hard-
ware and software capabilities (Sections 6.4, 6.5, and
6.6).

• Permit the benchmark to change rapidly in response to
the evolving ML ecosystem (Section 6.7).
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6.1 Accessibility and Global Reach

A primary goal for MLPerf Inference was to create a widely
available benchmark. To this end, the first round of submis-
sions came from 14 worldwide organizations, hailing from
the United States, Canada, Russia, the European Union, the
Middle East, India, China, and South Korea, as Figure 6
shows.

The submitters represent many organizations that range
from startups to original equipment manufacturers (OEMs),
cloud-service providers, and system integrators. They in-
clude Alibaba, Centaur Technology, Dell EMC, dividiti,
FuriosaAI, Google, Habana, Hailo, Inspur, Intel, NVIDIA,
Polytechnic University of Milan, Qualcomm, and Tencent.

6.2 Task Coverage

MLPerf Inference v0.5 submitters are allowed to pick any
task to evaluate their system’s performance. The distribution
of results across tasks can thus reveal whether those tasks
are of interest to ML-system vendors.

We analyzed the submissions to determine the overall task
coverage. Figure 7 shows the breakdown for the tasks and
models in the closed division. Although the most popular
model was, unsurprisingly, ResNet-50 v1.5, it was just under
three times as popular as GNMT, the least popular model.
This small spread and the otherwise uniform distribution
suggests we selected a representative set of tasks.

In addition to selecting representative tasks, another goal is
to provide vendors with varying quality and performance
targets. Depending on the use case, the ideal ML model
may differ (as Figure 2 shows, a vast range of models can
target a given task). Our results reveal that vendors equally
supported different models for the same task because each
model has unique quality and performance trade-offs. In the
case of object detection, we saw the same number of sub-
missions for both SSD-MobileNet-v1 and SSD-ResNet34.

6.3 Scenario Usage

We aim to evaluate systems in realistic use cases—a major
motivator for the LoadGen (Section 4.7) and scenarios (see
Section 4.5). To this end, Table 6 shows the distribution of
results across the various task and scenario combinations.

Across all the tasks, the single-stream and offline scenarios
are the most widely used and are also the easiest to optimize
and run. Server and multistream were more complicated
and had longer run times because of the QoS requirements
and more-numerous queries.

GNMT garnered no multistream submissions, possibly be-
cause the constant arrival interval is unrealistic in machine
translation. Therefore, it was the only model and scenario

19

37

54

29

27
16.3%

17.5%

GNMT
11.4%

MobileNets-v1
22.3%

ResNet50-v1.5
32.5%

 
SSD-
MobileNets-v1

SSD-ResNet34

Figure 7. Results from the closed division. The distribution of
models indicates MLPerf Inference capably selected representative
workloads for the initial v0.5 benchmark release.

combination with no submissions.

6.4 Processor Types

Machine-learning solutions can be deployed on a variety
of platforms, ranging from fully general-purpose CPUs to
programmable GPUs and DSPs, FPGAs, and fixed-function
accelerators. Our results reflect this diversity.

Figure 8 shows that the MLPerf Inference submissions cov-
ered most hardware categories. The system diversity indi-
cates that our inference benchmark suite and method for
v0.5 can evaluate any processor architecture.

6.5 Software Frameworks

In addition to the various hardware types are many ML soft-
ware frameworks. Table 7 shows the variety of frameworks
used to benchmark the hardware platforms. ML software
plays a vital role in unleashing the hardware’s performance.

Some run times are specifically designed to work with cer-
tain types of hardware to fully harness their capabilities;
employing the hardware without the corresponding frame-
work may still succeed, but the performance may fall short
of the hardware’s potential. The table shows that CPUs have

SINGLE-STREAM MULTISTREAM SERVER OFFLINE

GNMT 2 0 6 11

MOBILENET-V1 18 3 5 11

RESNET-50 V1.5 19 5 10 20

SSD-MOBILENET-V1 8 3 5 13

SSD-RESNET34 4 4 7 12

TOTAL 51 15 33 67

Table 6. Closed-division submissions for the tasks and LoadGen
scenarios. The high coverage of models and scenarios implies that
the benchmark captures important real-world use cases.
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Figure 8. Results from the closed division. The results cover many
processor architectures. Almost every kind—CPUs, GPUs, DSPs,
FPGAs, and ASICs—appeared in the submissions.

the most framework diversity and that TensorFlow has the
most architectural variety.

