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Abstract—The Long-Short-Term-Memory Recurrent Neural
Networks (LSTM RNNs) are a popular class of machine learning
models for analyzing sequential data. Their training on modern
GPUs, however, is limited by the GPU memory capacity. Our
profiling results of the LSTM RNN-based Neural Machine Trans-
lation (NMT) model reveal that feature maps of the attention and
RNN layers form the memory bottleneck, and runtime is unevenly
distributed across different layers when training on GPUs. Based
on these two observations, we propose to recompute the feature
maps of the attention and RNN layers rather than stashing them
persistently in the GPU memory.

While the idea of feature map recomputation has been consid-
ered before, existing solutions fail to deliver satisfactory footprint
reduction, as they do not address two key challenges. For each
feature map recomputation to be efficient, its effect on (1) the
total memory footprint, and (2) the total execution time has to be
carefully estimated. To this end, we propose Echo, a new compiler-
based optimization scheme that addresses the first challenge with
a practical mechanism that estimates the memory benefits of
recomputation over the entire computation graph, and the second
challenge by non-conservatively estimating the recomputation
runtime overhead leveraging layer specifics. Echo reduces the
GPU memory footprint automatically and transparently without
any changes required to the training source code, and is effective
for models beyond LSTM RNNs.

We evaluate Echo on numerous state-of-the-art machine learn-
ing workloads, including NMT, DeepSpeech2, Transformer, and
ResNet, on real systems with modern GPUs and observe footprint
reduction ratios of 1.89x on average and 3.13x maximum. Such
reduction can be converted into faster training with a larger batch
size, savings in GPU energy consumption (e.g., training with one
GPU as fast as with four), and/or an increase in the maximum
number of layers under the same GPU memory budget. Echo is
open-sourced as a part of the MXNet 2.0 framework.1

Index Terms—DNN Training, GPU Memory Footprint Reduc-
tion, LSTM RNN

I. INTRODUCTION

LSTM [1] RNNs form an important class of machine learning

models for analyzing sequential data, having applications in

language modeling [2], [3], machine translation [4]–[7], and

speech recognition [8], [9]. In these tasks, LSTM RNNs are

trained over large amounts of data samples (e.g., sentences or

audio files) to capture their inherent temporal dependencies.

Despite their importance, LSTM RNN training tends to be

less efficient on modern GPUs compared to other types of
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deep neural networks (DNNs) such as Convolutional Neural

Networks (CNNs) [10], [11]. One of the main reasons for such

inefficiency is the high GPU memory consumption of LSTM

RNNs that limits the maximum training batch size, which, in

turn, limits the GPU compute utilization because of the small

amount of available data parallelism [12].

There have been numerous works [13]–[16] that propose

techniques for memory footprint reduction in DNNs, but these

works, unfortunately, have limited applicability for LSTM

RNN training. Specifically, prior works that propose efficient

compression techniques for inference (e.g., [13], [14]) focus on

weights rather than feature maps (which consume the majority

of the overall memory in DNN training [15], [16]). Prior

works such as vDNN [15] and Gist [16] that attempt to reduce

footprint in CNN training cannot be directly applied to LSTM

RNNs as they either lead to (i) high runtime overhead for

many small vector layers used in LSTM RNNs, or (ii) limited

applicability, as LSTM RNNs use tanh/sigmoid, rather than

ReLU activations, resulting in almost no opportunities for the

data encodings proposed in Gist [16].

To better understand the reasons that lead to the high GPU

memory consumption in LSTM RNNs, we perform a detailed

breakdown analysis of the GPU memory consumption (and

also complimentary runtime analysis) during the training of

the state-of-the-art LSTM RNN-based NMT model [4], [7],

and observe that (i) the feature maps of the attention and RNN

layers consume most of the GPU memory (feature maps are

the data entries saved in the forward pass to compute the

gradients during the backward pass), and (ii) the runtime is

unevenly distributed across different layers (fully-connected

layers dominate the runtime while other layers are relatively

lightweight). From these two observations, we adopt the idea

of selective recomputation [17]–[21], where we can leverage

the low computational cost of non-fully-connected layers to

recompute their feature maps during the backward pass, rather

than stashing them in the GPU memory.

Although the idea of feature map recomputation has been

explored before in prior works [17]–[19], they fail to deliver

satisfactory footprint reduction in the case of LSTM RNN

training and other state-of-the-art training workloads (as we

will show in Sections III-D and VI). These previous proposals

are ineffective in the LSTM RNN context as a result of not

addressing two important challenges:

(1) Accurately estimating footprint reduction. While recom-

putation obviates the need to store feature maps of some layers
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(or group of layers), it needs to additionally stash some data

entries that are needed to recompute these (group of) layers as

new feature maps. Hence, a practical recomputation strategy

should involve the comparison between the feature maps that

are released and the ones that are newly allocated, but such

a comparison is far from being trivial and is overlooked by

prior works [17]. First, when making a decision on whether an

operator should be recomputed, we should focus not only on

the storage allocations that are local to this operator, but also

on the global effects of these allocations, and take into account

any potential reuse across different operators within the same

computation graph. Second, we need a practical mechanism

to estimate the recomputation benefits over the entire graph.

Naı̈ve implementation has combinatorial runtime complexity,

which can be impractical in the LSTM RNN context given

that the number of the operator nodes in the graph is usually

huge (e.g., around 15.9K in large NMT models [22]).

(2) Non-conservatively estimating runtime overhead. Recom-

putation always comes with runtime overhead (as feature maps

have to be recomputed), and hence potential targets for recom-

putation have to be carefully selected. Naı̈ve implementations

simply exclude any compute-heavy layers (e.g., convolutions,

fully-connected layers) to keep the recomputation overhead low

[17]. Such an approach is too conservative and leads to limited

applicability in the LSTM RNN context. We, however, notice

that if layer specifics are taken into account, certain layers that

are otherwise filtered out can be amenable to recomputation

with low overhead. For example, the fully-connected layers

do not need recomputation as their gradients’ computation

does not need their outputs. Other examples of layer specifics

include binarization [16] for ReLU activations and dropout
layers [23]. Those layers require special handling so that we

would not miss opportunities for footprint reduction and still

avoid significant runtime overhead.

To effectively address these challenges and enable practical

recomputation in LSTM RNN training, we propose Echo, a new

compiler-based optimization scheme. Echo employs two key

ideas to achieve this goal. To address the first challenge, Echo
makes footprint reduction estimation practical by partitioning

the whole computation graph into smaller subgraphs to restrict

the scope (and hence reduce the complexity) of the footprint

reduction estimation. Compute-heavy layers form the natural

boundaries for partition, since they are not recomputed and

therefore out of the estimation scope. Echo then analyzes each

small subgraph independently and makes accurate footprint

reduction estimation for recomputation. To address the second

challenge, Echo infers the data dependencies of the gradient

operators. Only if the gradient computation requires the forward

operators’ outputs will the forward operators’ runtime be added

as a part of the recomputation overhead estimate.

Our major contributions can be summarized as follows:

(1) We present a detailed breakdown and analysis of how

the GPU memory is consumed and where the runtime is spent

in NMT training. Our profiling reveals that the feature maps

of the attention and RNN layers form the memory bottleneck

and the runtime is unevenly distributed across different layers,

Fig. 1: Left: A single-layer LSTM RNN that scans through an

input sequence. Right: Zoom-in view of one LSTM cell. Both

diagrams are simplified for clarity.

which motivates us to adopt the idea of selective recomputation

to reduce the GPU memory footprint.

(2) We address the key challenges in making selective recom-

putation practical by carefully estimating the footprint reduction

and runtime overhead, therefore significantly outperforming

prior works in both aspects.

(3) We implement our ideas in a new graph optimization

pass, Echo, that is open-sourced in MXNet [24] NNVM [25],

a state-of-the-art machine learning framework graph compiler.

Echo reduces the GPU memory footprint transparently and
automatically for numerous machine learning models without

any changes to the training source code (even beyond LSTM

RNNs). As Section VI will show, we additionally implement

hand-tuned CUDA kernels that perform recomputation more

efficiently but those kernels take us several weeks to develop

for every specific model, whereas Echo is effective for all the

models we have examined in a fully automatic way.

(4) We evaluate Echo in a state-of-the-art machine learning

framework (MXNet [24]) on four state-of-the-art machine learn-

ing models [12], [26] used for machine translation (NMT [4],

[7], Transformer [27]), speech recognition (DeepSpeech2 [28]),

and image classification (ResNet [29]), and observe GPU

memory footprint reduction ratio of 3.13×, 1.56×, 1.59×, and

2.13× correspondingly. On the NMT model, we demonstrate

that this reduction can be converted into training to the same

quality with a larger batch size 1.28× faster or training with

one GPU as fast as with four, and on Transformer and ResNet

models, we further show that our approach can help increase

the maximum number of layers by 1.83× and 4.0× respectively

while using the same GPU memory budget.

II. BACKGROUND

This section gives a short overview of LSTM RNNs and

their applications for machine translation tasks. For simplicity,

we hide the algorithmic details that are not relevant to this

work and focus on the tensor shape transformations across

different layers that matter most in memory allocations. Bold
text in this section will be used as examples in Section IV.

Figure 1 shows a simplified view of a single-layer LSTM

RNN that reads through an input sequence i1∼T , where the

annotations in square brackets denote the tensor shapes. The

layer has T LSTM cells C1∼T , where T is the input sequence

length (e.g., in the context of machine translation, T denotes
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the number of words per sentence). Each cell Ct receives three

inputs from two directions: (1) from the input it of the current

time step, and (2) from the hidden and cell state of the previous

cell. All inputs are of dimension [B×H], where B is the batch

size and H is the hidden dimension. Both it and ht need to

go through a fully-connected layer, defined by Equation (1):

Y = XWT + b,W : [4H ×H], b : [4H] (1)

where X,Y,W, b are input, output, weight, and bias respec-

tively. The weight and bias are shared across the timeline.

After their hidden dimension has become 4× larger by

Equation 1, it and ht, together with ct, enter the non-linear

block f that consists of slicing and element-wise operations.

The output of the LSTM cell is the hidden and cell state of

the current time step, both of which are of dimension [B×H].
The sum of the non-linear block’s input sizes [9×B ×H]
is greater than its output sizes [B×H], which will become
an example in Section IV-A (Figure 7).

The NMT model [4], [7] is the state-of-the-art LSTM RNN-

based model used for machine translation. It has three major

blocks, namely the encoder, decoder, and attention (Figure 2).

In the encoder, source sentences of the training dataset are

batched into a tensor of shape [B×T ]. In the embedding layer,

each word in a sentence is encoded into a hidden state of

dimension H . The result is sent to the LSTM RNN as an input

(see Figure 1). The hidden states of the LSTM cell at all time

steps (each of which is of shape [B ×H]) are concatenated

together into the source hidden state ([B×T×H]). The encoder

passes its internal hidden states to the decoder, which decodes

the target sentences one word at a time into a hidden state ht

([B ×H]), also known as a query.

The query and encoder hidden state are given to the attention

layer, where they go through the following procedures to

generate the attention hidden state at (see Figure 2):

1 A scoring function compares the query with the encoder

hidden state, generating the attention scores ([B ×H]), which

is used to determine the attention weights αts ([B ×H]). The
encoder hidden state Hs is reused across all the time steps,
which will become an example in Section IV-A (Figure 8).

2 A context vector ct ([B×H]) is computed as the attention

weights-weighted average of the encoder hidden state.

3 The query and context vector are concatenated together to

generate the attention hidden state at ([B ×H]), which is sent

to the next decoder time step for the next word in sequence.

This process continues until the maximum sequence length

is reached. The decoded sequence is then sent to the output

layer to evaluate the training loss. In training, the loss is further

propagated back through the network to compute the gradients

that are used to update the model weights. By the nature of the

backpropagation algorithm [30], some data entries, denoted as

feature maps, have to be stashed in memory during the forward

pass to compute the gradients [16].

III. MOTIVATION

A. Why does GPU memory footprint matter?

There are two major benefits of GPU memory footprint

reduction. First comes from boosting the training performance

Fig. 2: NMT (LSTM RNN Encoder (Middle)-Decoder (Right)

with Attention (Left))

by using larger training batch size,2 and second from allowing

to train wider and deeper models with the same GPU resources.

Increase Training Throughput with Larger Batch Size.
We compare the training throughput between ResNet-50 [29]

(CNN-based model used for image classification) and NMT [4],

[7] (LSTM RNN-based model) with respect to their training

batch size. Figure 3a shows the correlation between training

throughput (measured as samples/second) and batch size for

ResNet-50 (detailed methodology in Section VI-A). We notice

that the training throughput saturates as the batch size increases.

Our previous work [12] on benchmarking DNN Training reveals

that the reason is because the GPU compute units have been

almost fully utilized (starting from the batch size of 32) and

therefore further increasing the batch size yields little benefit

on the training throughput. However, the story is different in

LSTM RNNs. Figure 3b shows a similar graph for NMT. We

observe that the training throughput increases linearly with the

batch size, but such increase stops when the model hits the

GPU memory capacity wall on a modern 11 GB RTX 2080

Ti GPU [31] at the batch size of 128, and cannot increase

any further. From the comparison, we draw the conclusion

that, in LSTM RNN-based model, performance is limited
by the GPU memory capacity, and hence this justifies why

footprint reduction techniques can further increase the training

throughput for such models (as we will show in Section VI-B).

(a) ResNet-50 (b) NMT

Fig. 3: (a) Training Throughput of ResNet-50 versus Batch

Size (b) Training Throughput and GPU Memory Usage of

NMT versus Batch Size (using one RTX 2080 Ti GPU)

Wider and Deeper Models. Although models such as

ResNet might not always be able to benefit from the footprint

reduction to achieve performance gains, they can still benefit

indirectly by becoming wider and deeper while using the same

2Although one might argue that large training batch size might hurt
convergence, in Section VI-B we show actual training curves that increase
convergence speed to the same quality when training with larger batch size.
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GPU memory budget. For example, data encoding approach

such as the one used in our prior work Gist can increase the

maximum number of layers in ResNet from 851 to 1202 with

a batch size of 16 [16]. As deep learning models grow larger,

recent years have seen models that cannot fit into a single GPU

even with a batch size of 1 [32]. These models can become

practical if efficient footprint reduction techniques are applied.