6.6 Diversity of Systems

The MLPerf Inference v0.5 submissions cover a broad range
of systems on the power and performance scale, from mobile
and edge devices to cloud computing. The performance
delta between the smallest and largest inference systems is
four orders of magnitude, or about 10,000x.

Table 8 shows the performance range for each task and sce-
nario in the closed division (except for GNMT, which had
no multistream submissions). For example, in the case of
ResNet-50 v1.5 offline, the highest-performing system is
over 10,000x faster than the lowest-performing one. Unsur-
prisingly, the former comprised multiple ML accelerators,
whereas the latter was a low-power laptop-class CPU. This
delta for single-stream is surprising given that additional
accelerators cannot reduce latency, and it reflects an even
more extensive range of systems than the other scenarios. In
particular, the single-stream scenario includes many smart-
phone processors, which target very low power.

Figure 9 shows the results across all tasks and scenarios. In
cases such as the MobileNet-v1 single-stream scenario (SS),
ResNet-50 v1.5 SS, and SSD-MobileNet-v1 SS, systems
exhibit a large performance difference (100x). Because
these models have many applications, the systems that target
them cover everything from low-power embedded devices
to high-performance servers. GNMT server (S) shows much
less performance variation between systems.

The broad performance range implies that the selected tasks
(as a starting point) for MLPerf Inference v0.5 are general
enough to represent a variety of use cases and market seg-
ments. The wide array of systems also indicates that our
method (LoadGen, metrics, etc.) is broadly applicable.

ASIC CPU DSP FPGA GPU

ARM NN X X

FURIOSA-AI X

HAILO SDK X

HANGUANG-AI X

ONNX X

OPENVINO X

PYTORCH X

SNPE X

SYNAPSE X

TENSORFLOW X X X

TF-LITE X

TENSORRT X

Table 7. Summary of software framework versus hardware archi-
tecture in the closed division. The hardware benchmarking in-
volves many different frameworks. Preventing submitters from
reimplementing the benchmark would have made it impossible to
support the diversity of systems tested.

6.7 Open Division

The open division is the vanguard of MLPerf’s benchmark-
ing efforts. It is less rigid than the closed division; we
received over 400 results. The submitters ranged from star-
tups to large organizations.

A few highlights from the open division are the use of 4-bit
quantization to boost performance, an exploration of a wide
range of models to perform the ML task (instead of using
the reference model), and a demonstration of one system’s
ability to deliver high throughput even under tighter latency
bounds—tighter than those in the closed-division rules.

In addition, we received a submission that pushed the limits
of mobile-chipset performance. Typically, most vendors
use one accelerator at a time to do inference. In this case,
a vendor concurrently employed multiple accelerators to
deliver high throughput in a multistream scenario—a rarity
in conventional mobile use cases. Nevertheless, it shows
that the MLPerf Inference open division is encouraging the

SINGLE-STREAM MULTISTREAM SERVER OFFLINE

GNMT 2 N/A 5 2,367

MOBILENET-V1 1,199 29 9 438

RESNET-50V1.5 11154 27 26 10,289

SSD-MOBILENET-V1 8 36 25 657

SSD-RESNET34 8 44 9 147

Table 8. Closed-division performance summary across tasks and
scenarios. Each entry is the ratio of the highest to lowest perfor-
mance. The performance range is as much as 10,000x. GNMT
appears as N/A for multistream because it had no submissions.
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Figure 9. Results from the closed division. Normalized performance distribution on log scale (log10) across models for the single-
stream (SS), multistream (MS), server (S), and offline (O) scenarios. The boxplot shows the performance distribution of all system
submissions for a specific model and scenario combination. The results are normalized to the slowest system representing that combination.
A wide range emerges across all tasks and scenarios. GNMT MS is absent because no submitter ran the multistream scenario.

industry to push the limits of systems.