B. Memory Consumption Breakdown

To understand the reason behind NMT’s large GPU memory

footprint, we develop a GPU memory profiler3 to show the

detailed breakdown. We categorize the memory consumption

in two orthogonal ways: (1) by layer types (e.g., RNN), and

(2) by data structures. Major data structures include: feature

maps, weights, and workspace:

(1) Feature Maps: Each layer needs memory for its own

input and output variables. If any of those variables are needed

in the backward pass to compute the gradients, it is stashed

persistently in memory as feature maps, while those that are

not can be released back to the storage pool. For example,

consider the tanh activation function Y = tanh(X). Since we

have Y ′ = 1− tanh2(X), the value of tanh(X) needs to be

stored for the gradient computation in the backward pass.

(2) Weights: Layers such as fully-connected layers (Equa-

tion 1) have parameters W,B that are optimized as training

progresses. In the following text, we use the term Weights as a

generic term that includes W,B, plus their respective gradients

and optimizer states which are used to do weight updates.

(3) Workspace is the scratchpad of a layer to compute the

results. When a layer completes its own forward or backward

pass, its workspace, if previously requested, can be freed.

Fig. 4: Memory Consumption Breakdown by

Layer Types (Left) and Data Structures (Right)

C. Runtime Breakdown

To motivate the use of selective recomputation approach, we

do a runtime profile analysis that shows the runtime distribution

across different layers. Figure 5 illustrates the NMT runtime

breakdown on one training iteration. The profile is obtained

from the NVProf tool [33]. We observe that the runtime is
unevenly distributed across different layers, with 50% going

into the fully-connected layers and the other 50% into many

small compute kernels. The longest kernel of the latter runs

3The GPU memory profiler has been integrated as a part of MXNet [24]:
https://issues.apache.org/jira/projects/MXNET/issues/MXNET-1404

for only 5 ms (the mshadow bar represents the tensor library

backend of MXNet and consists of multiple CUDA kernels).

Fig. 5: Runtime Break-

down by Layer Types

D. Selective Recomputation

Given that the GPU memory consumption limits training

performance and that the execution time is distributed unevenly

across different layers, selective recomputation [17]–[19] can

be a viable option to trade runtime with memory capacity. To

illustrate the key idea behind selective recomputation, consider

the computation graph in Figure 6, where we have a sequence

of n operator nodes. Assume that the gradient node i′ on the

backward pass has data dependency on the output edge of its

corresponding forward node i. The dependency is shown as

an edge pointing from the forward to the backward pass ( 1 ),

which is marked as the feature map that has to be stashed.

Therefore, the memory allocated for those edges cannot be

released back to the storage pool, resulting in four persistent

storage units by the time the forward pass completes ( 2 ). If

recomputation is used, those four dependency edges can be

replaced with only one edge on the input to Node #1 ( 3 ). This

releases storage pressure as the inputs to Node #2 ∼ 4 can now

be taken by their respective outputs (and hence do not need to

be stashed anymore), but it comes with the cost of having to

redo the forward computation when the backward pass starts

( 4 ). This comes with runtime overhead, but such overhead

can be controlled if the recomputed nodes (shown in gray in

Figure 6b) are restricted to those that are computationally cheap.

Hence, selective recomputation has the potential to reduce the

memory footprint at small runtime cost.

(a) Baseline(a) Baseline

(b) Recomputation

Fig. 6: A Computation Graph with Recomputation Applied

(Red Arrows denote Persistent Feature Maps Storage)

In practice, however, we observe that the current state-of-the-

art recomputation approach has limited benefits on the NMT

training. Table I compares the training performance and GPU

memory footprint between training with and without selective

recomputation, where the recomputation implementation is

based on the prior work [17]. We observe that recomputation

causes the performance to drop by 17%, and it can only give

a footprint reduction of 26% in return, which does not provide
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enough memory space to increase the performance by, for

example, increasing the batch size.

Baseline Chen et al. [17]

Avg. Throughput (samples/s) 1192 983
GPU Memory Footprint (GB) 10.0 7.4

TABLE I: NMT [22] Training with & without Recomputation

IV. KEY IDEAS

The major reason for the ineffectiveness of the state-of-the-

art implementations of the recomputation approach is because

they fail to adequately address two important challenges:

A. Footprint Reduction Estimation

Challenge #1. Accurately estimating footprint reduction. The

effect of each operator recomputation on the total memory

footprint needs to be carefully estimated. We observe from the

red arrows in Figure 6b that although recomputation removes

the feature maps on the outputs of Node #1 ∼ 4, it also brings

in a new data entry which is the input to Node #1 that now

has to be stashed. In real models, it is possible for the latter

to be larger than the former combined.

Consider the concrete example in Figure 7a, where X and

Y , both being 1D arrays of shape [N ], are elementwise-added

first before passing through a tanh activation function. The

output Z is also of shape [N ]. This example is a simplified

version of the LSTM cell described in Section II (Figure 1).

(a) Baseline (b) Recomputation

Fig. 7: Z = tanh(X + Y )

In the baseline, the framework only stashes Z as the feature

map ( 1 ), because it is the only value that is needed to compute

the gradient in the backward pass. With the + and tanh listed as

recomputed in Figure 7b, the backward dependency is brought

forward from Z to X and Y ( 2 ), similar to Figure 6b. However,

the only memory saving is from the feature map Z, while the

new ones (X and Y ) need new allocations, doubling the amount

of persistent storage required from N to 2N .

We therefore conclude that a practical recomputation strategy

should involve the comparison between the feature maps that

are released and those that are newly allocated. However, such a

comparison is far from being trivial and is overlooked by prior

works [17]. Although a simple comparison between the inputs

size and outputs suffices to do the job in the example above,

it only considers the storage allocations that are local to each

operator and ignores the global impact of those allocations as

it fails to consider the storage reuse across different operators

within the same computation graph.

Consider another example in Figure 8, where we have T
tensors of shape [N ] added with the same tensor of shape

[T ×N ] by broadcasting input values and passing through the

tanh activation function. The example is a simplified version of

the attention scoring function introduced in Section II Figure 2.

If we restrain the analysis scope within the dashed box and

naı̈vely compare the inputs size versus outputs, we will arrive

at the same conclusion as Figure 7 that recomputation is not

needed. However, with recomputation the total feature map size

can be reduced from T 2 ×N to T × 2N and the key reason is

because the storage of [T ×N ] is shared by multiple operators.

Therefore, we conclude that a global graph analysis is needed

to take reuse effects into account when using recomputation.

Fig. 8: T Tensors of Shape

[N ] Added with [T × N ] by

Broadcasting Input Values and

Passing Through the tanh Ac-

tivation Function

A simple but impractical solution can be an entire com-

putation graph traversal to evaluate the memory benefits of

recomputing for every operator in the graph. This solution

has combinatorial runtime complexity, which is challenging in

the LSTM RNN context because the number of operators in

the graph is usually huge (e.g., around 15.9K in large NMT

models [22]). To address this challenge, we propose to partition

the whole computation graph into small subgraphs to restrict

the scope (and hence reduce the complexity) of the footprint

reduction analysis. Compute-heavy layers (e.g., fully-connected

layers) form the natural boundaries. This is because the goal

of the footprint reduction analysis is to estimate the effect of

recomputation on the total memory footprint. Since compute-

heavy layers are never recomputed to avoid significant runtime

overhead (as we mention in Section III-D), they are excluded

from the scope of analysis and hence can serve as a good place

to partition. After the partitioning, each subgraph captures

any reuse across tensor edges in the computation graph. We

then analyze each small subgraph independently and accurately

estimate potential footprint reduction from recomputation.

In Section V-A, we show examples how footprint reduction

estimation can help to (i) avoid pathological cases such as

Figure 7 where recomputation increases the memory footprint,

and (ii) reduce the recomputation runtime overhead.

B. Runtime Overhead Estimation

Challenge #2. Non-conservatively estimating runtime over-
head. The effect of every operator recomputation on the total

execution time needs to be carefully estimated taking layer

specifics into consideration. From Figure 6b, we observe that

recomputation always comes with runtime overhead, because

feature maps have to be recomputed in the backward pass.

Therefore, in practical implementations recomputation is always

done selectively. One naı̈ve way to do this is to simply exclude

all the feature maps of the compute-heavy operators (e.g.,

convolutions, fully-connected) from being recomputed to keep

the runtime overhead low [17]. This approach, however, is too

conservative and leads to limited applicability in the LSTM
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RNN context. A common example is the fully-connected layer

that we have listed in Section II Equation 1:

Y = XWT ⇒ dE

dX
=

dE

dY
W,

dE

dW
=

dE

dY

T

X (2)

where E is the training loss that has to be optimized.

We observe that the gradients of the fully-connected layer

only have data dependency on X and W (but not Y ), both of

which are the inputs to the fully-connected layer. This implies

that to recompute the feature maps of the fully-connected layer

one does not have to recompute the layer itself (as the output Y
is not needed). Such a property is layer-specific. There are also

other types of layer-specific properties that can enable efficient

footprint reduction. For example, the feature maps of ReLU
activations [16] and dropout layers [23] can be stored in 1-bit

binary format. Those layers require special handling so that

we do not miss opportunities for footprint reduction and still

avoid significant runtime overhead.

To address this challenge, we design a non-conservative

runtime overhead estimator that infers the layer specifics before

estimating the recomputation overhead. In the context of fully-

connected layers, the idea is that the gradient computation of

these layers only need the inputs rather than the outputs. The

estimator’s goal is therefore to distinguish between those two

cases, and only if the feature maps of an operator are part

of its outputs will the operator’s runtime be added as a part

of the overhead estimate. The key challenge for the estimator

design lies in its generality. Although hard coding the layer

specifics is possible, it is not a scalable solution given the

number of layers supported in a machine learning framework

[24]. Hence, we leverage the dataflow analysis approach to

obtain such information, as we show in Section V-B.

C. Automatic and Transparent Compiler Pass Design

Machine learning programmers always have the option to do

recomputation manually by writing hand-tuned GPU kernels

[34], [35]. As Section VI will show, manual recomputation

has the advantage of doing extra optimizations such as kernel

fusion that could greatly reduce the recomputation overhead

(and even improve runtime due to fewer memory accesses).

Despite its merits, manual recomputation has the following

major shortcomings: (i) it is hard to pinpoint the correct

places where recomputation should be done, especially in

an LSTM RNN model with around 15.9K operators [22],

and (ii) it requires nontrivial knowledge of GPU programming,

machine learning algorithms, and framework system integration.

This places significant burden on the programmer. We first

added the recomputation optimization manually to the NMT

model and spent more than two weeks seeking recomputation

opportunities and testing the manual implementations in

MXNet [24]. This non-trivial effort motivated us to push for an

automatic and transparent method to perform this optimization

(and we will show the performance comparison of manual

versus automatic version in Section VI-B). An automatic and

transparent recomputation scheme should reduce the GPU

memory footprint without any changes needed to the training

source code, while guaranteeing that (i) the recomputation

impact on training performance is minimal and (ii) the GPU

memory footprint is never worse than that in the baseline.

To this end, we present Echo, a compiler-based optimization

scheme that can reduce the GPU memory footprint automati-

cally and transparently. Echo addresses the two key challenges

for accurate footprint reduction and non-conservative runtime

overhead estimation in a computation graph compiler middle-

end without domain-specific knowledge of the graph structures.

We present the implementation details of Echo in Section V.

V. IMPLEMENTATION DETAILS

We integrate Echo in NNVM [25], which is the computation

graph compiler for MXNet [24], the state-of-the-art machine

learning framework. Its compilation workflow is illustrated in

Figure 9. The input to the workflow is a computation graph that

consists of operator nodes of the forward pass. The shapes and

data types of those nodes’ data entries are unknown. NNVM

starts by inserting the gradient operators into the computation

graph, and then applying the pre-registered gradient functions

to each node in the graph. If recomputation has been enabled,

NNVM will additionally insert the recomputation nodes as in

Figure 6. After the full computation graph with forward and

backward operator nodes has been formed, NNVM infers the

shapes and data types of each operator node’s data entries from

the input arguments (usually the training data). Finally, NNVM

plans memory allocations by assigning virtual storage IDs to

all the data entries. Those IDs will then be used to materialize

the memory space of the computation graph nodes.

Gradient → InferShape & Type → PlanMemory

Fig. 9: MXNet NNVM Compilation Workflow (in Sequence)

A. Footprint Reduction Estimation

We observe that with the current workflow, it is impossible

to accurately estimate the footprint reduction, because critical

information such as the shape and data type of each tensor

edge is only available after the recomputation algorithm has

been executed. We know from the example in Section IV-A

(Figures 7 and 8) that this information is required to accurately

estimate the footprint reduction. We therefore start by changing

the compilation workflow in Figure 9 to Figure 10, so that

more information is available by the time Echo is executed.

Gradient → InferShape & Type → EdgeUseRef →
Echo → InferShape & Type → AllocateMemory

Fig. 10: Adjusted NNVM Compilation Workflow

(The first Gradient pass does not perform recomputation)

With the new workflow, allocation-relevant information (e.g.,

shape and data type) is now available prior to Echo, which gives

it the opportunity to accurately estimate the footprint reduction

brought by recomputation using a bidirectional dataflow analy-

sis. Algorithm 1 shows Echo’s high-level workflow. Echo first

performs a backward pass (line 6-10) to obtain all the possible

targets for recomputation, and partitions the entire graph at

the compute-heavy layers to avoid significant overhead in case

these layers are included in recomputation. It then performs a
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Algorithm 1: Echo’s High-Level Workflow

Input : Computation Graph G
1 worklist H = [G.OutputNodes];
2 while !H. empty() do
3 h = H. pop();
4 if h ∈ G.InputPlaceholders then continue;
5 subgraph S = {h}, worklist W = [h.InputNodes];

/* 1. Backward: Expand the subgraph S backward until blocked
by compute-heavy layers */

6 while !W. empty() do
7 w = W.pop();
8 if w ∈ G.InputPlaceholders then continue;
9 if w.op ∈ ComputeHeavyOps then