In yet another interesting submission, two organiza-
tions jointly evaluated 12 object-detection models—YOLO
v3 (Redmon & Farhadi, 2018), Faster-RCNN (Ren et al.,
2015) with a variety of backbones, and SSD (Liu et al.,
2016)) with a variety of backbones—on a desktop platform.
The open-division results save practitioners and researchers
from having to manually perform similar explorations, while
also showcasing potential techniques and optimizations.

7 LESSONS LEARNED

We reflect on our v0.5 benchmark-development effort and
share some lessons we learned from the experience.

7.1 Community-Driven Benchmark Development

There are two main approaches to building an industry-
standard benchmark. One is to create the benchmark in
house, release it, and encourage the community to adopt it.
The other is first to consult the community and then build
the benchmark through a consensus-based effort. The for-
mer approach is useful when seeding an idea, but the latter
is necessary to develop an industry-standard benchmark.
MLPerf Inference employed the latter.

MLPerf Inference began as a community-driven effort
on July 12, 2018. We consulted more than 15 organiza-
tions. Since then, many other organizations have joined
the MLPerf Inference working group. Applying the wis-
dom of several ML engineers and practitioners, we built the
benchmark from the ground up, soliciting input from the
ML-systems community as well as hardware end users. This
collaborative effort led us to directly address the industry’s
diverse needs from the start. For instance, the LoadGen
and scenarios emerged from our desire to span the many
inference-benchmark needs of various organizations.

Although convincing competing organizations to agree on a
benchmark is a challenge, it is still possible—as MLPerf In-
ference shows. Every organization has unique requirements
and expectations, so reaching a consensus was sometimes
tricky. In the interest of progress, everyone agreed to make
decisions on the basis of “grudging consensus.” These de-
cisions were not always in favor of any one organization.
Organizations would comply to keep the process moving or
defer their requirements to a future version so benchmark
development could continue.

Ultimately, MLPerf Inference exists because competing
organizations saw beyond their self-interest and worked
together to achieve a common goal: establishing the best
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ways to measure ML inference performance.

7.2 Perfect Is the Enemy of Good

MLPerf Inference v0.5 has a modest number of tasks and
models. Early in the development process, it was slated to
cover 11 ML tasks: image classification, object detection,
speech recognition, machine translation, recommendation,
text (e.g., sentiment) classification, language modeling, text
to speech, face identification, image segmentation, and im-
age enhancement. We chose these tasks to cover the full
breadth of ML applications relevant to the industry.

As it matured, however, engineering hurdles and the partici-
pating organizations’ benchmark-carrying capacity limited
our effort. The engineering hurdles included specifying and
developing the LoadGen system, defining the scenarios, and
building the reference implementations. The LoadGen, for
instance, involved 11 engineers from nine organizations.
The reference implementations involved 34 people from 15
organizations contributing to our GitHub repository.

We deemed that overcoming the engineering hurdles was a
priority, as they would otherwise limit our ability to repre-
sent various workloads and to grow in the long term. Hence,
rather than incorporating many tasks and models right away,
we trimmed the number of tasks to five and focused on
developing a proper method and infrastructure.

With the hurdles out of the way, a small team or even an
individual can add new models. For instance, thanks to
the LoadGen and a complementary workflow-automation
technology (Fursin et al., 2016), one MLPerf contributor
with only three employees swept more than 60 computer-
vision models in the open division.

Similarly, adding another task would require only a mod-
est effort to integrate with the LoadGen and implement the
model. This flexibility allows us to accommodate the chang-
ing ML landscape, and it saves practitioners and researchers
from having to perform these explorations manually, all
while showcasing potential techniques and optimizations
for future versions of the closed division.