H. append(w); continue;
10 S. insert(w); W. append(w.InputNodes);
11 create the recomputation path of S (Figure 11c);

/* 2. Forward: Traverse through the subgraph S in topological
order and estimate the footprint effect ∀recomputation */

12 for s ∈ S.TopologicalOrderView do
13 if s.op ∈ ComputeHeavyOps then
14 create a dummy gradient node gs′;
15 GradFunc[s.op](s, gs′);
16 create a node s copying s on the recomputation path;
17 for e ∈ s.InputEdges ∧ e ∈ gs′.InputEdges do
18 link e to s and gs (Figure 14d);
19 continue;
20 if s.op ∈ BinarizableOps then insert encode and decode

subroutines between s and its gradient node gs; continue;
21 edges set AllocEdges = RelEdges = {};
22 for e ∈ s.InputEdges do
23 for n ∈ S ∪ S.GradientGraph that

references e as input do
24 if n ∈ S then
25 AllocEdges. insert(n.OutputEdges);
26 RelEdges. insert(n.InputEdges);
27 else AllocEdges. insert(e);
28 for e ∈ AllocEdges do Alloc += e.Size;
29 for e ∈ RelEdges do Rel += e.Size;
30 if Rel ≥ Alloc then remove s from the recomputation

path (Figure 12a and Figure 12b);

forward pass (line 12-30) to remove recomputations that do

not reduce memory footprint. The forward pass reduces the

recomputation runtime overhead, and also guarantees that the

total memory consumption after recomputation is performed

will never increase compared with the baseline.

Figure 11 illustrates an example similar to Figure 7, with

two fully-connected layers added before the elementwise-add

operator. The backward pass, shown in Figure 11a, starts from

the top (i.e., output) of the graph, propagates backward along

the dashed edges, and then stops at the fully-connected layers

( 1 ), because these two layers do not belong to the possible

targets for recomputation as being too compute-heavy (see the

runtime profile in Section III-C, Figure 5).

After the backward pass, Echo takes the nodes and edges

that the backward pass has processed (Figure 11b), which form

a partitioned subgraph of the original computation graph, and

assumes that all the operator nodes within this subgraph can be

recomputed. This is illustrated in Figure 11c as a graph shown

in gray that mirrors the subgraph. The mirrored graph is the

recomputation path, similar to the gray segments in Figure 6

and 7. Due to the recomputation path, the feature maps that

are originally at the output edge of tanh in Figure 11a, are

now placed at the beginning of the recomputation path ( 2 ),

as we have shown in Section III-D, Figure 6.

After the recomputation path has been formed, a followup

forward pass removes recomputations that cannot reduce mem-

ory footprint. A node can be removed from the recomputation

path if, by removing that node, the storage released from its

inputs is greater than or equal to that allocated for its outputs.

Based on the previous example, we consider to remove the

+ and tanh nodes from the recomputation path in succession.

Figure 12a shows that the removal of + is successful, because

its inputs size (N+N ) is greater than its output (N ). Similarly,

Figure 12b shows that the removal of tanh is also successful,

because its input size (N ) is equal to its output size (N ). After

the removals, the final graph (Figure 12c) does not have any

recomputation. This indicates that recomputation is unable to

reduce memory footprint in this specific example (as we have

seen in Section IV-A), but Echo is still able to preserve both

the same performance and memory footprint as the baseline.

This is in stark contrast to prior works [17]–[19] that introduce

unnecessary recomputation which doubles the feature maps

storage in this example (shown in Section IV-A, Figure 7b).

After the forward pass, the backward pass resumes at the

inputs of the fully-connected layers in Figure 11a for the next

partitioned subgraph. This backward-forward loop continues

until all the inputs of the whole graph are reached. As one

might notice, since the next subgraph continues at the places

where the previous subgraph stops, each subgraph is disjoint.
This property keeps the runtime complexity of Algorithm 1

reasonable (less than 300 ms for the models in Section VI in

the hardware environment listed in Section VI-A).

(a) Backward
Analysis Flow

(b) Partitioned
Subgraph

(c) Recomputation
Path

Fig. 11: Backward Analysis Exampleg.gg.gg.ggg.gggggggggggggggg

(a) Forward on
Elementwise Add

ac warrd Add Ad Ad AAnaaaalylyllyyyyyyyyyyyyyyyyyys

(b) Forward on
tanh Activation

a p e

(c) Final Graph

Fig. 12: Forward Analysis Example (Figure 11 Continued)

As we have discussed in the example in Section IV-A

(Figure 8), the comparison between the storage released and

allocated requires more than just the comparison between input

versus output sizes that only reflects allocations that are local to

each operator. For accurate footprint reduction estimation, Echo
considers the global effect (i.e., reuse) of storage allocations

within each subgraph independently, because each subgraph is

disjoint and hence there is no reuse across subgraphs. Echo
abstracts the reuse using the use references on each tensor

edge, as it represents the number of times a particular tensor

1095



(and hence the storage allocated to that tensor) is reused. The

tensor edge use references come from the EdgeUseRef pass

(see Figure 10), where the compiler traverses through the whole

computation graph and, for each tensor, records the number of

times it is referenced by different operators.

Figure 13 shows how Echo leverages the use references

information in its analysis, using the example in Section IV-A

(Figure 8), where we have T tensors of shape [N ] added with

the same tensor of shape [T ×N ] by broadcasting inputs values

and passing through the tanh activation function. Although

the backward pass in this example (shown in Figure 13a) is

similar to that in Figure 11c, where all operators are listed as

recomputed, the forward pass is different. This is because the

tensor [T ×N ] is used by T different operators, and trying to

remove any of those operators on the recomputation path will

cause all the other operators to be removed as well, since they

all need the tensor [T ×N ] to be stashed as feature maps to

do recomputation. This is illustrated as T parallel arrows on

the recomputation path in Figure 13a. Echo therefore needs to

compare the storage allocated for all T operators’ inputs with

their outputs. It then notices that, since the storage allocated for

[T×N ] is shared by all the T operators, the total inputs storage

size (T ×N + T ×N = T × 2N ) is smaller than the outputs

(T × T ×N = T 2 ×N ) when T is large enough (usually T
is in the range of 50 ∼ 100 [4], [22]). Echo therefore stops

trimming the recomputation path right at the beginning, leaving

all operators marked as recomputed. This indeed leads to the

optimal result, as the total feature maps storage in the final

graph is T × 2N , which is an order of magnitude smaller than

storage required in the baseline (T 2 ×N ).

We conclude that, compared with prior works [17]–[19] that

recompute every layer that is not compute-heavy. Echo uses

rigorous dataflow analysis to avoid pathological cases where

recomputation is not needed while preserving those where it

is beneficial. This explains why Echo keeps overhead minimal
and never increases the overall memory footprint, as our results

in Section VI-C1 will show.

(a) Recomputation Path (b) Final Graph

Fig. 13: Analysis Example based on Figure 8

B. Runtime Overhead Estimation

As we show in Section IV-B, the gradients of the fully-

connected layers only need their inputs. Layers such as

convolutions and batched dot product also have similar property.

Prior works [17] simply skip all the compute-heavy layers

(Figure 14c). In contrast, Echo deems these layers as potentially

good targets for recomputation by performing non-conservative

runtime overhead estimation (Algorithm 1 line 13-18). Echo
starts by inferring the data dependencies of the gradient operator

that are specific to different types of layers. It does so by (i)

creating a dummy gradient operator node, (ii) applying the

gradient function to the (gradient, forward) operator tuple, and

(iii) analyzing the data dependencies of the gradient operator

on the forward operator. If the dependencies do not include the

outputs of the forward operator, this implies that recomputation

in this case does not require to recompute the operator itself,

and hence its runtime is not added to the total runtime overhead

when recomputing feature maps. If this is the case, Echo creates

a “dead” node on the recomputation path ( 1 ) that forwards the

output edge of the previous recomputation node to the gradient

node. However, the node itself is disconnected from the next

node on the recomputation path. This implies that the node’s

outputs are never referenced by any other nodes, making the

node effectively dead and thereby avoiding any unnecessary

recomputation. Such an approach releases the feature maps on

the input edges of the compute-heavy nodes but does not lead

to situations with huge runtime overhead (as in Figure 14b),

and can therefore further reduce the GPU memory footprint.

(a) Baseline (b) High Recomputation
Overhead

(c) Prior Works [17]
No Footprint Reduction

(d) Low-Overhead
Footprint Reduction

Fig. 14: Recomputation Strategies for Compute-Heavy Layers

(shown in Red) whose Gradients only need Their Inputs

In addition to leveraging the layer specific gradient depen-

dencies, Echo also uses layer specific encoding to binarize

the feature maps of the dropout and ReLU layers [16], [23]

(Algorithm 1 line 18). It encodes the dropout feature maps

to 1-bit in the forward pass and decodes them back to 32-bit

in the backward pass. Such layer specific optimizations give

more footprint reduction with small runtime overhead.

In summary, we have demonstrated how Echo benefits from

layer specific information and uses non-conservative runtime

overhead estimation to reduce the memory footprint with low

runtime overhead, as our results in Section VI will show.

VI. EVALUATION

A. Methodology

Infrastructure. Our major compute platform is a single

machine with 32-core AMD EPYC 7371 [36] and 4 NVIDIA

RTX 2080 Ti GPUs [31] connected via PCIe v3 [37] (detailed

specifications in Table II), installed with CUDA 10.0 [38],

cuDNN 7.6.3 [39], and MXNet v0.12.1 [40]. All the experi-

ments in this paper are conducted in this platform, except for

the hardware sensitivity study in Figure 19.

Applications. We evaluate Echo by training the Sockeye [22]

NMT toolkit on the IWSLT15 English-Vietnamese (small) [48]

and WMT16 English-German (large) [49] datasets, using the
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CPU Memory

32-core AMD EPYC 7371 [36] 128 GB DDR4 [41]
32-core Intel Xeon E5-2686 v4 [42] 244 GB DDR4 [41]

GPU (Generation)

NVIDIA RTX 2080 Ti [31] (Turing [43]) 11 GB GDDR6 [44]
NVIDIA Tesla V100 [45] (Volta [46]) 16 GB HBM2 [47]

TABLE II: CPU/GPU Specifications

hyperparameter settings from Zhu et al. [12] for the single-GPU

experiments on the small dataset and Hieber et al. [22] for

the multi-GPU experiments on the large dataset. In addition to

NMT, we also show results on other state-of-the-art machine

learning models [12], [26] shown in Table III.

Model Dataset Application

DeepSpeech2 [28] LibriSpeech [50] speech recognition
Transformer [27] WMT16 EN-DE [49] translation
ResNet [29] ImageNet [51] image classification

TABLE III: Models Evaluated in addition to NMT

Baselines. We compare our fully automated and transparent

approach, Echo, with two baselines: the baseline system without

recomputation, which we refer to as Baseline, and the state-of-

the-art implementation of recomputation by Chen et al. [17],

which we refer to as Mirror.

For the experiments on NMT [4], [7], we use the superscript

(†) to denote our hand-tuned implementation. We leverage the

information provided by Echo to pinpoint the places where

recomputation is beneficial and manually fuse the operators

that are on the recomputation path into a single operator (i.e.,

Node #1 ∼ 4 in Figure 6b are fused together as a single CUDA

kernel). As we discussed in Section IV-C, this requires non-

trivial effort and expertise in CUDA programming, machine

learning algorithms, and framework system integration, but it

shows potential benefits that recomputation can provide.

Metrics. We show the (1) GPU memory consumption and (2)

throughput as the key metrics. We also show the training curves

in the NMT experiments, and power/energy consumption on

the GPUs in the multi-GPU experiments. The training curves

are expanded using the CPU wall clock time. Those curves use

BLEU score [52] to quantify the machine translation quality,

where a higher BLEU score means better translation quality

and a BLEU score that is greater than 20 is considered strong

[22], [52]–[54]. As training progresses, we periodically query

the memory and power usage of the GPUs using the nvidia-smi
tool [55] and approximate the GPU energy consumption as

power over time. The throughput is reported as the average of

the throughput numbers given by the MXNet speedometer [56],

which measures throughput by dividing the number of training

samples by the CPU wall clock time.

B. Machine Translation Results with NMT Model

1) English-Vietnamese: Figure 15a and 15b illustrate the

comparison of the GPU memory usage and the training through-

put under different batch sizes on the English-Vietnamese

translation task (the subscript B denotes the batch size used).

We observe that Echo can achieve 3.13× footprint reduction

ratio over Baseline and 2.31× over Mirror under the same

(a) GPU Memory Consumption

(b) Throughput (c) Validation Curve BLEU Score

Fig. 15: (a) GPU Memory Consumption, (b) Throughput, and

(c) Validation Curve BLEU Score compared between Baseline,

Mirror, and Echo(†) on English-Vietnamese NMT

batch size of 128 (35.4% of the reduction comes from more

aggressive recomputation due to non-conservative runtime

overhead estimation (Section IV-B)). We also notice that Echo
only has 1% runtime overhead, which is 18× less than Mirror.

Because BaselineB=128 and MirrorB=128 consume around

10.0 GB and 7.4 GB of GPU memory respectively when the

batch size is 128, their batch size can no longer be doubled

(otherwise the GPU will run out of memory). The situation is

different for Echo. Since it only consumes around 3.0 GB of

memory, Echo’s training batch size can be further increased

to 256, producing the training curve EchoB=256 in Figure 15c.

By training the NMT model with larger batches, we increase

the throughput by 1.27× and converge to the same validation

BLEU score 1.28× faster than the baseline. The reason why

the achieved speedup 1.28× is smaller than those shown in

Figure 3b is two-fold: (1) Similar to the ResNet model [29]

(Figure 3a), throughput can saturate at large batch size, as the

compute resource utilization increases with the batch size. (2)

The recomputation overhead lessens the performance benefits of

having a larger batch size. However, such negative impact can

be mitigated by the hand-tuned implementation Echo†. As one

might notice, at the same batch size of 128, Echo† (manually

optimized version of Echo) reduces the GPU memory footprint

by 3× while increasing, rather than decreasing, the throughput

by 33%. The reason for the increase is because the overhead

of the recomputation is so small that it is outweighed by the

benefits of kernel fusion. Such benefits include reduction in

(i) the cudaLaunch overhead and (ii) the number of GPU

memory accesses [57]. As Figure 15c illustrates, after doubling

the batch size, Echo† improves the speed of convergence further

by 1.56× compared with the baseline.