7.3 Audits and Auditability

MLPerf is committed to integrity through rigorous submitter
cross-auditing and to the privacy of the auditing process.
This process was uncontentious and smooth flowing. Three
innovations helped ease the audit process: permissive rules,
the LoadGen, and the submission checker.

Concerns arose during rule-making that submitters would
discover loopholes in the blacklist, allowing them to “break”
the benchmark and, consequently, undermine the legitimacy
of the entire MLPerf project. Submitters worked together to
patch loopholes as they appeared because all are invested in

the success of the benchmark.

The LoadGen improved auditability by separating measure-
ment and experimental setup into a shared component. The
only possible error in the experimental procedure is use
of the wrong LoadGen settings. The LoadGen, therefore,
significantly reduced compliance issues.

Finally, MLPerf provided a script for checking submissions.
The script allowed submitters to verify that they submitted
all required files in the right formats along with the correct
directory layouts. It also verified LoadGen settings and
scanned logs for noncompliance.

The submission-checker script kept all submissions rela-
tively uniform and allowed submitters to quickly identify
and resolve potential problems. In future revisions, MLPerf
will aim to expand the range of issues the submission script
discovers. We also plan to include additional checker scripts
and tools to further smooth the audit process.

8 PRIOR ART IN AI/ML BENCHMARKING

The following summary describes prior AI/ML inference
benchmarking. Each of these benchmarks has made unique
contributions. MLPerf has strived to incorporate and build
on the best aspects of previous work while ensuring it in-
cludes community input. Compared with earlier efforts,
MLPerf brings more-rigorous performance metrics that we
carefully selected for each major use case along with a much
wider (but still compact) set of ML applications and models
based on the community’s input.

AI Benchmark. AI Benchmark (Ignatov et al., 2019) is
arguably the first mobile-inference benchmark suite. It cov-
ers 21 computer-vision and AI tests grouped in 11 sections.
These tests are predominantly computer-vision tasks (image
recognition, face detection, and object detection), which are
also well represented in the MLPerf suite. The AI Bench-
mark results and leaderboard focus primarily on Android
smartphones and only measure inference latency. The suite
provides a summary score, but it does not explicitly specify
the quality targets. Relative to AI Benchmark, we aim at a
wider variety of devices (submissions for v0.5 range from
IoT devices to server-scale systems) and multiple scenar-
ios. Another important distinction is that MLPerf does not
endorse a summary score, as we mentioned previously.

EEMBC MLMark. EEMBC MLMark (EEMBC, 2019)
is an ML benchmark suite designed to measure the per-
formance and accuracy of embedded inference devices. It
includes image-classification (ResNet-50 v1 and MobileNet-
v1) and object-detection (SSD-MobileNet-v1) workloads,
and its metrics are latency and throughput. Its latency and
throughput modes are roughly analogous to the MLPerf
single-stream and offline modes. MLMark measures per-
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formance at explicit batch sizes, whereas MLPerf allows
submitters to choose the best batch sizes for different scenar-
ios. Also, the former imposes no target-quality restrictions,
whereas the latter imposes stringent restrictions.

Fathom. An early ML benchmark, Fathom (Adolf et al.,
2016) provides a suite of neural-network models that in-
corporate several types of layers (e.g., convolution, fully
connected, and RNN). Still, it focuses on throughput rather
than accuracy. Fathom was an inspiration for MLPerf: in
particular, we likewise included a suite of models that com-
prise various layer types. Compared with Fathom, MLPerf
provides both PyTorch and TensorFlow reference implemen-
tations for optimization, ensuring that the models in both
frameworks are equivalent, and it also introduces a variety
of inference scenarios with different performance metrics.