Figure 16 illustrates the memory consumption breakdown

comparison between Baseline, Mirror, and Echo. We observe

that Echo is able to reduce the memory consumption on

layers such as attention and RNN by 81.4% and 68.6%
respectively when compared with the baseline and Mirror.

The reason is because it accurately estimates the footprint

reduction (Section IV-A) and hence can leverage more optimal

recomputation paths that lead to lower memory footprint.
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Fig. 16: NMT GPU Memory Consumption Breakdown Com-

parison between Baseline, Mirror and Echo (B = 128)

Fig. 17: Trade-Off between

the Memory Consumption and

Performance Overhead ((x%,
y GB) stands for x% over-

head over the baseline with

y GB memory consumption)

To study whether doing more recomputation can enable

more aggressive footprint reduction (or alternatively, doing

less recomputation can reduce the performance overhead while

still preserving most of the footprint reduction benefits), we

selectively enable/disable the recomputations for certain types

of layers (more fine-grain per-layer trade-off is difficult due

to the large number of operator nodes in the model (e.g.,

around 15.9K in large NMT models [22])). Figure 17 shows

the trade-off between the aggressiveness of the recomputation

and the resulting performance overhead, which is measured

as the throughput degradation over the baseline. We observe

that solely enabling the recomputation of RNN or attention

layers can only deliver 21.1% and 70.2% of Echo’s footprint

reduction respectively. On the other hand, aggressively enabling

the recomputation of fully-connected layers (FC) on top of

Echo can lead to a minor footprint benefit of 1.8%, with a

drastic 20.2% performance overhead. We conclude that out of

all the configurations examined, Echo finds the sweet spot in

selecting what layers to recompute to maximize the footprint

reduction with acceptable overhead.
2) English-German: Multi-GPU training is a common way

to reduce the training time [7], [8], however, in multi-GPU

training, communication can potentially become a bottleneck.

Moreover, power and energy is now a primary concern as GPU

cards such as RTX 2080 Ti is known for being power-hungry

(having a TDP at around 250 W) [31].
Figure 18a and 18c show the memory usage under different

batch sizes and device settings on the English-German trans-

lation task (the superscript Dev denotes the number of GPUs

used, and if multiple GPUs are used, the memory usages are

aggregated up across all GPUs). We observe from Figure 18a

that Baseline already has a memory consumption of more than

8 GB on a single GPU when the batch size is 16, meaning that

we need to use 4 GPUs to train on a batch size of 64. However,

with Echo we can train on just a single GPU with a batch of

64, and even 128, as the memory consumption (9.6 GB) can

still fit in the memory capacity of one RTX 2080 Ti card [31].
Figure 18b and 18d show the throughput comparison between

different implementations. We observe that although Echo is

14% behind Baseline when the batch size is 16, Echo running

on one GPU outperforms the baseline on four GPUs by 1.35×,

both using the maximum training batch size. The reason for the

low scalability of the multi-GPU baseline (2.14×) is two-fold:

(1) the nature of the translation model that limits the scalability

[58], [59] and (2) relatively low bandwidth of the PCIe [37]

interconnect. Although NVLink-enhanced compute systems

such as the ones in Amazon EC2 p3.8xlarge instance [60] (32-

core Intel Xeon E5-2686 v4 [42] and 4 NVIDIA Tesla V100

GPUs [45] connected via NVLink [61], detailed specifications

in Table II) can be used to boost the scalability up to 3.40×,

such systems can be as much as 6× more expensive [62], [63]).

Moreover, even in this hardware setup, we observe that Echo
running on one GPU achieves nearly the same performance

with the Baseline running on four GPUs, as Figure 19 shows.

We further observe that Echo can significantly reduce the

power and energy consumption on the GPUs. In Figure 20a we

show the validation BLEU score curve in one training epoch

expanded by the CPU wall clock time and Figure 20b the

averaged power and accumulated energy consumption of all

the GPUs. After one epoch, all implementations reach a BLEU

score of 28.0 on the validation dataset, however, EchoDev=1
B=128

completes the epoch 1.35× faster than BaselineDev=4
B=64 . It also

saves 65% of the energy consumption on the GPUs, because

it requires only one GPU to train on this large batch size.

On the other hand, although Mirror can halve the number

of GPUs required for training at a batch size of 64, it cannot

further squeeze the training model onto a single GPU, let along

further doubling the batch size. Hence, it is 31% behind Echo
in convergence speed and consumes 2× more energy on the

GPUs to complete the training.

In summary, we have shown the benefit of Echo on the GPU

memory footprint and how to convert such benefit into faster

convergence speed and/or lower GPU energy consumption. In

fact, we have also implicitly shown how one could train larger

and deeper model with Echo, as the model for English-German

translation has 2× more layers than that for English-Vietnamese

[12], [22], but with Echo they can both train properly on a

single GPU under a batch size of 128. We conclude that Echo
can not only provide performance gain and energy consumption

reduction, but also allow us to train deeper models with the

same amount of GPU resources.

C. Echo Generality Across Machine Learning Models

Since Echo’s key ideas are independent of the structure

of the computation graph, it is potentially applicable to any

machine learning models. In this section, we evaluate Echo on

four state-of-the-art (SOTA) machine learning models.

1) DeepSpeech2: Figure 22(1) shows the comparison on the

GPU memory consumption and training throughput by training

the DeepSpeech2 (DS2) model [28], which is the SOTA model

for speech recognition [12], [26]. We use 40K audio samples

from the LibriSpeech [50] dataset for training.

Figure 21 shows the GPU memory consumption breakdown

of DS2 [28] with a batch size of 8. We notice that 40% of
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(a) GPU Memory Consumption (b) Throughput (c) GPU Memory Consumption (d) Throughput

Fig. 18: (a, c) GPU Memory Consumption and (b, d) Throughput compared between Baseline, Mirror, and Echo(†)

on English-German NMT (a-b: Single-GPU, b = 16, c-d: Multi-GPU, B = 64/128)

Fig. 19: Throughput Compar-

ison on 4 Tesla V100s con-

nected via NVLink (a) Validation Curve BLEU Score

(b) Power & Energy Consumption

Fig. 20: (a) Validation Curve BLEU Score and (b) Power &

Energy Consumption compared between Baseline, Mirror,

and Echo(†) on English-German NMT

Fig. 21: DS2 Memory Consumption Breakdown by

Layer Types (Left) and Data Structures (Right) (B = 8)

the GPU memory allocated is for weights, making feature

maps less important under the small batch size. This matches

our observation from Figure 22(1a) that when the batch size

is small, Echo cannot provide significant footprint reduction

over the baseline. However, as the batch size increases from 8
to 24, the GPU memory footprint with Echo increases much

slower compared with the baseline and Mirror, because relative

proportion of feature maps increases and the latter two cannot

adequately address this increase. Thereby, Echo does not hit

the GPU memory capacity wall even under a batch size of

32, allowing the training throughput to further scale up, as

is illustrated in Figure 22(1b). The recomputation runtime

overhead of Echo is within 2% of the baseline under the same

batch size, giving it the opportunity to compensate for the

performance loss by increasing the batch size. As the rightmost

bar of Figure 22(1b) shows, the throughput of EchoB=32 is

3.6× that of BaselineB=8 and 1.3× that of BaselineB=24 (the

best throughput in the baseline).