AIXPRT. Developed by Principled Technologies, AIX-
PRT (Principled Technologies, 2019) is a closed, propri-
etary AI benchmark that emphasizes ease of use. It consists
of image-classification, object-detection, and recommender
workloads. AIXPRT publishes prebuilt binaries that employ
specific inference frameworks on supported platforms. The
goal of this approach is apparently to allow technical press
and enthusiasts to quickly run the benchmark. Binaries are
built using Intel OpenVino, TensorFlow, and NVIDIA Ten-
sorRT tool kits for the vision workloads, as well as MXNet
for the recommendation system. AIXPRT runs these work-
loads using FP32 and INT8 numbers with optional batching
and multi-instance, and it evaluates performance by measur-
ing latency and throughput. The documentation and quality
requirements are unpublished but are available to members.
In contrast, MLPerf tasks are supported on any framework,
tool kit, or OS; they have precise quality requirements; and
they work with a variety of scenarios.

AI Matrix. AI Matrix (Alibaba, 2018) is Alibaba’s AI-
accelerator benchmark for both cloud and edge deployment.
It takes the novel approach of offering four benchmark types.
First, it includes micro-benchmarks that cover basic oper-
ators such as matrix multiplication and convolutions that
come primarily from DeepBench. Second, it measures per-
formance for common layers, such as fully connected layers.
Third, it includes numerous full models that closely track in-
ternal applications. Fourth, it offers a synthetic benchmark
designed to match the characteristics of real workloads.
The full AI Matrix models primarily target TensorFlow and
Caffe, which Alibaba employs extensively and which are
mostly open source. We have a smaller model collection
and focus on simulating scenarios using LoadGen.

DeepBench. Microbenchmarks such as DeepBench (Baidu,
2017) measure the library implementation of kernel-level
operations (e.g., 5,124x700x2,048 GEMM) that are impor-
tant for performance in production models. They are useful
for efficient model development but fail to address the com-

plexity of testing and evaluating full ML models.

TBD (Training Benchmarks for DNNs). TBD (Zhu et al.,
2018) is a joint project of the University of Toronto and
Microsoft Research that focuses on ML training. It provides
a wide spectrum of ML models in three frameworks (Ten-
sorFlow, MXNet, and CNTK), along with a powerful tool
chain for their improvement. It primarily focuses on evalu-
ating GPU performance and only has one full model (Deep
Speech 2) that covers inference. We considered including
TBD’s Deep Speech 2 model but lacked the time.

DawnBench. DawnBench (Coleman et al., 2017) was the
first multi-entrant benchmark competition to measure the
end-to-end performance of deep-learning systems. It al-
lowed optimizations across model architectures, optimiza-
tion procedures, software frameworks, and hardware plat-
forms. DawnBench inspired MLPerf, but our benchmark
offers more tasks, models, and scenarios.

To summarize, MLPerf Inference builds on the best of prior
work and improves on it, in part through community-driven
feedback (Section 7.1). The result has been new features,
such as the LoadGen (which can run models in different
scenarios), the open and closed divisions, and so on.

9 CONCLUSION

More than 200 ML researchers, practitioners, and engineers
from academia and industry helped to bring the MLPerf
Inference benchmark from concept (June 2018) to result
submission (October 2019). This team, drawn from 32 or-
ganizations, developed the reference implementations and
rules, and submitted over 600 performance measurements
gathered on a wide range of systems. Of these performance
measurements, 595 cleared the audit process as valid sub-
missions and were approved for public consumption.

MLPerf Inference v0.5 is just the beginning. The key to
any benchmark’s success, especially in a rapidly chang-
ing field such as ML, is a development process that can
respond quickly to changes in the ecosystem. Work has
already started on the next version. We expect to update
the current models (e.g., MobileNet-v1 to v2), expand the
list of tasks (e.g., recommendation), increase the processing
requirements by scaling the data-set sizes (e.g., 2 MP for
SSD large), allow aggressive performance optimizations
(e.g., retraining for quantization), simplify benchmarking
through better infrastructure (e.g., a mobile app), and in-
crease the challenge to systems by improving the metrics
(e.g., measuring power and adjusting the quality targets).

We welcome your input and contributions. Visit the MLPerf
website (https://mlperf.org) for additional details.
Results for v0.5 are available online (https://github.
com/mlperf/inference_results_v0.5).
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