We further observe from Figure 22(1a) that Mirror consumes

more (rather than less) GPU memory than the baseline. This

is because it fails to accurately estimate the footprint reduction

effects after recomputation (Challenge #1, Section IV-A). It

also has 5× more runtime overhead compared to Echo.

2) Transformer: Both the NMT and DS2 are RNN-based

models [4], [7], [28]. To demonstrate Echo’s generality beyond

(a) GPU Memory Consumption (b) Throughput
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Fig. 22: (a) GPU Memory Consumption and (b) Throughput

compared between Baseline, Mirror, and Echo on DS2 (1),

Transformer (TX, 2), and ResNet (3)

RNNs, we evaluate the effect of Echo on the Transformer

model [27], which is the state-of-the-art model for machine

translation [12], [26] and does not have a RNN component in

it. Figure 22(2) shows that Echo achieves a footprint reduction

ratio of 1.59× over the baseline with 3.0× less overhead than

Mirror, where 38% of the footprint reduction over the baseline

comes from layer specific knowledge that the feature maps of

the dropout layer can be binarized [16] (Section IV-B).

3) ResNet: All the previous models belong to the domain

of sequence-to-sequence learning. To show Echo’s generality

in other domains, we further evaluate the effect of Echo on

the ResNet-152 model, which is the state-of-the-art model

for image classification [12], [26]. Figure 22(3) shows that

Echo achieves a footprint ratio of 2.13× over the baseline

and 1.57× over Mirror with 1.67× less overhead than Mir-
ror. Figure 23 shows the memory consumption breakdown

comparison between Baseline, Mirror, and Echo. We observe

that Echo reduces the footprint of compute-heavy layers (i.e.,

Conv) by 58.3% when compared with Mirror, because the

non-conservative runtime overhead estimation (Section IV-B)
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Fig. 23: ResNet-152 GPU Memory Consumption Breakdown

Comparison between Baseline, Mirror, and Echo (B = 32)

offers more footprint reduction opportunities on those layers.

Although models such as Transformer and ResNet might not

always be able to directly benefit from the footprint reduction by

achieving performance gains, they can still benefit indirectly

by becoming deeper under the same GPU memory budget.

Table IV shows the maximum number of Transformer and

ResNet layers that we can run on one RTX 2080 Ti [31]. We

choose the number of layers specified in Hieber et al. [22] and

He et al. [29] and pick the maximum batch sizes that can fit

into the 11 GB GPU memory budget in the baseline. As we

experiment on Mirror, Echo while keeping the batch sizes fixed,

we observe that Echo increases the maximum number of layers

by 1.83× and 4.0× on Transformer and ResNet respectively.

Such increase in depth aligns with the recent trends in deep

learning that have growing demand for more layers [51], [64].

Model Baseline Mirror Echo

Transformer 6 6 11
ResNet 50 101 200

TABLE IV: Maximum Number of Layers one RTX 2080 Ti

In summary, by evaluating Echo on diverse workloads, we

have shown the generality of the ideas behind Echo. We also

conclude that Echo is able to efficiently and effectively reduce

the memory footprint for RNNs [4], [7], [28], Transformer [27],

and CNNs (ResNet [29]) with very low overhead. Such foot-

print benefits can be converted into performance improvements

and/or an increase in the number of layers that can be executed

while using the same batch size and GPU memory budget.

VII. RELATED WORK

In this work, we present Echo, a compiler-based optimization

scheme that automatically and transparently reduces the GPU

memory footprint used for training across diverse machine

learning models without any changes needed to the training

source code. Echo finds and addresses two key challenges of

selective recomputation that are missing in prior works [17]–

[19]. Compared with other prior works, Echo (i) focuses on

training rather than inference [13], [14], [65]–[72], and (ii)

requires no domain-specific knowledge of the computation

graph structures and/or manual efforts to hand-write CUDA

kernels [16], [34], [35], and (iii) makes no changes to the

underlying training algorithm [73], [74]. It is largely orthogonal

to prior works that speed up training using model/pipelined

parallelism [75], [76] and networking optimizations [77], [78].

Selective Recomputation. In parallel with our work [35],

TWRemat [20] and Checkmate [21] also leverage the selective

recomputation idea but using different approaches. While The

former transforms the computation graph into a tree and solves

the recomputation problem recursively by decomposing the tree,

the latter formulates the problem as a constrained optimization

problem and solves it using integer linear programming. These

proposals are fundamentally different from Echo’s dataflow

analysis approach.

Memory Virtualization. vDNN [15], cDMA [79], and MC-

DLA [80] fit large neural networks in the device memory

by virtualizing the memory usage using the host-side or the

device-side memory nodes. The idea of virtualization can be

used jointly with that of selective recomputation, and it has

been shown in Capuchin [81] that combining the two ideas

achieves the same amount of footprint reduction as the sole

virtualization approach but with better performance (7%).

Data Encoding/Compression for CNNs. Our prior work,

Gist [16], [82] proposes several lossless memory compression

technique in the context of CNNs. One of the techniques

requires the use of ReLU activations. Unfortunately, LSTM

RNNs mostly use tanh and sigmoid, and hence Gist encodings

become mostly inapplicable in the LSTM RNN context. There

have been numerous efficient footprint reduction techniques

that target inference [13], [14], [65]–[72]. These works focus on

reducing the footprint of model weights. However, in training,

weights are frequently updated, so it is challenging to apply

these ideas in the training context. Furthermore, as is shown

in Section III-B (Figure 4), weights are not the major memory

consumer in NMT training.

Machine Learning Compilers. Echo is a compiler-based

optimization that reduces the GPU memory footprint of DNN

training tasks. There are other works on machine learning

compilers that propose new programming paradigm and/or

runtime performance improvements, which include TVM [83],

Relay [84], Latte [85], TensorFlow XLA [86], Glow [87], and

TensorComprehensions [88]. These are all possible platforms

to which Echo could be added.

Algorithmic Innovations. Unlike Echo, there have also been

works that address the inefficiency of LSTM RNN training

from an algorithmic perspective. For example, BPPSA [73]

re-formulates the backpropagation of neural networks as a

parallel scan operation and improves the runtime complexity

of the backward pass from Θ(n) to Θ(log(n)) (where n is the

number of compute devices). Such approaches can be used in

conjunction with Echo for even better performance.

VIII. CONCLUSION

In this paper, we propose Echo, an open-sourced compiler-

based optimization scheme that reduces memory footprint au-

tomatically and transparently. On four state-of-the-art machine

learning models, Echo reduces the GPU memory footprint by

1.89× on average and 3.13× maximum with marginal runtime

overhead. System researchers, machine learning practitioners

can all benefit from Echo, as it speeds up training convergence,

reduces the GPU energy consumption, and allows for larger and

deeper models. We hope that Echo would become a platform
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for further research on memory footprint optimizations and

efficient system design for key machine learning applications.
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